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Te Train Operation Plan (TOP) of urban rail transit (URT) is a comprehensive plan for the operation of trains, the use of facilities
and equipment, and the organization of other operational tasks. Te TOP should not only be formulated in terms of time-varying
passenger fow periods, but it should also be arranged to consider the substitutability of trains between multiple routes combined
with the passenger choice. Based on the principle of “operating by the fow” and the requirement for precise allocation of transport
capacity for multiple routes, this article constructs a multiobjective nonlinear integer programming model by taking the
minimized generalized travel cost of passengers, total running mileage of trains, fuctuation of trains for each route (as opti-
mization targets), and the combination of requirements of both headways and fully loaded rates as constraints. A multiobjective
genetic-based algorithm is designed to simultaneously optimize the TOP and the two-way train stopping time in each period.
Finally, the proposed model and algorithm are validated with the real data from the Guangzhou Metro Line 2. Te results show
that the Pareto optimal TOP and dynamic train stopping time are signifcantly improved compared to the original values.

1. Introduction

With the continuous advancement of urbanization in China
and the rapid development of urban rail transit networks,
the network efects of rail transit have emerged. Compared
with the buses, URT is more attractive, stable, and punctual.
Te daily trafc volume of the URT system has gradually
increased and its share rate has continued to rise compared
with various transit modes [1, 2]. Te Train Operation Plan
(TOP) is an important intermediate link between passenger
fow demand and transportation supply, of which “operating
by the fow” is the basic principle. Reasonable development
of the train operation plan can efectively allocate the ca-
pacity resources of URT, making full use of the transport
capacity of the network, meeting the diferentiated spatio-
temporal demands of passengers, and providing passengers
with safe, punctual, and comfortable commuting services,
while reducing the operating costs of transport companies.
Due to the spatiotemporal transportation of passenger fow

across the network, the imbalance of trafc volumes in-line
levels is exacerbated. Compared with the previous single
routing mode, i.e., between two endpoints, the operational
method of multirouting is considered better for the un-
balanced passenger fow requirements, while improving
organizational efciency of transportation.

Te formulation of the URT Train Operation Plan is
a hierarchical process of top-to-bottom preparation and
bottom-to-top feedback [3], in which: (a) the strategic
planning layer includes passenger fow analysis, the TOP for
network, and the TOP for line; (b) the tactical development
layer includes train diagram optimization, rolling stock
circulation, and crew planning; (c) the operational organi-
zation layer includes train rescheduling and a corresponding
adjustment scheme for emergencies and delays, as shown in
Figure 1. In general, the upper layer in the planning process
is the input of the lower one, and the lower layer in the
feedback process is the input of the upper one. Te TOP for
a specifc line determines the routing plan, train marshalling
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plan, and service frequency, which is the focus of this article.
Te network TOP is developed after the coordinated opti-
mization of the train operation plans for each line, where the
interline interchanges are mostly considered at the high-
volume transfer stations.

Te train stopping time is a very important parameter for
shortening the travel time and passengers’ waiting time [4].
Te train stopping time is not only the key factor in
restricting the transport capacity of the URTsystem, it is also
an important link which afects the quality of the passenger
service, including whether the alighting and boarding
movement is smooth and attractive to potential passengers.
Te formulation of the URT Train Operation Plan should
not only consider the operational safety, technical re-
quirements of network operation organization, trans-
portation capacity, and operational beneft of the transport
enterprise from the supply side, it should also take into
account the distribution of passenger fow from the demand
side to improve the transport service quality and reduce the
passenger travel cost.

With the URT network established, the TOP is also
a networked arrangement. Since the URT in China mainly
adopts the operational method of passengers transferring at
the transfer station, the formulation of the TOP for each line
is relatively independent. Based on the results of the pas-
senger fow assignment of the entire network within one day,
this article aims to propose a TOP optimizationmodel that is
suitable for the multirouting mode. It focuses on a single
URT line and an operational organization scheme that is

consistent with most URT systems in China, including fxed
vehicle size, invariant train routing, and an all-stop mode.
According to the riding O-D (origin-destination) of the line
obtained by the passenger fow pushing the assignment
method [5], a multiobjective nonlinear integer pro-
gramming model is constructed, with the optimization goal
of minimizing the passenger’s generalized travel cost, total
travel mileage of trains, and fuctuation of trains for each
routing in each period. By comprehensively considering the
constraints of both the maximum and minimum headways
and fully loaded rates, the TOP and the dynamic train
stopping time in each period are collaboratively optimized.
Using the model and algorithm proposed in the article, the
TOP of Guangzhou Metro Line 2 is solved and the running
process of the algorithm is analyzed. Finally, the obtained
Pareto optimal solution and the output dynamic train
stopping time are compared with the actual TOP and the
original fxed stop time, respectively.

Te rest of the article is organized as follows: First, the
relevant studies regarding the formulation of the TOP of the
multirouting mode and the calculation of stop time is
summarized. Ten, a multiobjective collaborative optimi-
zation model of the TOP and train stopping time is
established, based on the analysis of generalized travel costs
to passengers. Tirdly, a multiobjective genetic algorithm is
designed for the model to solve the Pareto optimal solution,
achieving the collaborative optimization of the multirouting
TOP and train stopping time. Te actual data from
GuangzhouMetro Line 2 is then used as an example to verify
the model and the algorithms. Te fnal section presents the
conclusions.

2. Literature Review

Existing studies have comprehensively taken factors such as
the network structure, cost beneft, line type, transport
service level, and organizational difculty into account, on
the basis of passenger fow, which were contained in the
constructed planning models. In earlier studies, a single-
objective mathematical programming model was usually
established to generate the TOP, with the maximum direct
passenger volume, the minimum cost, and minimum delay
as the optimization goals [6, 7]. Te TOP, nevertheless, is an
organization plan for the distribution of passenger fows by
transport enterprises. Essentially, it is a multiobjective op-
timization problem in which the stakeholders, represented
by the supplier and the demander, play games on their
respective benefts and costs. Terefore, considering the
interests of multiple aspects in the model will mean that the
decision-making plan will not be biased towards any par-
ticular party’s position [8, 9].

Multirouting is a signifcant method of networking the
operation and organization of URT when dealing with the
large surging volume of passengers in certain periods. Vast
numbers of passenger are unevenly distributed in some
sections of the line during peak hours, so some trains are
dedicated for special routing, e.g., the short-turning mode,
skip-stop mode, and Y-type mode, which can accelerate the
circulation of trains in those sections and reduce the
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Figure 1: URT planning process.
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continuous accumulation of passengers at heavily crowded
stations [10]. A multiobjective optimization model for
a multiroute train plan is established, considering factors
such as transport capacity, organizational requirements,
business benefts, passenger demands, and selection be-
havior. It was proposed that a three-stage algorithm, based
on the characteristics of the model and practical experience,
should be used to solve the problem. It is worth noting that,
in the current design of the bus network, passenger fow
assignment and bus service frequency can be synchronously
optimized and the balance between the passenger demand
and transport supply can be achieved through interactions;
lessons can be drawn from this. However, the passenger fow
assignment, which only considers the service frequency, is
difcult to directly apply to the formulation of the URT
TOP [11].

Taking a high-speed railway without a feeder in Taiwan
as an example, Chang [12] established a model with mini-
mum operating costs and the lowest total travel time as the
optimization goal; it used fuzzy mathematical programming
to solve the best-compromise TOP. Ceder [13] and Canca
et al. [14] proposed the application of long-short turning
routing in diferent scenarios of the passenger fow demand.
Te former used the method of cyclic iteration to auto-
matically generate the TOP of the long-short turning routing
with the goal of minimizing the number of rolling stocks
under a given train schedule diagram. Te latter proposed
a strategy of long-short turning routing to improve the
delivery capacity of certain sections under the disturbance of
the surge of passengers in some stations, thereby reducing
the passenger waiting time and ensuring service levels.

Te skip-stop operating mode is also of great impor-
tance, with respect to formulating the TOP for URT lines
that link the suburbs with downtown. Freyss et al. [4] di-
vided the passing stations into three categories and set the
stop plan for the AB, A, and B stations to reduce the train
stopping time, thereby increasing the travel speed of trains.
Tey proposed that by coordinating parking stations and
passing stations to build a skip-stop operating model,
a genetic algorithm (including many actual scenes) can be
designed to solve themodel.Te SeoulMetro example shows
that the reduction in travel time also increases passenger
waiting and transfer time [15]. In terms of the impact of
unexpected disturbances on the actual operations, the
multirouting mode (e.g., skip-stop route and long-short
turning route) can be integrated in the model of timeta-
ble adjustment, so as to reduce the impact on passengers
[16]. Jiang and Guo [17] analyzed the spatial distribution and
passenger fow of the rural road network in China and
showed that combining the trunk lines and branch lines into
“Y”, double “Y,” or “8” types for integrated transportation
can reduce operating costs and exhaust emissions and im-
prove operating efciency. Zhao et al. [18] proposed
a routing planning model for URT Y-type lines, aiming to
minimize passenger travel time and train operating distance,
determine the turnaround station of the routing, and the
departure frequency of multiple routes. Tey found that by
converting multiple targets into a single target and solving
them by a genetic algorithm, the results show that three train

routes are more suitable for the characteristics of passenger
fow on a Y-type line.

Te train stop time is a critical control parameter for
laying out the train diagram and it has an important in-
fuence on the delivery capacity of the diagram and the
passenger service level. For most URT systems in China, the
train stop time is usually set to a fxed value throughout the
day [4]. Tis approach can simplify the difculty of drawing
a train diagram by facilitating the parameter management of
the diagram, but is not conducive to improving the pas-
senger service level. Normally, the fxed train stopping time
is set to meet the passenger demand during peak hours.
Terefore, for the smaller intensity of passenger fow during
of-peak hours, it will increase the extra in-vehicle waiting
time for passengers. Lin and Wilson [19] compared the fare
payment methods of the light rail and bus systems.
According to the actual data of the green line under Mas-
sachusetts Bay Transportation Authority (MBTA), the
boarding passengers, alighting passengers, and in-vehicle
passengers were used as the three analytical variables to
explain the proposed train stop model, which indicated that
the nonlinear form of congestion in the vehicle had a greater
impact on the model. With the development of Tehran’s
URT network, Aashtiani and Iravani [20] believed that ac-
curate estimation of the train stop time can yield more
precise results of the passenger fow assignment. Terefore,
a stop time model based on boarding and alighting pas-
senger fow, congestion degree, and number of train doors
was established. Karekla and Tyler [21] explored whether the
reduction of train stop time in a busy subway system will
improve the passenger service level and convenience, while
reducing operating costs. Taking the step height between the
train and the platform, passenger boarding and alighting
time, door width, and the combination of the above as
variables, four models were established. Te results showed
that the functional combination of the step height and the
door width could efectively reduce the stop time and the
train turnaround time, but it required higher reconstruction
costs. D’Acierno et al. [22] defned the stop time as an
analytical formula related to passenger fow and estimated
the stop time based on the platform congestion degree and
the interaction between the train and passenger to realize the
dynamic setting of the stop time. Ten, a strongly robust
timetable was designed to improve the service quality and
system attractiveness.

At present, although there has been much research on
the network train operation plan and train stop time in
urban rail transit, there are still several topics to be
considered.

(1) Te TOP is formulated according to the passenger
fow demand. Te service frequency mostly con-
siders the matching of transport capacity and trafc
volume, but the cost of entry-exit depot and the
difculty of transport organization are
considered less.

(2) In case analysis, the situation during peak hours is
usually taken as an example, and the trade-of be-
tween the diferentiated setting of time segments and
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the stability of the train operation plan is rarely
considered.

(3) Some researchers realize that this is a multiobjective
optimization problem but most of them use
weighted linearization to simplify it.

(4) Much of the research on the stopping time mainly
focuses on the relationship between hardware facilities,
such as stations and vehicles, and the passenger fow on
and of the train but ignores the relationship between
the stop time and service frequency.

3. Description of TOP Optimization

Te study of the TOP in this article is based on the following
assumptions:

(1) During all passenger travel periods throughout the
day, the basic train routing that runs between two
endpoints must be operated and the nonbasic train
routing that runs within a shorter range should be
operated on the basis of the passenger demand. All
trains of two routes stop at each station (the all-stop
mode) and adopt a single vehicle type and a fxed
formation, which is universal for URT systems.

(2) For a specifc urban rail line, passengers generally do
not transfer between the train routings but only
select the train routing that includes passengers’
origin-destination (O-D). Tis assumption is in-line
with the selection pattern of urban rail passenger
fow and the characteristics of operational
organization.

(3) According to the assumption of “frst come frst
service” (FCFS), passengers choose the train with the
closest departure time, regardless of boarding delay.
Tis assumption is applicable to the TOP that em-
phasizes the arrangement of transport capacity.

China’s urban rail transit lines mainly use the nonjoint
operationmode and the transport capacity of the TOP is also
independently allocated according to the trafc demand of
each line. We defne that N � (S, E) represents one URT
line, where the station set S � 1, 2, ..., HS􏼈 􏼉 and its increasing
order implies the up direction. Te segment set
E � e

j
i |i, j ∈ S􏽮 􏽯 and segment e

j
i ∈ E represent the O − D

from the station i to the station j, of which the station
spacing is w

j
i and the total running time is τj

i , including
section traveling time and additional accelerating/de-
celerating time. It should be noted that ϖ � 1 indicates the
up direction and ϖ � 0 indicates the down direction. Also,
the onward section of the station i in the direction ϖ is
ei∗

i ∈ E, where i∗ � i + 1 when ϖ � 1 and i≠HS; i∗ � i − 1
when ϖ � 0 and i≠ 1.

Te service time of an URT line is expressed as [Ts, Te]

during which the travel demand of passenger fow has
a strong volatility, obviously indicating the converge-
disperse and time-varying characteristics. In order to ac-
curately refect the spatiotemporal fuctuation characteristics
of passenger travel demand, especially the description of it in

key periods (e.g., peaks and troughs), and facilitate the
development of TOPs at the same time, a step function can
be used on the basis of collecting data from the automatic
fare collection (AFC) system to describe the intensity of
passenger travel demand. By counting the trafc demand in
all periods throughout the day, the characteristics of turning
points can be obtained, including peaks and troughs that
have a great impact on train operation. Te step function is
used to divide the service time span of URT [Ts, Te] into Ht

periods with relatively stable passenger fow. It can be
considered that in each period, the passenger demand is
evenly distributed with equal intensity, which is called the
passenger fow travel period (PFTP). Te set of PFTP for
a whole day can be expressed as T � TK � (ta

k, tb
k) | k �􏼈

1, 2, ..., Ht}, where ta
k and tb

k are the start and end of Tk,
respectively, and ta

1 � Ts, tb
Ht

� Te. |Tk| defnes the length of
one PFTP.

Te demand basis of the TOP of an URT line is the set of
full-day passenger fow boarding and alighting within the
station, S: W � fkxyϖ | k � 1, 2, ..., Ht; x, y ∈ S;ϖ ∈ 0, 1{ }􏽮 􏽯,
where fkxyϖ represents the passenger volume originating
from station x to station y during the PFTP Tk.

Te TOP of an URT line can be expressed as the service
frequency of each train routing during each PFTP in a day. In
general, a train operation period is a period during which trains
depart at regular intervals and contain more than one PFTP
[10]. As the degree of spatiotemporal diferences in passenger
fow continues to increase under networking conditions, re-
fned distribution of transport capacity can efectively boost
efciency [23, 24]. Tereby the train operation period is
expressed as PFTP in this article. In each PFTP, the corre-
sponding number of trains is determined and a reasonable time
division is selected to ensure the accuracy of passenger fow
description and to facilitate the formulation of TOP.

According to assumption (1), the train capacity is V, the
train formation is b, the number of doors of each coach is c,
the average travel speed is v, and the upper and lower limits
of the fully loaded rates and headways of each train are φmax,
φmin and η, η, respectively.

URT trains, in most parts of the world, generally do not
run across lines.Te train routing is set on one URT line U �

um � e
s

m

sm
| m � 1, 2, ..., Hu; s

m
, sm ∈ S􏼚 􏼛, where sm and s

m
are

the endpoints of the routing and u1 is the basic routing that
turns back at both ends of the line.

Among all train routings, the train routing that must be
operated during all PFTPs throughout the day is called “basic
routing” and the other routings are called nonbasic routings.
For example, in the operation mode of long and short routing,
the short-turning routing usually serves the sections where the
cross-section ridership is sharply higher than other parts of the
line and is called nonbasic routing, which could be replaced by
the basic routing. Te TOP of the line can be defned as D �

dm
k |k � 1, 2, ..., Ht;􏼈 m � 1, 2, ..., Hu}, where dm

k is the number
of trains running on routing um during the PFTP Tk and the
optimization object of this article.

Te stopping time of the train at each station is set
according to the demands of each PFTP and is divided into
two parts: one is the fxed time for opening and closing the
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door λ0 and the other is the efective time for passengers to
get on and of the train. Te fxed time includes door
opening time, door closing time (including notice time),
unbalanced delay time (for boarding and alighting by each
door), and start response time, after closing the door. In
addition, when the platform is equipped with screen doors,
the delay time of opening and closing the door will be in-
creased. Te efective time required for passenger boarding
and alighting λ1 is related to the congestion on the platform
and in the coach. Te efective boarding and alighting time
for passengers is determined by the number of passengers
getting on and of at the station during each PFTP and is
calculated based on the average of the number of boarding
and alighting passengers by each door.

4. Analysis of Generalized Travel
Cost of Passengers

During the PFTP Tk, the cross-section passenger fow of the
section ei∗

i ∈ E in the ϖ direction is shown in the following
equation:

g
S

e
i∗

i , k,ϖ􏼐 􏼑 � 􏽘

HS

y�i∗
􏽘

i

x�1
fkxyϖϖ � 1 􏽘

i

y�1
􏽘

HS

x�i∗

fkxyϖϖ � 0.
⎧⎪⎨

⎪⎩

(1)

During the PFTP Tk, the boarding passenger fow of
station i ∈ S in the ϖ direction is shown in the following
equation:

g
B
(i, k,ϖ) � 􏽘

x�i

fkxyϖ y ∈ S; k � 1, 2, . . . , Ht;ϖ � 0, 1.

(2)

Te boarding passenger fow at the turning station of two
directions is 0. In other words, for the up direction ϖ � 1 at
the station x � HS, the boarding passenger fow is
gB(HS, k,ϖ) � 0; for the down direction ϖ � 0 at the station
x � 1, the boarding passenger fow is gB(1, k,ϖ) � 0.

During the PFTP Tk, the alighting passenger fow of
station i ∈ S in the ϖ direction is shown in the following
equation:

g
A

(i, k,ϖ) � 􏽘
y�i

fkxyϖ x ∈ S; k � 1, 2, . . . , Ht;ϖ � 0, 1,

(3)

where the alighting passenger fow at the starting station of
two directions is 0. In other words, for the up directionϖ � 1
at the station y � 1, the alighting passenger fow is
gA(1, k,ϖ) � 0; for the down direction ϖ � 0 at the station
y � HS, the alighting passenger fow is gA(HS, k,ϖ) � 0.

Generalized travel cost of passengers mainly includes the
cost of fares, travel time, and congestion expenses. China’s
URT mainly adopts the mileage pricing strategy [25]. Te

passenger’s fare is determined by the O-D and is in-
dependent of the routes, even though there may be more
than one route for a particular O-D pair on the URT net-
work. Tis means that the passengers who choose to take
a train on a particular line are not motivated by the fare,
which can be regarded as a constant C in the generalized cost
perceived by passengers and is irrelevant to the number of
trains in each PFTP.

Te passenger travel time cost includes the in-vehicle
travel time cost and waiting time cost. Te in-vehicle travel
time is determined by the running time of the journey
sections and the waiting time of stopping stations. Te total
travel time of loaded trains in each PFTP Tk throughout the
day is the product of the cross-sectional passenger fow and
the running time between sections, as shown in the following
equation:

Γrun
� 􏽘

1

ϖ�0
􏽘

Ht

k�1
􏽐
i∈S

g
S

e
i∗

i , k,ϖ􏼐 􏼑τi∗

i . (4)

Te total waiting time caused by the train stopping at
each station for each PFTP Tk throughout the day is given by
the following equation:

Γstop
� 􏽘

1

ϖ�0
􏽘

Ht

k�1
􏽐
i∈S

g
S

e
i∗

i , k,ϖ􏼐 􏼑 − g
A

i
∗
, k,ϖ( 􏼁􏼐 􏼑λi

k,ϖ. (5)

Te waiting time refers to the additional period that
results from the inconsistency between the arrival of
passengers and the arrival of trains. It is generally
considered that the waiting time of passengers is related
to the headway between trains ϕ in the onward section
ei∗

i ∈ El of station i. Te waiting time is a uniformly
distributed random variable (0, ϕ). In the direction ϖ of
the PFTP Tk, all trains whose routes cover the onward
sections of the station i are combined to calculate the
service frequency, which directly afects the headway
between trains. Assuming that the operation interval of
the PFTP Tk is ϕ(ei∗

i , k,ϖ) � |Tk|/ 􏽐m∈ m|ei∗
i
⊆um{ }d

m
k , the

average waiting time is 0.5ϕ(ei∗

i , k,ϖ). Te total passenger
waiting time of each PFTP Tk throughout the day is the
product of the boarding passenger fow at each station
and the average waiting time, as shown in the following
equation:

Γwait
� 0.5 􏽘

1

ϖ�0
􏽘

Ht

k�1
􏽐
i∈S

g
B
(i, k,ϖ)ϕ e

i∗

i , k,ϖ􏼐 􏼑. (6)

For the station i ∈ S in the direction ϖ, the congestion
degree of the train’s onward section ei∗

i ∈ E is afected by the
train capacity V and the overlap of train routes that cover
this section. Te total congestion cost function caused by
train crowding in each PFTP Tk throughout the whole day is
shown in the following equation:

Journal of Advanced Transportation 5



Γjam
�

0 g
S

e
i∗

i , k,ϖ􏼐 􏼑≤ 􏽘

m∈􏽥M

Vd
m
k

α 􏽘
1

ϖ�0
􏽘

Ht

k�1
􏽘
i∈S

τi∗

i + λi
k,ϖ􏼐 􏼑

gS ei∗

i , k,ϖ( 􏼁

􏽐
m∈􏽥MVdm

k

⎛⎝ ⎞⎠

β

g
S

e
i∗

i , k,ϖ􏼐 􏼑> 􏽘

m∈􏽥M

Vd
m
k ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

where α and β are the parameters to be calibrated and the set
of 􏽥M means 􏽥M � m|ei∗

i ⊆ um􏼈 􏼉. Te calibration values rec-
ommended by the US Federal Highway Administration [26]
are α � 0.15 and β � 4.

5. Establishment of a Multiobjective
Collaborative Optimization Model

Te TOP of URT requires comprehensive consideration of
transport capacity, transport organization requirements,
spatiotemporally diferentiated passenger demand, and
transport costs. Te constraints include the train’s fully
loaded rate and the headway between train departures. Te
optimization objective mainly includes the generalized travel
cost of passengers, the cost of operating the train, and the
fuctuation of the train service frequency, which can be
considered as a multiobjective optimization problem. As
mentioned earlier, the TOP number of trains per route in
each PFTP directly afects the stopping time. In order to
improve the overall optimization quality, this article adopts
the dynamic stopping time to meet the passenger demand,
and collaboratively optimizes the TOP and bidirectional
stopping time at each station in each PFTP.

Based on the requirements of transport capacity and the
service level, transportation enterprises usually use the upper
limit of the load rate φmax and the lower limit of the load rate
φmin to control the train running cost and allocate transport
capacity. During the PFTP, the load rate of the train varies
from section to section due to the spatial imbalance in the
passenger fow distribution. In general, the train capacity
requirement is limited only to the maximum cross-section
passenger fow to ensure that the capacity rate is within
a reasonable range.

It is assumed that during PFTP Tk, the section with the
largest ridership in the ϖ direction of the line is ei∗

i . Te
corresponding maximum cross-section passenger fow is
given by the following equation:

g
S

e
i∗

i , k,ϖ􏼐 􏼑 � max g
S

e
i∗

i , k,ϖ􏼐 􏼑 k � 1, 2, . . . , Ht

􏼌􏼌􏼌􏼌􏽮 􏽯. (8)

In the case of multiple crossing routes, the total number
of trains in each crossing route should not exceed the ca-
pacity determined by the signal system, the switch of
turnout, and the turn-back mode. Terefore, when con-
sidering the maximum loaded rate and the minimum de-
parture interval at the same time, the constraint should
satisfy the following equation:
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g e

i∗

i , k,ϖ􏼐 􏼑

φmaxV
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
,

Tk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

η
􏼤 􏼥

⎧⎨

⎩

⎫⎬

⎭,
Tk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�η
􏼦 􏼧

⎧⎨

⎩

⎫⎬

⎭ ≤ 􏽘

Hu

m�1
d

m
k ≤min max

g e
i∗

i , k,ϖ􏼐 􏼑

φminV

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,
Tk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

�η
􏼦 􏼧

⎧⎨

⎩

⎫⎬

⎭,
Tk

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

η
􏼤 􏼥

⎧⎨

⎩

⎫⎬

⎭

i ∈ S; k � 1, 2, . . . , Ht.

(9)

According to the policy requirements and the need to
improve the passenger service level, the number of trains d1

k

on the basic routing during the PFTP Tk should meet

equations (10) and (11) when considering the minimum
loaded rate and the maximum departure interval.
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d
m
k ≥ 0, d

m
k ∈ Z k � 1 . . . , Ht; m � 1, . . . Hu, (11)

where Z means the integer set.
Te passenger is the service object of the TOP, so the

optimization objective is to minimize the total generalized
travel cost of the passenger, which is given by the following
equation:

minZ1 � C + β Γrun + Γstop + Γwait􏼐 􏼑 + Γjam. (12)

In the above formula, the passenger’s fare expenditure
and in-vehicle time are independent of the number of trains
dm

k running in each PFTP Tk and routing um of the TOP,
which is equivalent to the constant in the objective function,
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so they can be ignored. Te objective function related to the
TOP can be simplifed as follows:

minZ1 � β Γstop + Γwait􏼐 􏼑 + Γjam. (13)

Te low-cost and high-efciency operation of URT is
an efective measure to alleviate the pressure of govern-
ment fnancial subsidies. It must not only meet the goals of
social interests but also promote the efciency of transport
enterprises from the level of government subsidies
mechanism [27, 28]. It is of great signifcance to reduce
the train operating cost at the level of TOP, i.e., reduce the
total train mileage while meeting the passenger fow
demand. Te optimization objective is to minimize the
travel distance of trains crossing each route during all
passenger travel periods, as shown in the following
equation:

minZ2 � 􏽘

Ht

k�1
􏽘

Hu

m�1
d

m
k w

S
m

Sm

. (14)

In order to meet the needs of diferent passenger travel
periods, the number of trains on each transit route can be
determined during the passenger travel period to achieve
a refned capacity allocation. However, when the number of
trains on the same route is diferent during adjacent pas-
senger fow periods, the insufciency of rolling stock needs
to be addressed for the exit-depot operation in advance or
the excess of rolling stock needs to be sent back to the depot,
i.e., there are additional running miles of rolling stock for
exit-depot and entry-depot. When the number of trains in
several adjacent periods is not the same, it will cause the
frequent operation of train entering and leaving the depot,
which not only produces unnecessary additional operating
costs but also increases the difculty of transport organi-
zation. Terefore, in order to facilitate the transport orga-
nization of the URToperation department, the optimization
objective should be to minimize the fuctuation in rolling
stock for exit-depot and entry-depot during the adjacent
passenger fow periods to avoid unnecessary running miles
of rolling stock for exit-depot and entry-depot during the
periods. For the multirouting transport mode, taking the
long-short route strategy as an example, when the train
departure intervals of the long and short routes do not meet
the integer multiple relation, the train running diagram will
generate empty time and waste the line passing capacity
[29, 30].

In the PFTP Tk, the operating ratio of short (nonbasic
routing) and long (basic routing) routes is 2 :1, as shown in
Figure 2.

Te departure interval hL of the long-routing train is an
integer multiple of the departure interval hS of the short-
routing train, where TL

C and TS
C are the total circulation

durations, respectively. Te rolling stock in use on the long
route is nL

k � TL
CdL

k/|Tk|􏽬 􏽭, while the rolling stock in use on
the short route is nS

k � TS
CdS

k/|Tk|􏽬 􏽭. Te total rolling stock
can be expressed as nk � nL

k + nS
k. Since the length |Tk| of the

PFTP cannot be divided exactly by the departure interval,
both nL

k and nS
k need to be rounded up.

In general, if the total circulation durations of the route
um is tm

z , then the rolling stock of each route can be cal-
culated by the following equation:

n
m
k �

t
m
z d

m
k

Tk

􏼦 􏼧 k � 1, 2, . . . , Ht; m � 1, 2, . . . , Hu. (15)

In the transition of the passenger travel time, the number
of trains on diferent routes is usually inconsistent, due to the
fuctuation of passenger fow, especially in peak hours.
When the number of trains in the current and later time
periods fuctuates greatly, it will cause additional running
miles of rolling stock for exit-depot and entry-depot, which
will increase the difculty of the rolling stock turnover plan
and make the TOP less feasible and practical. Terefore, the
third objective function is to encourage the replacement of
the basic route with the nonbasic route when the constraints
are met, while ensuring the number of trains for each route
in the adjacent periods is as balanced as possible, which can
be expressed as follows:

minZ3 � 􏽘
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Hu
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m
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m
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m
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􏼌􏼌􏼌􏼌􏼐 􏼑􏼐 􏼑􏽨 􏽩,

(16)

where wm is the round-trip distance of the train from the
depot or parking lot to the starting station of the train
routing um and nm � 1/2(nm

k + nm
k+1) is the average number

of trains on the same route in the adjacent passenger fow
periods. Tus, it can be seen that the value of the objective
function is obviously afected by the number of the trains in
the adjacent passenger fow periods and their balance.

6. Design of the Multiobjective
Genetic Algorithm

Although the three objective functions of this article have
cost considerations, their weights are difcult to determine
accurately due to the diferent economic factors behind
them. At the same time, in the case of more than three
objective functions, the game relations are too complex to
solve the problem. Te constraints of the problem take into
account the train load rate, the running interval, the number
of large and small trains, etc. Te solution variables of the
problem for the number of trains are all integers, and its
solution space is not continuous and analytical, and through
the analysis of the total number of allocated trains in the
TOP during each PFTP, it can be found that the number of
trains on each route is subject to the total number, while
there is a strong coupling relationship between the objective
functions. Changing the number of trains on any route in
any PFTP independently causes the objective functions to
change in diferent directions, thus constituting a multi-
objective optimization problem for train operation plan-
ning. It is difcult to directly solve the model by
combinatorial optimization and analytical methods, and
even more difcult to obtain the multiple Pareto optimal
solution for the multiobjective problem. Since the 1990s,
genetic algorithms have been widely used and continuously
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developed in the feld of multiobjective optimization due to
the characteristics of multipoint and multidirectional
searches [31–34]. Tis article takes advantage of the general
applicability of the genetic algorithm to complex pro-
gramming problems to solve complex optimization prob-
lems around the features of the model and design the
adaptive weight genetic algorithm (AWGA) to solve the
Pareto optimal solution set of the model.

6.1. Adaptive Weight Genetic Algorithm. Te ftness allo-
cation mechanism of the adaptive weight multiobjective
genetic algorithm automatically adjusts individual
weights by efectively using individual information in each
generation of the population in the genetic process, so that
Pareto optimal solutions are constantly approaching the
ideal point. Since the better individuals in the current
population are more likely to be retained in the next
generation under the efect of adaptive weights, this ability
to actively seek optimization has made the AWGA al-
gorithm widely used in the feld of multiobjective opti-
mization after Gen and Cheng proposed it in 2000
[35, 36]. Te steps are as follows:

Step 0: Set the population size popSize, crossover rate
pC, mutation rate pM, maximum generation maxGen,
and initial evaluation function value minEval.
Step 1: Generate a chromosome that satisfes the
constraints of the multiobjective optimization problem
(coding).

Step 2: Te objective function fk(x) of the multi-
objective optimization problem is calculated according
to the chromosome (decoding).
Step 3: According to the value of each objective
function fk(x), a Pareto optimal solution is generated.
Step 4: Te adaptive weight method is used to evaluate
and select each chromosome.
Step 5: Let gen+ � 1.

Step 5.1: Crossover
Te following single-point crossover method is
used to perform the crossover action.

(1) Let cCnt � 0 (the number of chromosomes gen-
erated by the crossover).

(2) Generate a random number list
rk (k � 1, 2, ..., popSize) in the range of [0, 1] and
select the chromosome vk[·] that satisfes rk <pC.

(3) Pair the selected chromosomes and make
cCnt+ � 2.

(4) Randomly determine the position and part of the
crossover, so that the newly generated chromo-
somes are vcCnt−1′ [·], vcCnt′ [·], respectively.
Step 5.2: Mutation
Perform the mutation as follows:

(1) Let mCnt � 0 (the number of chromosomes gen-
erated by mutation). Generate a random number
list rk(k � 1, 2, ..., popSize) in the range of [0, 1],
select the chromosome that satisfes rk <pM, and
mutate according to certain rules.

(2) Let mCnt � 1 and the newly generated chromo-
some be vcCnt+mCnt′ [·].
Step 5.3: Decode the newly generated chromosomes
and update the Pareto optimal solution E.
Step 5.4: Te adaptive weighting method is used to
evaluate and select each chromosome to form a new
population of the next generation.

Station 1

Station 2

Station 3

0 10 20 30

hL hS
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Figure 2: Schematic train diagram of the long-short route.
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Figure 3: Example of gene grouping.
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Step 6: If gen< maxGen, return to Step 5; otherwise,
output the Pareto optimal solution E(·) and terminate
the process when the termination condition is satisfed.

6.2. AWGA Design of the Optimal Model for the TOP

6.2.1. Chromosome Design. Considering the dynamic fuc-
tuation of passenger fow during each PFTP of the whole
day, the corresponding feasible domains of the number of
trains dm

k on each routing are also diferent. Under the efect
of the integer constraint of decision variables in the model,
compared with binary coding, the coding space formed by
the decimal chromosomes is more suitable for the dynamic
correspondence of the solution space. Te efciency of the
crossover and mutation actions of the algorithm is signif-
cantly improved by using decimal coding of the chromo-
somes to represent the decision variable dl

k,m. Chromosome
pn consists of Ht × Hu genes, as shown in the following
equation:

pn: d
1
1, d

2
1, . . . , d

Hu

Ht
􏽨 􏽩 n � 1, 2, . . . , pS, (17)

where pS is the size of the population. pn[j] represents the
jth gene of chromosome pn; pn[i: j] represents the gene
segment from the ith to the jth gene of chromosome pn;
pn[i] + pn[j] represents the merged ith and jth genes of
chromosome pn, i, j ∈ [1, Ht × Hu].

Gene values are randomly distributed in the initial state
and the primary goal of optimization is to make all genes
satisfy the constraint conditions (9)–(11). Te advantage of
decimal encoding is that the encoding space is more in-
tuitive. When the constraint conditions change dynamically,
it can avoid recorrection due to the noncorrespondence of
the decoding space with the solution space. For PFTP Tk, the
number of trains on each routing is d1

k, ..., d
Hu

k . Due to the
restriction of the above constraints, the resulting gene values
are not completely independent and embody the in-
terdependence and mutual restriction between genes, which
has a high degree of coupling. Terefore, the chromosome
pn can be divided into Ht genomes gk

n � d1
k, d2

k, ..., d
Hu

k􏽮 􏽯

according to the PFTP Tk, n ∈ [1, pS], k ∈ [1, Ht]. In the
genetic process such as crossover and mutation, operations
are performed in units of genome, as shown in Figure 3.

6.2.2. Single Genome Crossover. Crossover is the most ef-
fective operation to improve genetic coding.

Among the many crossover methods, single-point
crossover has wide applicability due to its simple opera-
tion and efectiveness. When solving the optimizationmodel
of the TOP, a classical single-point crossover is likely to
break the interdependence of genes within the genome and
cannot meet the constraints. Terefore, in order to com-
pletely retain the coupling relationship of the number of
trains on each routing during a PFTP, crossover operations

can be performed with the genome as the smallest unit. Tis
means that for any two chromosomes of the current pop-
ulation, such as pn1 and pn2, randomly select a PFTP
Tk (k � 1, 2, ..., Ht), of which the genome
gk

n � d1
k, d2

k, ..., d
Hu

k􏽮 􏽯 is the starting position and the gene d1
k

is the breakpoint, to perform the single genome crossover. In
this process, the right part of the breakpoint is exchanged to
form the ofspring chromosome, as shown in Figure 4.

6.2.3. DirectedMutation. In the early stages of the algorithm
search, some highly adaptive chromosomes may dominate
the roulette selection process, making the local optimal
solution in the population become the main body. In the
later searching stage, the diference between chromosomes is
small. If the mutation rate is small, it is difcult to generate
new chromosomes, but increasing it may produce the
concussion of objective functions.

Te initial population for solving the optimizationmodel
of TOP is randomly generated. In the early stage of the
algorithm iteration, it is mainly to search for solutions that
satisfy the constraints. Because the number of constraints on
the model is proportional to the number of PFTPs, i.e., the
fner the characteristics of the temporal distribution of
passenger fow, the more constraints there are. Terefore,
when the crossover and mutation operations are completely
random, it is difcult for chromosomes to evolve at an exact
position and in an accurate direction, and local optimal
solutions easily dominate the population. For the entire
multiobjective genetic algorithm, each iteration is an op-
portunity for evolutionary optimization. If the population
stays in the local optimal state, it is a waste of evolutionary
opportunities. Terefore, evolution of the population can
continue through artifcial intervention.

Based on the above conception, on the basis of the classical
stochastic mutation operation, the characteristics of directed
mutation are added.Te specifcmethod is tomonitor the state
of the Pareto optimal solution in the population and set
a threshold n∗c . When the generation counts for the state of
Pareto optimal solution not being improved exceed the
threshold, namely, nc > n∗c , this indicates that the local optimal
solution is dominant in the population. Te PFTP Tk′ of the
genome that does not meet the constraints in the current
Pareto optimal solution are put into the set
􏽥T � k′|1≤ k′ ≤Ht􏽮 􏽯 and the direction of mutation μk′ of those
genomes, k′ ∈􏽥T, are determined. As for themutation operation
of the next generation, according to the set 􏽥T and the corre-
sponding mutation direction μk′ , the location and direction of
mutation of labeled genomes in the Pareto optimal solution are
explicitly determined, while the stochastic mutation is still
adopted for the nonlabeled genome. Directed mutation can
make the genome k′ ∈􏽥T satisfy the constraint (9) directly and
constraint (10) indirectly, thus breaking the local optimal
deadlock and the genetic evolution can continue efectively.
Te expression of μk′ is shown in the following equation:
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where μk′ � 1 means that the total number of trains running
in PFTP Tk′ should be increased, i.e., increasing mutation;
μk′ � −1 means that the total number of trains running in
PFTP Tk′ should be reduced, i.e., reducing mutation; and
μk′ � 0 means that the genome k′ satisfes constraint (9) but
no other constraints, so only the nondirectional stochastic
mutation is required.

6.2.4. Adaptive Weight Evaluation Method. When using the
AWGA to solve the multiobjective optimization problem, one
of the most important points is to correctly evaluate and select
the Pareto optimal solution obtained in each generation and
keep it for the next generation. Te adaptive-weight evaluation
method proposed by Gen et al. [35, 37] can efectively use the
positive ideal points obtained in each generation of population
and actively adjust the weights to make the Pareto optimal
solution close to the ideal point to search for the solution.

After decoding feasible chromosomes of a certain genera-
tion, the values of three objective functions are calculated and the
maximum and minimum ideal points are defned as follows:

z
+

� z
max
1 , z

max
3􏼂 􏼃,

z
−

� z
min
1 , z

min
2 , z

min
3􏽨 􏽩,

(19)

where zmax
k and zmin

k represent the maximum and minimum
values of the kth objective function, k ∈ [1, 3], defned as

z
max
k � max zk(x)|x ∈ P􏼈 􏼉, k � 1, 2, 3,

z
min
k � min zk(x)|x ∈ P􏼈 􏼉, k � 1, 2, 3,

(20)

where P is the set of feasible solutions. Terefore, the
evaluation function formed by the sum of the adaptive
weights of any chromosome x can be obtained by equation
(21). Tis evaluation function realizes the non-
dimensionalization of each objective function, so they can be
directly added together.

z(x) � 􏽘
3

k�1
wk z(x) − z

min
k􏼐 􏼑 � 􏽘

3

k�1

z(x) − z
min
k

z
max
k − z

min
k

, (21)

where the adaptive weight wk of the kth objective function
is calculated by equation (22). In this article, the model
seeks the minimization of objective functions. So, when
the value of the kth objective function approaches its
minimum, the evaluation function can refect the fact that
the chromosome has a high ftness value, which is to say
that the probability of the elite individuals retained to the
next generation is higher.
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Figure 4: Single genome cross-over.
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wk �
1

z
max
k − z

min
k

, k � 1, 2, 3. (22)

TeAWGA for the TOP optimization model designed in
this article fully considers the characteristics of the problem
and makes corresponding adjustments on its original
framework. Te main fow of AWGA is shown in Figure 5.

7. Case Study

Temodel and algorithm proposed in this article are verifed
by the network and passenger data from Guangzhou Metro
Line 2 in China. Line 2, the second of the 15 lines used at
Guangzhou Metro, starts from Guangzhou South Station
and ends at Jiahewanggang Station and has a roughly “S-
shaped” north-south trend, running through four admin-
istrative regions: Panyu, Haizhu, Yuexiu, and Baiyun in
Guangzhou. Tis line directly connects Guangzhou South
Station and Guangzhou Railway Station and can reach
Baiyun International Airport in one transfer; therefore, it is
a core line linking major transportation hubs in Guangzhou.

Te Guangzhou Metro Line 2 has a total length of
31.8 km, with 24 underground stations set up and train
formations of 6 A-type coaches, as shown in Table 1. Te
stations with turn-back capabilities along the line include
Jiangxia, Sanyuanli, Gongyuanqian, Jiangtai Road, and
Nanpu. In the frst seven months of 2019, Line 2 topped the
list for all lines with an average daily passenger volume of
1.413 million passengers. Tis implies a high amount of
pressure to ensure the transport security and necessity of
fnely organizing the transport capacity.

According to the results obtained from the assignment of
the passenger fow of the URTnetwork [5], sections of Line 2
during peak hours (when surging trafc volumes are mainly
caused by commuters in the morning and evening) have the
following characteristics: (1) the passenger fow is obviously
centripetal, (2) the peak values of passenger fow between the
morning and evening periods are close and the corre-
sponding sections are the same; (3) the distribution trends of
the passenger fow in the morning peak and evening peak in
both the up and down direction are similar. Maximum
cross-sectional passenger fow in themorning peak is slightly
larger than the amount in the evening peak, which shows
a certain symmetry, as shown in Figure 6. In 2019, Line 2
adopted a mixed mode of long and short routing in the
morning peak periods and single-turning routing in other
periods. Te coverage of short-turning routing is the section
between station 8 and station 17.

Te optimization model of the URT Train Operation
Plan is to be solved by the AWGA proposed in this article.
Te basic parameter settings of the algorithm are given in
Table 2.

As described in the section for formulating the model,
a large number of parameters should also be assigned values,
as shown in Table 3.

Te parameters in Tables 2 and 3 are put into the TOP
optimization model and AWGA and an iterative calculation
is started for the desirable plan.Te running environment of
the algorithm proposed in this article is the Windows 10 OS

system, with an Intel (R) Core (TM) i5-6300U CPU, 8GB
RAM, SQL Server 2012 as a database andMicrosoft IIS 6.0 as
a network server. Because the AWGA is a random algorithm,
the Pareto optimal solution obtained is not necessarily the
same each time, but they are all noninferior solutions that
satisfy the constraints. According to the random charac-
teristics of the algorithm, there is little possibility that there
are feasible chromosomes in the population at the initial

Initialize parent
population

Start

Genome crossover

Oriented
mutation

Adaptive-weight
evaluation

Update the Pareto
solution set

Generation<MaxGen
Yes

Output Pareto
optimal solution

End

No

Select new population by
roulette wheel

Figure 5: AWGA algorithm overall process.

Table 1: Station list of Line 2.

Stations Number
Guangzhou South Railway Station 1
Shibi 2
Huijiang 3
Nanpu 4
Luoxi 5
Nanzhou 6
Dongxiaonan 7
Jiangtai Lu 8
Changgang 9
Jiangnanxi 10
Te 2nd Workers’ Cultural Palace 11
Haizhu Square 12
Gongyuanqian 13
Sun Yat-sen Memorial Hall 14
Yuexiu Park 15
Guangzhou station 16
Sanyuanli 17
Feixiang Park 18
Baiyun Park 19
Baiyun culture square 20
Xiao-gang 21
Jiangxia 22
Huangbian 23
Jiahewanggang 24
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phase, i.e., where all genes in the chromosome meet the
constraint. Terefore, the genetic evolution direction of the
algorithm is to frst enable the chromosomes to meet the
constraints, where the number of trains on each routing of
each PFTP not only satisfy the distribution characteristics of
passenger fow, but also meet the requirements of fully
loaded rates and departure intervals. As shown in Figure 7,
the dark blue curve represents the population size of each
generation of chromosomes, which is composed of the
parent chromosomes and their ofspring chromosomes
generated by crossover and mutation operations. Te
maximum and minimum population sizes are 29 and 17
chromosomes, respectively. Te red curve represents the

chromosomes that satisfy the constraints, where the maxi-
mum size contains 21 feasible chromosomes in the 775th

generation.Te absolute number of feasible chromosomes is
signifcantly less than the total population size in each
generation. When inherited to the 177th generation, the frst
feasible chromosome meets the constraint which appears, of
which the ftness value in that generation is obviously the
largest. Ten, the chromosome takes the dominant position
and produces more feasible ones, fromwhich Pareto optimal
solutions are generated.

Te trends for three objective functions in the model are
shown in Figure 8, where the curves evolve synchronously
and simultaneously. Since the exponential function is used

0
5000

10000
15000
20000
25000
30000
35000
40000

RI
D

ER
SH

IP
 (P

ER
SO

N
)

SECTION

Morning-Up
Morning-Down

Evening-Up
Evening-Down

1-
>2

2-
>3

3-
>4

4-
>5

5-
>6

6-
>7

7-
>8

8-
>9

9-
>1

0
10

->
11

11
->

12
12

->
13

13
->

14
14

->
15

15
->

16
16

->
17

17
->

18
18

->
19

19
->

20
20

->
21

21
->

22
22

->
23

23
->

24

Figure 6: Cross-sectional ridership during the morning and evening peaks.

Table 2: Basic parameters of AWGA.

Parameters Values
Population size pS 10
Crossover rate pC 0.4
Mutation rate pM 0.05
Maximum generation pmax

G 1000
Treshold of unchanged state n∗c 10

Table 3: Model parameters.

Parameters Values
Line l 2
Average time value of passengers 30¥/h
Start and end time of URT service Ts, Te Ts � 6: 00 and Te � 23: 30
Duration of a PFTP |Tk| 30min
Train capacity V 1860 persons, A-type train
Train formation b 6 coaches
Number of doors on each coach c 5
Efective boarding and alighting rate λ1 0.6 s/person
Upper limit of fully loaded rate φmax 120%
Lower limit of fully loaded rate φmin 80%
Upper limit of operating headway η 360 s
Lower limit of operating headway η 132 s
Circulation duration of long-turning routing tL

z 107min 24 s
Circulation duration of short-turning routing tS

z 45min 11 s
Distance of the round trip between the depart station and depot for long-turning
routing wL

3.2 km

Distance of the round trip between depart station and depot for short-turning
routing wS

27.85 km
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as a penalty in the MOGA, the three objective function
values are meaningless when the chromosomes in the
population are not feasible. So, the curves in the fgure begin
where feasible chromosomes appear, i.e., at the 177th
generation.

Te red curve in Figure 8 represents the objective
function values of the feasible chromosomes in each gen-
eration and the dark blue curve represents the Pareto op-
timal value of that generation. From its evolutionary trend, it
can be seen that the feasible objective function value is highly
volatile, while the Pareto optimal value is relatively stable. In
the process of genetic evolution, the Pareto optimal value
fuctuated in the 186th, 356th, 781th, 821th, and 835th gen-
erations, respectively. Te fuctuation tempo of the three
objective functions is exactly the same but the trends are
diferent. Among them, objective functions 2 and 3 are
related to the interests of operating companies and their
fuctuation trends are, basically, the same, while objective
function 1 represents the generalized travel cost of pas-
sengers, which is contrary to the trend of objective function
2, i.e., when the Pareto optimal value of objective function 1
rises, the objective function 2 drops. When iterating to the
835th generation, the three objective functions undergo their
last fuctuations and the Pareto optimal values are stabilized
at 2,703,433 people·¥, 6254 train·km, and 1083 km, re-
spectively. From the evolutionary trend and contradictory
characteristics of the three objective functions, it can be
concluded that the Pareto optimal solution of the multi-
objective optimization problem of URT is a result of mutual
compromise and trade-of, which not only considers the
generalized travel cost of passengers, but also takes into
account the efciency, cost, and organizational difculty of
the transportation enterprises.

According to the algorithm description of the TOP
optimization model in the above section, Pareto optimal
values of the previous generation are compared with the
function values of the current generation after each evo-
lution of the algorithm, so as to realize the dynamic update of
the Pareto solution set. In the algorithm parameter setting of
this case, the size of the parent population is 10 chromo-
somes. However, after the evolution of 177 generations, the
number of feasible chromosomes is at least 10, which can be
seen in Figure 7. Tus, for feasible chromosomes which
exceed the population size, those for the next generation,

randomly selected by the roulette wheel selection method,
have relatively high ftness values.Te chromosomes that are
not selected for subsequent evolution are not necessarily
inferior and there must be some chromosomes whose
vectors are more prominent in many dimensions, i.e., there
is a set where each solution is not worse than any other
solution. In other words, each solution in this set cannot
dominate or afect others, namely, Pareto optimal solutions.
Although it cannot be said that they are superior to any other
solutions, there are no better ones either.

Tese feasible solutions are preserved in the whole
evolution process. Te range of feasible solutions of the
entire model can be obtained, where the boundary value is
the frontier of the Pareto optimal value, as shown in the 3D
grid in Figure 9, in which the diamond represents the Pareto
optimal value of the entire evolution process and the circle
represents the feasible value. Te Pareto optimal value set
forms a Pareto frontier at the boundary of all feasible
solutions.

Te Pareto optimal solution of the multiobjective op-
timization model of TOP, which is a set of multiple non-
dominated solutions, is obtained by balancing the optimal
solutions of the three objective functions. In order to op-
timize the objective function Z1, the highest transport ca-
pacity should be allocated to minimize the generalized travel
cost of the passenger, i.e., the higher the service frequency,
the more it will help reduce the passengers’ waiting and
congestion costs. In order to optimize the objective function
Z2, it is necessary to allocate the minimum number of trains
to meet the passenger demands and reduce the travel
mileage of trains, thereby reducing the operating costs of
enterprises. In order to optimize the objective function Z3,
the number of trains on the same routing in the adjacent
passenger fow periods should fuctuate as little as possible to
ensure the continuity and feasibility of the TOP. Taking the
minimum of each objective function as the boundary, four
Pareto optimal schemes and their compromised rate of each
objective function value, relative to the boundary, are listed
in Table 4.

Te transport capacity confgurations corresponding to
the four schemes above are shown in Figure 10. It can be
seen that the number of trains in each scheme is the same
during of-peak hours and the diferences mainly arise in
peak periods. For schemes with less compromise in the

1 58 115 172 229 286 343 400 457 514 571 628 685 742 799 856 913 970
Gens

30
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Population Size Trend

Fsb Chromes
Pop Size

Figure 7: Population size trend.
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objective function Z1, such as Pareto scheme 2 and 3, more
trains are allocated during peak hours; for schemes with less
compromise in the objective function Z2, such as Pareto
scheme 1 and 4, less trains are allocated in peak hours; and
for schemes with less compromise in the objective function
Z3, such as Pareto scheme 3 and 4, the number of trains on
each routing is more evenly distributed.

For the multiple Pareto optimal schemes of TOP, this
article takes Pareto scheme 1 as an example for detailed
analysis, which is represented by a triangle in Figure 9 and
located in the lower middle part of the Pareto front. Due to

the long travel distance of the entry-exit depot of the short-
turning rolling stock, in order to make full use of them, the
number of short-turning trains in morning and evening
peak hours are maintained as consistently as possible, so that
the number of the entry-exit depot rolling stock is reduced
during the transition of PFTPs. Terefore, one pair of short-
turning trains run in the morning peak hours of 07:00–07:30
and 09:00–09:30 and two pairs run from 07:30 to09:00.
During the evening peak hours, one pair of trains run from
16:30 to17:00 and 18:30 to19:00 and three pairs run from 17:
00 to 18:00, as shown in Table 5. Five pairs of trains are
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Figure 8: Trend of 3 objective functions: (a) Trend of objective function Z1, (b) trend of objective function Z2, and (c) trend of objective
function Z3.
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operated during the of-peak PFTPs, mainly considering the
constraint of the maximum departure interval of 360 s. In
the morning peak period, the number of trains on the basic
routing from 07:30 to 08:00 is the largest with eight pairs,
plus two pairs of short-turning ones, so the departure in-
terval of overlapping sections between long and short-
turning routing is 180 s, which is still above the lower
limit of headway and conforms to the constraints.

To verify whether the calculated transport capacity
confguration meets the passenger demands, it should be
compared with the actual passenger fow curve, as shown in
Figure 11. Te fgure shows the periods of the morning and
evening super peaks, as well as the transport capacity cal-
culated by the 100% fully loaded rate. Te light blue curve is
the maximum cross-sectional fow for each PFTP. Te
transport capacity of most PFTPs is higher than the pas-
senger fow curve during the entire day but, for some pe-
riods, the maximum cross-section passenger fow exceeds
the transport capacity at a fully loaded rate of 100%. Te
orange curve shows the actual fully loaded rates during each
PFTP. It can be seen that, during the PFTP from 18:00 to 18:
30, the maximum fully loaded rate of a train reached 111%,

which is still less than the upper limit of φl
max � 120%,

controlled by the operating department. Tose in the rest of
the PFTPs are all less than that limit. Terefore, it can be
considered that the TOP not only meets the needs of actual
operational safety, it also ensures the passengers’ riding
comfort to a greater extent, which improves the level of URT
passenger service.

In 2019, Guangzhou Metro Line 2 adopted the routing
plan of the long and short turning mode for the morning
peak hour only. TOP indicators of the scheme, generated by
using the method described in this article, are compared
with those of the actual plan in Table 5. It can be seen that the
number of trains in the optimized plan is reduced by six
pairs, compared to the actual one. Te loaded running
mileage is reduced by 520 train·km, which is 4.01% of the
original, due to the implementation of the long and short
turning mode in the evening peak. At the same time, the
average fully loaded rate of trains during the whole day
increased from 35.7% to 37.2%, which improved the ef-
ciency of train utilization. By making full use of the train
capacity, the fully loaded rates of cross sections with max-
imum ridership, in both the up and down directions,

6,500
6,400

6,300
6,200

6,100
6,000

2.6e6
2.8e6

2.4e6
2.2e6

2e6 Z2
Z1

Z3

2,200

2,000

1,800

1,600

1,400

1,200

1,000

Pareto-optimal Front

Output Slt

Fsb Slt
Pareto-optimal Front

Figure 9: Pareto optimal front.

Table 4: Comparison of Pareto optimal schemes for TOP.

Pareto Opt. Schemes Obj.
Func. Z1 (Per·¥)

Obj.
Func. Z2 (Train·km) Obj. Func. Z3 (km)

Min Z1 scheme 2, 59,422 6430 1521
Min Z2 scheme 2,771,763  0 9 1168
Min Z3 scheme 2,715,345 6223 998
Pareto scheme 1 2,703,433 (1.65%) 6254 (3.05%) 1083 (8.52%)
Pareto scheme 2 2,667,943 (0.32%) 6459 (6.43%) 1046 (4.81%)
Pareto scheme 3 2,674,193 (0.56%) 6385 (5.21%) 1030 (3.21%)
Pareto scheme 4 2,714,684 (2.08%) 6279 (3.46%) 1038 (4.01%)
Tese bold values represent the minimum values of each objective function and are used for Pareto optimization comparison.

Journal of Advanced Transportation 15



increased by 10.2% and 12.2%, respectively. Because Line 2
has been operating since 2002, the organizational experience
of operation and passenger dependency tend to be mature
and there is not much room for adjustment in operation
organization. Terefore, the model and algorithm proposed

in this article can improve the current TOP, which still has
a certain reference value and theoretical signifcance.

Te stop time of trains optimized by the algorithm,
according to the upstream and downstream passenger fows,
changes dynamically with PFTP. Te results of the
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Figure 10: Capacity allocation of Pareto optimal schemes. (a) Pareto scheme 1, (b) Pareto scheme 2, (c) Pareto scheme 3, and (d) Pareto
scheme 4.
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optimized stop time at all stations during the period 07:
00–08:30, in the morning peak, and 17:00–18:30 in the
evening peak, are compared with the original fxed stop
time presented in Table 6 Te optimized stop time values
of each station in each PFTP dynamically change
according to the boarding and alighting passenger

volume, which fuctuates around the original stop time.
Among these, the stop times between the section from
station 8–station 17 are longer and the longest time (68 s)
occurs in the down direction of station 13, during PFTP
17:00–17:29, which is consistent with the peak passenger
fow distribution in Figure 6.

Table 5: Trains of long and short turning routing.

PFTPs Long-turning routing Short-turning routing
05:30–06:00 5 0
06:00–06:30 5 0
06:30–07:00 5 0
07:00–07:30 7 1
07:30–08:00 9 2
08:00–08:30 8 2
08:30–09:00 5 2
09:00–09:30 5 1
09:30–10:00 5 0
10:00–10:30 5 0
10:30–11:00 5 0
11:00–11:30 5 0
11:30–12:00 5 0
12:00–12:30 5 0
12:30–13:00 5 0
13:00–13:30 5 0
13:30–14:00 5 0
14:00–14:30 5 0
14:30–15:00 5 0
15:00–15:30 5 0
15:30–16:00 5 0
16:00–16:30 5 0
16:30–17:00 5 1
17:00–17:30 5 3
17:30–18:00 5 3
18:00–18:30 7 1
18:30–19:00 5 1
19:00–19:30 5 0
19:30–20:00 5 0
20:00–20:30 5 0
20:30–21:00 5 0
21:00–21:30 5 0
21:30–22:00 5 0
22:00–22:30 5 0
22:30–23:00 5 0
23:00–23:30 5 0
23:30–00:00 5 0
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Table 6: Comparison of train stop times.

Station No./PFTP
Optimized stop time (s) Original stop

times (s)
full day07:00–07:29 07:30–07:59 08:00–08:29 17:00–17:29 17:30–17:59 18:00–18:29

1 50/— 50/— 50/— 50/— 50/— 50/— 50/—
2 30/32 32/31 33/30 30/33 30/32 31/31 34/34
3 30/32 31/35 32/33 31/32 32/31 33/30 34/34
4 38/32 41/33 42/32 31/38 32/39 32/37 34/34
5 38/31 42/32 43/32 31/39 31/39 32/38 34/34
6 43/39 47/39 46/36 41/46 39/45 39/41 34/34
7 40/34 41/35 41/34 35/43 35/42 35/39 33/33
8 37/31 39/31 38/32 34/37 33/37 32/35 37/37
9 53/46 56/45 56/44 51/61 49/58 47/52 50/50
10 37/34 37/34 37/34 38/42 37/41 36/38 35/35
11 37/33 37/33 35/33 35/38 34/38 33/36 35/35
12 47/39 46/40 45/41 47/50 44/48 41/44 35/35
13 57/50 61/52 59/53 64/68 59/64 53/58 55/55
14 35/34 37/35 36/35 37/38 35/36 32/33 35/35
15 34/33 34/34 34/34 35/35 34/35 31/33 35/35
16 44/50 43/56 42/56 65/53 62/50 55/48 50/50
17 33/41 34/47 33/47 44/39 44/38 42/37 37/37
18 32/31 33/34 32/35 37/33 37/33 34/33 35/35
19 33/32 35/36 33/39 39/34 39/34 36/34 34/34
20 31/33 32/35 31/36 35/31 36/31 33/32 34/34
21 29/30 29/31 29/31 31/29 30/29 30/29 34/34
22 35/37 37/43 33/48 43/33 45/33 41/35 34/34
23 34/33 33/36 31/38 38/32 37/32 34/33 34/34
24 —/50 —/50 —/50 —/50 —/50 —/50 —/50
Te numerator and denominator represent the up and down stop time, respectively. Te stop time of the terminal station is indicated by “—”.

Table 7: Comparison of indicators.

Schemes Train pairs Loaded mileage
(trainkm)

Train capacity
(Person)

Avg. FLR
(%)

Max cross-section
FLR (Up)

(%)

Max cross-section
FLR (down)

(%)
Actual 219 12,966 814,680 35.70 99.50 99.10
Optimized 213 12,446 788,640 37.20 109.70 111.30
FLR is short for fully loaded rate.
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Figure 12: Te stop time at station 13.
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It should be noted that the fxed stop time of station 13
in Table 7 is the longest, which is 55 seconds. Taking the
stop time of that station as an example, the dynamic stop
times in both directions throughout the day are compared
with the original fxed ones, as shown in Figure 12. Te
trend line indicates that the length of the optimized stop
time is basically consistent with the tendency of passenger
fow in the up and down directions during each PFTP. In
the four PFTPs of the morning peak, the stop time for the
up direction is higher than that of the original value and the
down direction; in the four PFTPs of the evening peak, the
stop time for the down direction is higher than that of the
original value and the up direction. Te summation of
optimized stop time in all PFTPs is only 87.3% of the
original totality. It can be seen that the dynamic setting of
the stopping time can efectively compress the whole travel
duration of the train and reduce the unnecessary waiting
time of passengers, which is of practical importance for
improving the passenger service level.

8. Conclusion

Te formulation of the TOP needs to consider the balance of
the relationship between the supply of the transportation
department and passenger demand. In this article, a multi-
objective collaborative optimization model for train operation
planning and dynamic train stopping time is constructed to
achieve the goals of minimizing the generalized travel costs of
passengers, the travel distance of trains, and the fuctuations of
the rolling stock exit/entry-depot in the adjacent passenger fow
periods. Based on the framework of MOGA, combined with
the characteristics of the model, the coupling relationship
between the numbers of trains between routings is described in
the form of a genome and the genetic operation of changing the
genome at a defnite position and in a certain direction is
implemented by using directed mutation. Finally, we get the
Pareto optimal solution of the TOP and the dynamic train stop
time to meet the time-varying passenger demand. Analysis of
the multirouting mode of Guangzhou Metro Line 2, as an
example, shows the correctness of the model and the efec-
tiveness of the algorithm, as follows:

(1) Te Pareto optimal solution set is generated and the
multiple solutions constitute the Pareto frontier.
Each nondominating solution has superiority in each
dimension of objective function, which is refected in
the diferences of the totality of trains, the number of
short-turning trains and the balance of allocation of
trains between PFTPs.

(2) By comparing the optimized TOP with the actual
one, the former plans to operate short-turning trains
during the evening peak, which makes it possible to
use less trains to complete the transportation tasks of
the existing plan, thereby reducing operating costs,
improving the fully loaded rate of trains within
a reasonable range and alleviating the strain of train
turnover during peak hours.

(3) Te number of trains on long and short-turning
routings tends to be balanced in multiple consecu-
tive PFTPs, which facilitates the formulation of train
turnover plans and operations of the rolling stock
exit/entry-depot, ensuring the operability of TOP.

(4) According to the spatiotemporal distribution char-
acteristics of passenger fow, the optimized dynamic
train stopping time can better meet passenger de-
mands and the safety requirements of passenger
organization in stations, than the fxed one, which is
reduced by 12.7%. Terefore, it is conducive to
shorten travel time and improve the transport
capacity.

Te model and algorithm proposed in this article can
quickly generate TOPs with high service levels that meet the
needs of passenger fow under certain routing plans, provide
efective decision support for transportation departments,
and have broad applicability to the development of URT
TOPs. Te next step of the research is to realize the in-
tegrated optimization of the TOP, transport mode, and train
stopping plan.
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