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To establish a suitable pure electric bus arrival time prediction model, this paper takes pure electric bus as the research object.
Based on the analysis of the infuencing factors of the arrival time of the pure electric bus, the BP neural network arrival time
prediction model optimized by the frefy algorithm (FA-BP prediction model) is established by selecting vehicle type, SOC value,
battery age, and time as input conditions.Temodel is trained and tested by using bus operation data.Te root mean square error
of the Kalman flter model is 0.351, of the BP neural networkmodel is 0.059, and of the FA-BP predictionmodel is 0.04.Te results
show that the model in this paper efectively improves the prediction accuracy and has good reliability and feasibility. It can
provide some theoretical references for pure electric bus operation and managers and provide some basis for improving bus
reliability.

1. Introduction

In recent years, the urgency of motor vehicle pollution
prevention has become increasingly prominent. As a new
energy vehicle, pure electric vehicles can efectively reduce
air pollution, and reduce fossil energy consumption, and
have been widely promoted. Te wide application of pure
electric vehicles in public transportation has a good dem-
onstration and leading role and can efectively promote the
development of new energy vehicles. At present, most of the
existing bus travel time prediction studies are for fuel buses,
natural gas buses, and hybrid buses. Te operating char-
acteristics of the pure electric bus are quite diferent from
theirs. Te existing bus arrival time prediction model and
reliability model have been unable to be better applied to
pure electric bus, and it is necessary to establish a suitable
pure electric bus arrival time predictionmodel and reliability
analysis model. Terefore, it is necessary to research the
travel time prediction of pure electric bus.

In terms of bus arrival time prediction, to provide
passengers with real-time and reliable bus arrival time, the
model is generally required to have better prediction

accuracy and calculation speed. Te pure electric bus is
afected by weather, road conditions, and other complex
factors during operation, which makes an accurate bus travel
time prediction a problem. Scholars at home and abroad
have invested a lot of time and energy in research to fnd
more accurate and faster forecasting methods. Currently, the
methods to predict the bus travel time include the following:
historical data prediction method [1], statistical regression
theory prediction model [2], time series method [3], Kalman
flter model [4], artifcial neural network model [5], support-
vector machine model [6], probability-based prediction
model [7], and particle flter-based prediction model [8].
Kumar et al. [9] proposed a generic data-driven approach for
bus arrival time prediction which frst learns both the spatial
and temporal correlations in the historical data using su-
pervised learning in a general nonlinear and nonstationary
fashion and posed the prediction problem as a probabilistic
inference problem under a nonlinear dynamical system
model. Rahman et al. [10] developed a methodology to
analyze the bus travel time distribution systematically based
on diferent pseudo horizons, which takes into account the
uncertainty of future bus arrival times given that early and
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late buses have their respective ramifcations. Huang [11],
respectively, studied the infuence of static factors and dy-
namic factors on the arrival time of the bus and established
a time series prediction model based on heterogeneous
information. Te model is based on the recurrent neural
network to study the long-term dependence of trafc and
realize the prediction of bus arrival time. Serin et al. [12]
handled the travel time of buses between two consecutive
stops s time series, the average method, the Holt-Winters
method, and the sum deep residuals method. Combining the
average method, the Holt-Winters method, and the sum
deep residuals method, a novel method with three-layer
architecture to predict bus travel time between two stops
is proposed. Achar et al. [13] utilize the historical data to
learn the nonstationary (a) (linear) spatial dependencies
between travel times of adjacent sections based on the above-
computed order and (b) temporal dependency between
successive trips as a function of the time diference between
the trips and used Kalman fltering algorithm to solve the
predictionmodel. Lai et al. [14] proposed the use of a wavelet
neural network (WNN) model with an improved particle
swarm optimization algorithm (IPSO) that replaces the
gradient descent method. Te proposed IPSO-WNN model
overcomes the limitations of the gradient-based WNN,
which can easily produce local optimum solutions and stop
the training process and thus improving the prediction
accuracy. Liu et al. [15] solve the problems of remote de-
pendence on bus arrival and road incidents, combining the
advantages of the historical data prediction method and the
real-time speed data prediction method. Tus, long short-
term memory and artifcial neural networks on the com-
prehensive prediction model are proposed based on spatial-
temporal feature vectors. Yang et al. [16] divided the dwell
time into linear and nonlinear parts and adopted the
autoregressive integrated moving average (ARIMA) model
and support vector machine (SVM) to predict these two
parts. Tus, the hybrid dwell time prediction method for
BRT is established. Yu et al. [17] presented a hybrid model to
predict bus arrival times, based on a support vector machine
and Kalman fltering technique. Results show that the hybrid
model generally provides better performance than artifcial
neural network-based methods. Yu et al. [18] proposed
a random forest based on the near neighbor (RFNN)method
model to predict bus travel time.

Scholars at home and abroad have conducted in-depth
research on the fuel bus arrival time prediction model, but
the existing research still has shortcomings. Te bus arrival
time prediction method does not take into account the
diference in infuencing factors of pure electric bus, and the
prediction accuracy needs to be improved.

2. Analysis of Influencing Factors on Operation
Time Reliability of Pure Electric Bus

Te factors that afect the operating time of pure electric bus
vehicles are complex and diverse. In addition to relatively
certain factors such as driver characteristics and vehicle
characteristics, random factors such as date, time period, and
weather can also have an important impact on bus operating

time. Passengers are usually more concerned about the re-
liability and stability of bus operating time under random
factors [19]. Sun [20] used a diference test to analyze the
impact of date, time period, and weather on bus operation
time. Te results showed that random factors such as date,
weather, and time period have a signifcant impact on bus
operation time and should be considered as factors in the
prediction model of bus arrival time. Pure electric buses
provide operational power through battery storage of electrical
energy, so battery performance determines whether pure
electric buses can operate smoothly and reliably. He [21]
analyzed that the battery performance of pure electric buses is
mainly afected by factors such as battery capacity, battery age,
and battery state of charge (SOC). Terefore, this paper selects
four factors: pure electric buses vehicle type, SOC value, battery
age, and time period to study their impact on operating time.

2.1. Vehicle Type. Due to diferent vehicle types, the vehicle
quality, electric shock power, and other parameters are also
diferent, resulting in large diferences in the acceleration
and deceleration performance of the bus. Tis paper selects
bus stations with relatively close trafc volume during the
of-peak period to investigate three types of pure electric
buses, and the specifc parameters are shown in Table 1.

Table 2 and Figure 1 show the deceleration time of the
three types of pure electric bus is not very diferent during
the deceleration process. Te standard deviation of de-
celeration times of type A (10.7m) and type C (7.0m) is
1.31 s and 1.24 s, respectively, which are the maximum and
minimum values of the three models. It shows that the
deceleration time distribution of type C (7.0m) is relatively
uniform, while that of type A (10.7m) is relatively dispersed.
In addition, the average deceleration time of type C (7.0m) is
6.38 s, while the average deceleration time of type B (8.0m)
and type A (10.7m) is 6.61 s and 6.99 s, respectively. It shows
that type C (7.0m) has the best deceleration performance,
followed by type B (8.0m), and type A (10.7m) is poor. Te
acceleration time characteristics of the three models of pure
electric buses are similar to the deceleration time charac-
teristics during acceleration, the standard deviation and
mean of the acceleration time of type C (7.0m) are the
smallest, and the standard deviation and the average value of
the acceleration time of type A (10.7m) are the largest. It
shows that the acceleration time distribution of type C
(7.0m) is relatively uniform, and the acceleration perfor-
mance is the best. On the whole, type C (7.0m) has the best
acceleration and deceleration performance, followed by the
B model (8.0m), and type A (10.7m) is poor.

Trough the quantitative analysis of the relationship
between acceleration and deceleration time of pure electric
bus and vehicle type, it can be seen that the diference in
acceleration and deceleration performance of diferent types
of vehicles has a great diference in the impact on the bus
operation time. Te smaller the vehicle mass, the greater the
electric shock power, and the better the acceleration and
deceleration performance.Terefore, the vehicle type should
be taken as an input variable of the pure electric bus arrival
time prediction model.
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Table 1: Parameter confguration of diferent types of pure electric bus in Fuzhou.

Bus type A B C
Size (mm) 10700× 2500× 3070 8045× 2350× 2930 7000× 2050× 2670
Maximum speed (km/h) 69 69 100
Electric shock power (kw) 100 150 115
Total mass (kg) 18000 11400 7400

Table 2: Characteristic values of deceleration time of diferent types of pure electric bus.

Category Whole A B C

Deceleration time Average (s) 6.67 6.99 6.61 6.38
Standard deviation (s) 1.29 1.31 1.25 1.24

Acceleration time Average (s) 11.67 13.45 11.69 9.85
Standard deviation (s) 2.68 2.53 2.12 2.04
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Figure 1: Time distribution of acceleration and deceleration of pure electric bus. (a) Bus type A. (b) Bus type B. (c) Bus type C.
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2.2. SOC Value. Tis paper selects the operation time of the
pure electric bus at Geyu Village-Youxizhou Bridgehead
section of Route 321, Fuzhou City, from 14:00 to 16:00
during the of-peak period to analyze the infuence of SOC
value on the operation time. Figure 2 shows the change in
bus operating time when the remaining power of the pure
electric bus is diferent. In general, when the operating time
of pure electric buses is between 0.4∼1 SOC value, the more
sufcient the power, the shorter the running time, but the
diference in running time is basically between 20∼30 S, and
the diference is not obvious. However, when the SOC value
drops below 0.4, the operating time of pure electric buses
increases signifcantly, and the operating time of the station
fuctuates greatly, and the battery is in a more unstable state.
Terefore, judging the SOC value of pure electric buses will
afect the arrival time of the bus.

In order to analyze whether the SOC value of pure electric
buses has a signifcant impact on the bus running time,
a random sample was selected by using ANOVA to analyze
the diferent signifcance. Normality and variance homoge-
neity are the two prerequisites for the application of the
ANOVA test, so randomly select 30 samples of the operation
time of the Geyu Village-Youxizhou Bridgehead section when
the SOC value is 0∼0.4, 0.4∼0.6, and 0.6∼1.0 for testing. Due
to the small amount of data in the three groups, the K-S test
results of the normality tester are the mainstay. Table 3 shows
the asymptotic signifcance of the three groups of data > α �

0.05 so it is considered that the operation time of the three
groups of pure electric buses is considered to have normality.

Te homogeneity test for variance, also known as the
Levene test, tests whether data from diferent groups come
from the same population. If > � 0.05, the null hypothesis is
accepted: the variance is homogeneous, and vice versa, the
null hypothesis is rejected. Table 4 shows the test results of
homogeneity of variance, P is greater than that, indicating
that the above three sets of data have homogeneity of
variance. Table 4 shows the test results of homogeneity of
variance because P> α, indicating that the above three
groups of data have homogeneity of variance.

In Table 5, the variance of three groups of data is analyzed.
Because P � 0.001< α � 0.05, the SOC value of pure electric
buses will afect their arrival time.Terefore, it is thought that
the SOC value of a pure electric bus vehicle will afect the
arrival time, and the SOC value should be as an input variable
of the pure electric bus arrival time prediction model.

2.3. Battery Age. Hu [22] carried out experiments on the
battery under diferent conditions, combined with diferent
mathematical algorithms to simulate and analyze the battery
characteristics and extract the characteristic parameters.

Table 6 shows the management information of the Route
321 pure electric bus, recording the license plate number,
length, battery age, and other information.

Statistics of the operation time of pure electric buses with
diferent battery ages on the Route 321 section of Geyu
Village-Youxizhou Bridgehead from 14:00 to 16:00 during
the of-peak period. Figure 3 shows that, on the whole, the
shorter the battery age, the shorter the operation time.

Te bus arrival time corresponding to 3 years of battery
age is longer than that of 0.5 years and 1.5 years of battery
age, and the arrival time of buses with a battery age of
0.5 years is the shortest, so the battery age of pure electric
buses is thought to afect the arrival time of the bus.

Te K-S test method is used to test the normality of the
above three sets of data, and the results are shown in Table 7.
Because of the asymptotic signifcance of the three groups of
data > α � 0.05, the operation time of the three groups of
pure electric buses is considered to have normality. Table 8
shows the test results of homogeneity of variances, P> α
indicating that the three groups of operation time corre-
sponding to batteries with diferent service life have ho-
mogeneity of variance.

In Table 9, the variance of the three groups of data is
analyzed. Because P � 0.001< α � 0.05, it is believed that
diferent battery ages of pure electric bus will afect the
arrival time of pure electric buses, and the battery age should
be taken as an input variable of the prediction model of the
arrival time of pure electric buses.

2.4. TimePeriod. Te impact of the time period on the travel
time of pure electric buses is mainly refected in two aspects:
the density of road trafc fow and the number of passengers
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Figure 2: Infuence of SOC value on bus travel time.

Table 3: Normality test of pure electric bus operation time.

SOC value 0.6∼1.0 0.4∼0.6 0∼0.4
N 30 30 30

Normal
parametersa,b

Mean 486.67 519.73 761.43
Standard
deviation 18.40 18.46 21.21

Kolmogorov–Smirnov 0.200 0.200 0.200
Asymptotic signifcance (P value) 0.139 0.257 0.178
Whether it obeys the normal
distribution Yes Yes Yes

Table 4: Homogeneity test of variance.

Levene statistic df 1 df 2 Signifcance (P value)
2.822 2 87 0.251
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boarding and alighting. When the trafc density is large, the
logarithmic model proposed by Greenberg can describe the
relationship between velocity and density. As shown in
Figure 4, the speed of trafc fow decreases with the increase

of vehicle density over time, and when the vehicle density
reaches 200 veh/km, the speed of trafc fow is 0.

v � vm ln
Kj

K
, (1)

where vm is the maximum trafc volume speed, K is the
density, and Kj is the jamming density.

Te impact of the time period on the travel time of pure
electric buses is mainly refected in two aspects: road trafc
fow density and the number of passengers getting on and
of. During peak hours, urban residents have a high demand
for commuting to and from work and school, high density of
road trafc fow, and large interference of social vehicles on

Table 5: Analysis of variance.

Sum of squares df Square of
mean F Signifcance (P value)

Between groups 1350090.156 2 675045.078 1792.927 0.001
Within group 32755.900 87 376.505
Sum 1382846.056 89

Table 6: Vehicle management information of Route 321.

License plate
number Fuel type Vehicle length Buying time Activation time Battery age

Min A01166D Pure electric 10.5 2018-01-09 2018-02-01 0.5 years
Min A01101D Pure electric 10.5 2018-01-09 2018-02-01 0.5 years
Min AYE302 Pure electric 10.5 2016-10-31 2017-02-16 1.5 years
Min AYE310 Pure electric 10.5 2016-10-31 2017-02-16 1.5 years
Min AYD083 Pure electric 10.5 2015-11-13 2015-12-18 3 years
Min AYD718 Pure electric 10.5 2015-11-13 2015-12-18 3 years
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Figure 3: Infuence of battery age of pure electric bus on bus operation time.

Table 7: Normality test of pure electric bus operation time.

SOC value 0.5 years 1.5 years 3 years
N 30 30 30

Normal
parametersa,b

Mean 496.96 484.24 475.1
Standard
deviation 10.46 8.19 8.01

Kolmogorov-Smirnov 0.158 0.155 0.200
Asymptotic signifcance
(P value) 0.399 0.241 0.202

Whether it obeys
the normal distribution Yes Yes Yes

Table 8: Homogeneity test of variance.

Levene statistic df 1 df 2 Signifcance (P value)
2.822 2 87 0.500

Table 9: Analysis of variance.

Sum of
squares df Square of

mean F Signifcance
(P value)

Between
groups 7299.267 2 3649.633

44.037 0.001Within group 7210.333 87 82.877
Sum 44509.600 89
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pure electric buses, resulting in low bus speeds and long
travel time. At the same time, the number of bus passengers
at the bus stop is large, and the time for passengers to get on
and of is long, which is also one of the reasons for the long
travel time of bus at peak hours. However, the road trafc
fow density is relatively low in the of-peak period, the road
is in a relatively smooth state, and the delay time for pas-
sengers to get on and of is also relatively short. Terefore,
the travel time of pure electric buses is relatively short in the
of-peak period.

Figure 5 shows the change of operation time between
Geyu Village and Youxizhou Bridgehead Station on August
13, 2018, in the direction of Bus No. 321 to Yuandonglijing.
Results show that the distribution of bus operation time
occurs during the morning peak and evening peak between
7:00–9:00 and 17:00–19:00.

Te K-S test is used to test the normality of the above two
groups of data, and Table 10 shows the results. Table 10
shows the test results of the homogeneity of variance. Te P

values of the of-peak period and peak period are 0.057 and
0.148, respectively, which are both greater than α, indicating
that the operation time of the of-peak period and peak
period obeys the normal distribution.

Table 11 shows the test results of the homogeneity of
variances. P> α, indicating that the operation time of pure
electric buses during peak and of-peak periods has a ho-
mogeneity of variance.

Te variance of the two groups of data is analyzed in
Table 12. Because P � 0.002< α � 0.05, it is believed that
time period will afect the arrival time of the pure electric
bus, and time period should be taken as an input variable of
the pure electric bus arrival time prediction model.

3. Pure Electric Bus Arrival Time
Prediction Model

3.1. BPNeural Networks. BP neural network is a mature and
widely used error backpropagation learning algorithm in
prediction, which consists of three layers: input layer, hidden
layer, and output layer. Tere is generally no connection
between neurons in each layer, and the neurons in each layer
are only fully connected with neurons in adjacent layers. BP
neural networks pass input signals layer by layer to the

output layer. When the obtained output value does not meet
the accuracy requirements, the weight and threshold of the
network are adjusted by back-propagating the error signal,
and fnally, the predicted value of the BP neural network
gradually approaches the expected value. Te BP neural
network structure is shown in Figure 6.

In Figure 6, the output expression of the m neuron in the
input layer of the BP neural network is

Ym � f xm( 􏼁, (2)

where f represents the conversion function of the
input layer.

In Figure 6, the output expression of the p neuron in the
hidden layer of the BP neural network is

Yp � f 􏽘
M

m�1
wpmYm − θp

⎛⎝ ⎞⎠, (3)

where wpm represents the connection weight between the m

neuron in the input layer and the p neuron in the hidden
layer; θp represents the hidden layer threshold.

In Figure 6, the output expression of the n neuron in the
output layer of the BP neural network is

Yp � f 􏽘
P

p�1
wnpYp − θn

⎛⎝ ⎞⎠, (4)

where wnp represents the connection weight between the p

neuron in the hidden layer and the n neuron in the output
layer; θn represents the output layer threshold.

3.2. FA-BP Prediction Model. Considering that the travel
time of the pure electric bus is nonlinear, BP neural network
has a strong nonlinear mapping function and self-learning
ability, which is very suitable for the prediction of bus travel
time, and the prediction accuracy is higher than that of the
Kalman flter, support vector machine, and other models.
However, BP neural network also has the problem of a slow
convergence rate and often does not continue to calculate
and search after getting a nonglobal optimal solution.
Terefore, the FA algorithm with global training ability and
fast convergence speed is used to optimize the BP neural
network model.

In addition, this paper proposes that when (1) there is no
better solution within the dynamic domain of frefies, it is
stipulated that frefies should be iterated and updated
according to the guidance strategy. (2) Set the step size to
a value that can be adjusted. Te step size is no longer a fxed
value, and its size will change with the solving process.
Furthermore, the accuracy, convergence rate, and search
stability of the optimal solution of the FA algorithm are
improved.

3.2.1. Guided Movement Strategy. Te guided movement
strategy means that in the process of iteration, the optimal
frefy individual is searched, and the position of the frefy is
the optimal position at present. Ten, the frefy will update
its position according to the following formula:
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Figure 4: Logarithmic curve of velocity and density.
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Figure 5: Infuence of time period on the operation time of the pure electric bus.

Table 10: Test results of normality.

Time period Of-peak Peak
N 30 30

Normal parametersa,b Mean 511.80 591.03
Standard deviation 79.85 106.37

Kolmogorov–Smirnov Z 0.134 0.053
Asymptotic signifcance (P value) 0.057 0.148

Table 11: Homogeneity of variance test.

Levene statistic df 1 df 2 Signifcance (P value)
2.466 1 58 0.122

Table 12: Analysis of variance.

Sum of squares df Square of
mean F Signifcance (P value)

Between groups 84168.817 1 94168.817
10.645 0.002Within group 513067.767 58 8845.996

Sum 607236.583 59
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Figure 6: Te structure of the BP neural network.
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Xi(t + 1) � Xi(t)
Xj(t) − Xi(t)

Xj(t) − Xi(t)
�����

�����

⎛⎝ ⎞⎠,

Xi(t + 1) � Xi(t) + rand(1)
∗
r

i
d(t),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(5)

where Xi(t + 1) represents the position of the frefy i at the
t + 1 moment; Xi(t) represents the position of frefy i at
time t, s(t) represents the adaptive step size, Xj(t) repre-
sents the position of frefy j at time t, and ri

d(t) represents
the range of the dynamic decision domain of frefy i.

Firefy j has the function of guiding direction. If there is
no better individual within the dynamic decision-making
domain of frefy i, then frefy i will update the position in
the direction of frefy k, thus greatly improving the solving
rate of the frefy algorithm. If frefy i is the optimal solution
in the current iteration process, it will use a smaller step size
for position transformation, to achieve the purpose of
searching for solutions with higher precision.

3.2.2. Adaptive Step Size Moving Strategy. Since the step size
in the frefy algorithm is a constant value, a nonglobal optimal
solution and repeated oscillation may occur. To solve this
problem, the adaptive step size is proposed to replace the fxed
step size in the algorithm. In other words, in the early iterative
process of calculation, the step size should be kept large to
improve the solving speed and search for the global optimal
solution. In the later iterative process, the step size is kept small
to solve the oscillation problem and improve the accuracy of the
solution.Te step size of the early and late iteration process can
be determined according to equations (6) and (7), respectively.

s(t) � smax(p)
c
, (6)

c � 1 +
t

tmax
− cos

t

tmax
􏼠 􏼡, (7)

where s(t) represents the adaptive step size; p is a constant.
Figure 7 shows the specifc steps of the BP neural net-

work model optimized by the frefy algorithm.

3.3. Determination of Model Input Variables. Te input data
to the proposed model are determined based on relevant
literature (Xie [23], Lin [24], Peng and Weng [25]) and
historical data on the pure electric bus’s vehicle type, SOC
value, battery age, and time period and bus real-time op-
eration. Te arrival time of pure electric buses is taken as the
output target. Te specifc parameter settings are as follows.

thn represents the operation time of the vehicle with the
closest departure time from the frst station of the line
on the same day and the same time period in the
historical week from the station i to j, which n � 1, 2, 3,
respectively, represent the operation time data of the
previous week, two weeks, and three weeks.
x1 represents vehicle type. According to diferent ve-
hicle types, the vehicle type can be expressed as
x1 � 1, 2, 3{ }. 1 means a bus with a mass≥18000 kg, 2

means a bus with a mass of 7400 kg∼18000 kg, and 3
means a bus with a mass ≤7400 kg.
x2 represents SOC. According to diferent SOC values,
SOC can be expressed as x2 � 1, 2, 3{ }. 1 means that the
SOC value is in the range of 0∼0.4, 2 means that the
SOC value is in the range of 0.4∼0.6, and 3 means that
the SOC value is in the range of 0.6∼1.
x3 represents the battery age. According to diferent
battery ages, the battery age can be expressed as
x3 � 1, 2, 3, 4{ }. 1 means the battery age is 0∼0.5 years, 2
means the battery age is 0.5∼1.5 years, 3 means the
battery age is 1.5∼3 years, and 4 means that the battery
age is more than 3 years.
x4 represents the time period. According to the dif-
ferent time periods, the time period can be expressed as
x4 � 1, 2{ }. 1 means the peak time period of 7:00–9:00
and 17:00−19:00, and 2 means the of-peak time period
of 9:00–17:00.

Input variable set h � (th1, th2, th3, x1, x2, x3, x4)
T,

namely, the seven data need to predict the arrival time of the
pure electric bus.

Set up training data vector D � (hj, tij). In the formula,
j � 1, 2, 3 . . . .n, n is the number of training samples, and tij is
the service time of a pure electric bus from the station i to j.

3.4. Input Data Processing. Tis paper uses the normalized
function as formula (2):

X
∗

�
xi − 1/K􏽐

K
i�1xi

xmax − xmin
, (8)

where X∗ represents the value after normalization; K rep-
resents the number of groups of training data; xmax rep-
resents the maximum value of training data; xmin represents
the minimum value of training data.

3.5. Selection of Activation Function. Figure 8 shows that the
value ranges of the bipolar S-function and the S-function are
diferent.Teminimum value of the S-shaped function is 0, the
maximum value is 1, and the value range is 0∼1.Teminimum
value of the bipolar S-function is −1, the maximum value is 1,
and the value range is −1∼1. Because the bus travel time cannot
be negative, this paper chooses the S-shape function as the
activation function of the BP neural network.

S-type function:

f(x) �
1

1 + e
− ax . (9)

3.6. Determination of the Number of Model Nodes. Te
number of nodes in the input layer is the number of
infuencing factors, so the number of input layers is 7. In this
model, the operation time of the pure electric bus is the only
output value of the output layer, so the number of nodes in
the output layer is 1. Te number of nodes in the hidden
layer is determined as shown in the following formula:
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P<
������
M + N

√
+ λ, (10)

where P represents the number of nodes in the hidden layer,
M represents the number of nodes in the input layer, N

represents the number of nodes in the output layer, and λ is
a constant between 0 and 10.

Trough repeated training, when the number of
hidden layer nodes is 9, the prediction accuracy of the
model is highest.

4. Example Analysis

4.1. Data Sources. By using the operation data of the Route
321 bus line on the Fuzhou bus transportation dispatching
management platform, the pure electric bus arrival time

prediction model and the algorithm constructed in the
previous article were verifed and analyzed. Te total route
length of the Fuzhou Route 321 bus is 24 km, starting from
the Bus University City Town Terminus and ending at
Yuandonglijing Station. Te specifc bus route is shown in
Figure 9. Te bus route is through Cangshan Wanda Plaza,
Taijiang Pedestrian Street, the provincial skin hospital, and
other large fow of people stations.Tis line is the main route
for students in the university town area to take to the city.
Terefore, it is of great reference signifcance to select the
data of this line for verifcation.

4.2. Training Model. Tis paper collects 100 groups of
sample data, 80 sets are used for model training, and the
other 20 groups are used for verifcation. Before entering the
data, the data must be normalized. Import the processed
data into MATLAB for training. Table 13 shows part of the
training data samples.

MATLAB software is used to write the code of the FA-BP
prediction model. Te important parameters of the model
are set as follows: the population size is set to 50, the iterative
number is set to 50, the global parameter is set to 2, and the
local search capability is also set to 2.

After running the code on MATLAB, a graph of the
ftness curve can be obtained. Figure 10 shows that the
FA-BP model converges rapidly when the number of
training iterations is 0–50. After the number of iterations
reaches 10, the ftness curve changes gently, indicating that
the model has good prediction performance after running
more than 10 times. At about 35 times, the network con-
verges and reaches optimal ftness. Compared with the

Firefly algorithm

Determine code of individual firefly

Take the fitness function of BP neural
network as the objective function

Update the value of firefly fluorescein

Calculate the objective function value

Update decision domain scope

Objective
function value ≤ ε

BP neural network

Build BP neural network

Initialize neural network weights and
thresholds

Get the optimal weight and threshold

Calculate deviation

Update weight and threshold

Predict the operation time of electric
bus

Deviation ≤
Allowable value

N

NY

Y

Update the location of the fireflies

Figure 7: Steps of FA-BP prediction model.
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Figure 8: S-type function and bipolar S-type function.
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traditional neural network model, the FA-BP model has
a faster convergence speed and smaller convergence error.

4.3. Construction Model. Based on selecting the activation
function as an S-type function (formula (9)), the frefy
algorithm is used to optimize the weights and thresholds in

the BP neural network, so that the four input variables of
vehicle type, SOC value, battery age, and time period are
transmitted to the output layer through formulas (2)–(4),
thus building the bus running time prediction model, as
shown in formula (4). Parameters of the FA-BP prediction
model wpm, wnp, θp, θn are shown in Table 14, and the
specifc meanings of the parameters are shown in 3.1.

Bus University City 
Town Terminus

Yuandonglijing
Station 

Figure 9: Route trend of Route 321 bus in Fuzhou.

Table 13: Part of the training data samples.

Serial number t h1 t h2 t h3 x 1 x 2 x 3 x 4

1 10.00 8.33 8.90 1 1 1 1
2 7.17 7.83 7.05 1 1 2 2
3 9.25 10.00 8.35 1 1 3 1
4 8.55 8.33 8.32 1 1 4 2
5 8.28 8.00 7.55 1 1 1 1
6 11.15 10.98 11.28 1 1 2 2
7 9.12 9.25 9.97 1 1 3 1
8 7.57 8.48 7.75 1 1 4 2
9 8.55 9.47 9.60 1 1 1 1
10 10.00 8.33 8.90 1 1 1 1

0 5 10 15 20 25 30 35 40 45 50

3.6

3.8

4

4.2

4.4

4.6

4.8

The number of interations

Fi
tn
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Figure 10: Fitness curve of FA-BP prediction model.
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Yk �
1

1 + exp − 􏽐
P
p�1 wnp 1/1 + exp − 􏽐

M

m�1
wpm 1/1 + exp −xm( 􏼁( 􏼁 + θp􏼠 􏼡􏼠 􏼡 + θn􏼠 􏼡

.
(11)

4.4. Model Verifcation. Using the Kalman flter model, BP
neural network model and FA-BP model to predict 20
groups of normalized sample data. Te comparison and
prediction error between the predicted output value and the
actual value are shown in Figures 11–13, where the pre-
diction error is the predicted travel time of pure electric
buses minus the actual value.

From Figure 11, the maximum prediction error of the
Kalman flter model is −0.4899min, which is −29.4 s, and
the minimum prediction error is −0.0093min, which is
−0.56 s. From Figure 12, the maximum prediction error of
the BP neural network model is −0.0888min, which is
−5.3 s, and the minimum prediction error is −0.0177min,
which is −1.1 s. From Figure 13, the maximum prediction
error of the FA-BP model is −0.0998min, which is −6.0 s,
and the minimum prediction error is 0.0010min, which is
0.01 s. Terefore, it can be preliminarily determined that
among the three prediction models, the FA-BP model has
the highest accuracy in predicting the arrival time of pure
electric buses.

Te root means the square error is also called the
standard error, which can refect the pros and cons of the
overall prediction efect of the model. Te calculation
method is shown in the following formula:

RMSE �

�������������

1
N

􏽘

N

n�1
Tn − Yn( 􏼁

2

􏽶
􏽴

, (12)

where RMSE is the root mean square error; Tn is the actual
value; Yn is the predicted value.

Te larger the RMSE, the greater the error between the
actual value and the predicted value, and the lower the
prediction accuracy of the model. On the contrary, the higher
the prediction accuracy. RMSE of the three models can be
calculated by formula (5). Table 15 shows that the maximum
RMSE of the Kalman flter model is 0.351, indicating that the
Kalman flter model has the lowest prediction accuracy. Te
minimum RMSE of the FA-BP model is 0.04, indicating that
the FA-BP model has the highest prediction accuracy.

Table 14: Parameters of FA-BP prediction model.

Weight and threshold Calibrate the FA-BP optimum parameter

wpm

0.0894 0.2229 0.1295 0.6607 0.4641 0.6481 0.0128 0.4562
0.635 0.234 0.4246 0.5023 0.9522 0.0711 0.5018 0.6429
0.4682 0.5758 0.2624 0.2943 0.175 0.0066 0.4709 0.767
0.0341 0.9833 0.9523 0.2463 0.8854 −1 1 1

wnp 0.7288 0.0325 0.7746 0.0139 0.9755 0.7288 0.0325 0.7746
θp 0.5062 0.0757 0.6871 0.5236 0.4046 0.5062 0.0757 0.6871
θn 0.2378
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Figure 11: Comparison and prediction error between the predicted and actual bus travel time values of the Kalman flter model.
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In terms of running time performance, the running time of
the Kalman flter model, BP neural networkmodel, and FA-BP
model was 12.76 s, 9.14 s, and 139.71 s, respectively. Te run-
ning time of the Kalman flter model and BP neural network
model is very short, but the Kalman flter model needs more
historical data on bus arrival time to ensure the accuracy of the
prediction model. Te FA-BP model takes more time to op-
timize the frefy algorithm, so the total time is longer than the

traditional BP neural network model, but it can improve the
prediction accuracy, so it is suitable for bus arrival prediction
applications that need more accurate prediction accuracy.

5. Discussion

Te accuracy of bus arrival time is related to bus service level
and operation reliability. Tis paper proposes an improved
BP neural network algorithm for pure electric buses. Te BP
neural network is optimized by using the guided moving
strategy and the adaptive step size moving strategy, and the
global search and convergence ability of the BP neural
network are improved, so that the BP neural network has
a better prediction efect on the arrival time of pure
electric buses.
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Figure 12: Comparison and prediction error between the predicted and actual bus travel time values of the BP neural network model.
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Figure 13: Comparison and prediction error between the predicted and actual bus travel time values of the FA-BP prediction model.

Table 15: Comparison of root-mean-square errors.

Algorithm RMSE
Kalman flter model 0.351
BP neural network model 0.059
FA-BP model 0.040
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Taking bus Route 321 in Fuzhou as an example, through
the analysis of infuencing factors on the arrival time of pure
electric buses, the vehicle type, SOC value, battery age, and
time period are selected as input variables. Pure electric bus
operation data are used to train and validate the model, and
compare it with the prediction results of the Kalman flter
and BP neural network. Results show that the RMSE of the
Kalman flter model is 0.351, the RMSE of the BP neural
network model is 0.059, and the RMSE of the FA-BP model
is 0.04, indicating that the model built-in this paper efec-
tively improves the prediction accuracy and has good re-
liability and feasibility.

Data verifcation shows that the model established in this
paper has higher prediction accuracy. Due to the limitation of
research time, research conditions, and writer’s level, there are
still some problems in the paper that need further research and
improvement. FA-BP prediction model ignores the infuence
of road conditions and the environment. However, abnormal
operating environments such as emergencies and road con-
struction will afect the prediction accuracy of bus arrival time.
At present, there are few kinds of research on this aspect. In
addition, the running time of the FA-BP model is longer than
that of the BP neural network model, so it needs to be selected
based on actual application situations. In the future, the study
can summarize the categories of road emergencies, further
study the impact of emergencies on bus travel time, and
consider further optimizing algorithms to reduce the overall
running time of the model.
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