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Most of the current variable speed limit (VSL) strategies are designed to alleviate congestion in relatively short freeway segments
with a single bottleneck. However, in reality, consecutive bottlenecks can occur simultaneously due to the merging fow from
multiple ramps. In such situations, the existing strategies use multiple VSL controllers that operate independently, without
considering the trafc fow interactions and speed limit diferences. In this research, we introduced a multiagent reinforcement
learning-based VSL (MARL-VSL) approach to enhance collaboration among VSL controllers. Te MARL-VSL approach
employed a centralized training with decentralized execution structure to achieve a joint optimal solution for a series of VSL
controllers. Te consecutive bottleneck scenarios were simulated in the modifed cell transmission model to validate the ef-
fectiveness of the proposed strategy. An independent single-agent reinforcement learning-based VSL (ISARL-VSL) and
a feedback-based VSL (feedback-VSL) were also applied for comparison. Time-varying heterogeneous trafc fow stemming from
the mainline and ramps was loaded into the freeway network. Te results demonstrated that the proposed MARL-VSL achieved
superior performance compared to the baseline methods. Te proposed approach reduced the total time spent by the vehicles by
18.01% and 17.07% in static and dynamic trafc scenarios, respectively. Te control actions of the MARL-VSL were more
appropriate in maintaining a smooth freeway trafc fow due to its superior collaboration performance. More specifcally, the
MARL-VSL signifcantly improved the average driving speed and speed homogeneity across the entire freeway.

1. Introduction

Over the past few decades, trafc congestion has increasingly
become a signifcant problem on freeways [1, 2]. Congestion
typically arises in the vicinity of freeway bottlenecks andmay
propagate in both upstream and downstream directions.
With the availability of massive trafc data frommotorways,
intelligent transportation systems can be implemented
practically as trafc control measures to improve the trafc
fow [3–5]. Te variable speed limit (VSL) control has be-
come a valid method for mitigating jams at freeway bot-
tlenecks and enhancing trafc operations [6, 7].

Te previous studies have mainly concentrated on the
VSL control methods for shorter freeway segments that have
a single bottleneck [8–13]. However, in certain scenarios,

multiple bottlenecks may occur due to various reasons, such
as consecutive uncontrolled on-ramps, work zones, or lane
drops. Te previous studies made the assumption that VSL
control operations targeting diferent bottleneck locations
could be independently managed without mutual in-
terference. However, in cases where potential bottlenecks are
closely located, coordinated VSL strategies that consider the
interaction of trafc fow at diferent bottlenecks should be
implemented. By working cooperatively, VSL controllers of
road segments can achieve better harmonization efects.

Numerous VSL control methods have been devised
specifcally to address the issue of multiple bottlenecks
[14–18]. For example, Iordanidou et al. introduced a VSL
control method for multiple bottlenecks, where they utilized
feedback from key bottlenecks to develop a comprehensive
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VSL strategy [14]. Lu et al. proposed a feedback control
algorithm based on the velocity and extended its application
to freeway networks with multiple bottlenecks [15]. Te two
feedback-based strategies showed efciency and robustness
under practical trafc conditions. However, the current
feedback controllers experience time delays between the
occurrence of deviations in controlled variables and the
implementation of corrective measures, thus afecting their
response to continuously changing trafc conditions. To
address these limitations, Yu and Fan proposed an online
optimization approach to address the issue of the co-
ordinated VSL control [16]. Te online optimization ap-
proach facilitated precise modeling-based prediction of
trafc fow changes. A multiobjective nonlinear integer
model was formulated, and a genetic method was developed
to optimize the VSL objective function. However, such
models may not always be available.

Recently, reinforcement learning (RL) approaches have
been explored as potential solutions to overcome the lim-
itations of online optimization and feedback controllers. Te
RL has proven to be an efective solution for addressing the
VSL problem, thanks to its powerful capability in forecasting
trafc evolution and implementing proactive control
strategies [7, 19–25]. Li et al. reported that VSL based on the
Q-learning algorithm yielded superior results compared to
the feedback-based algorithms [21]. Te proposed Q-
learning VSL control strategy demonstrated reductions in
the system travel time of 49.34% and 21.84% under diferent
trafc demand scenarios. Later, in this paper [23], a deep
reinforcement learning (DRL) method was introduced
utilizing an actor-critic architecture to implement lane-
specifc VSL control on multilane freeways. Te results
showed that the proposed control approach signifcantly
enhanced both safety and efciency on the freeway.

Most existing RL-based VSL controllers are primarily
designed for shorter freeway segments, necessitating the
expansion of their control strategies to enable the speed limit
control on longer segments. However, training only one RL
agent to generate the joint actions of all VSL controllers may
lead to a signifcant increase in the number of actions and
states, which can make the RL convergence intractable.
Moreover, training multiple independent single-agent RL
models to generate separate VSL controller values could
result in each agent receiving misleading reward signals due
to unobserved actions taken by their teammates. Tis leads
to a “nonstationary” problem, as each agent’s environment is
only partially observed [26, 27]. To the best of our knowl-
edge, only a few scholars have utilized a multiagent RL for
VSL control. For instance, Kušić et al. proposed a VSL using
the multiagent distributed W-learning method. Each indi-
vidual agent utilized the RL to acquire knowledge of both
local and long-range policies, aiming to understand the
impact of its actions on the neighboring agents [17, 18].
However, this method was severely constrained by the
discretized trafc states and Q-table’s storage limit. Later,
Wang et al. proposed a cooperative VSL control approach
using the distributed Q-learning, in which each agent could
observe others’ actions and improve the collective reward
[28]. However, this algorithm had to assume that each agent

optimistically considered that all other agents would act to
maximize their reward, which often resulted in poor per-
formance in complex or stochastic environments.

In this study, we developed a centralized training ap-
proach with decentralized execution for VSL control in
multiple bottlenecks. It is a model-free actor-critic algorithm
that uses deep neural networks to learn a policy and a value
function [29]. In this strategy, the VSL controllers act as
learning agents to cooperate with each other to achieve their
individual goals. Te centralized critic network helps to
address the nonstationarity in a multiple bottlenecks envi-
ronment caused by the dynamic policy changes of other
agents during training. Tis approach uses a decentralized
execution strategy, where each agent uses its local policy to
adjust the speed limit values in the environment based on its
own observations. Similar structures have been applied in
multiple signal control in urban environments with high-
dimensional and continuous state space [30–32]. However,
unlike signalized control in an urban environment, the ef-
fects of control actions propagate quickly along the driving
direction due to high speeds and volume on the freeway.
Terefore, a careful design of an efective control system and
reward functions is necessary to dampen the trafc fow
instability and potential trafc oscillations.

Te paper is organized as follows: in Section 2, we
formulate the VSL control problem in multiple consecutive
bottlenecks and introduce the proposed MARL-VSL
scheme; in Section 3, we present the simulation model and
experiment setups; in Section 4, the performances of dif-
ferent VSL strategies are compared; in Section 5, we test the
MARL-VSL scheme in diverse capacity drop scenarios; and
in Section 6, we introduce the fnal conclusions and future
directions.

2. Methodology

Tis section describes the use of MARL as an approach to
tackle the issue of cooperation among multiple VSL con-
trollers. Firstly, we introduce the problem of formulating the
VSL control within the context of MARL. Next, we propose
an MARL-VSL scheme for the consecutive bottlenecks
scenario. Finally, we provide an overview of the ISARL-VSL
and feedback-VSL methods to be compared with the pro-
posed scheme.

2.1. RL Formulation. A typical VSL controller for a merge
bottleneck comprises of the following two primary com-
ponents: an upstream segment controlled by VSL and
a downstream acceleration segment [5, 10]. By modifying
the trafc fow entering downstream, the VSL control
mechanism can efectively mitigate or eliminate capacity
drops at the bottleneck. Considering the VSL controller as an
intelligent agent, where each agent corresponds to a specifc
road segment and is responsible for setting a diferent speed
limit for that segment.Te variable speed limit signs are used
to display the speed limit. Te number of intelligent agents
equals the number of road segments, N. Tus, in scenarios
featuring continuous bottlenecks, the optimization problem
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of VSL can be represented as an N-agent interacting Markov
Decision Process (MDP) (see Figure 1). Tis formulation
assumes a set of state, denoted by s � s1, . . . , sN , with one
state assigned to each agent in the environment. Addi-
tionally, it involves a set of actions, denoted by
a � a1, . . . , aN , where each ai represents the possible ac-
tions for the ith agent, and a set of rewards, denoted by
r � r1, . . . , rN , with one reward assigned to each agent.

2.1.1. Action. Te MARL-VSL and ISARL-VSL control
strategies employ VSL to regulate the trafc fow through
adjustments of the posted speed limit within the controlled
area. Hence, the speed limit is regarded as the action in this
context. In practical applications, VSL signs permit the
display of only specifc speed limit values. Terefore, this
study focuses on speed limit values within the action set that
are integer multiples of 5mph.Te action set includes speeds
of {5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, and 65}mph.

2.1.2. State. At time t, the ith agent can observe the state si of
the corresponding freeway segment. Te trafc data ob-
tained from road measurements can refect the trafc fow
state. In this research study, the state of each agent consisted
of six components (di

up, di
ramp, ki

down, ki
up, ki

ramp, and SLi
t).

Five trafc measurements were collected for the ith agent to
represent the following variables: di

up represents the trafc
demand on the mainline, di

ramp represents the trafc de-
mand on the ramp, ki

down and ki
up represent the density of

diferent sections of the freeway mainline, and ki
ramp rep-

resents the density on the ramp (see Figure 1). Additionally,
the ith agent’s action SLi

t at the last time step t was included
to prevent signifcant changes in speed limits between the
consecutive time steps.

2.1.3. Reward. Given the intricate spatiotemporal structure
of trafc data, it is necessary to decompose the rewards in
space and ensure their measurability after the actions are
taken. Controlling bottleneck density has been a primary
target in various VSL strategies [33–36]. Consistent with
prior research, the reward in this research is determined
based on the density measured at bottlenecks [19, 21]. As the
density approaches the critical density value, the reward
increases.Temaximum reward is attained when the density
matches its critical value (refer to Figure 2). Te ith agent’s
reward ri is calculated as follows:

ri �
c∗di, if di < dc,

c∗dc − c∗ di − dc( , if di ≥ dc,
 (1)

where di denoted the downstream density (veh/mile/lane),
dc denoted the critical density (26.75 veh/mile/lane), and the
parameter c was set as 0.02. To motivate the agents to rapidly
approach the critical density, an additional reward of 0.6 was
introduced for values in close proximity to the critical

density, specifcally, 25.5≤ di ≤ 28. Conversely, −0.6 is ap-
plied to the reward value for severe congestion states with
di ≥ 50. To ensure safety, it is important to minimize abrupt
changes in the speed limits between consecutive time steps,
and −0.1 is applied to the reward value when the diference in
speed limits exceeds 10mph. Tese parameters were me-
ticulously determined through multiple simulation rounds.

2.2. MARL-VSL Strategy. In a cooperative multiagent RL
task, multiple agents interact with the environment and with
each other. When N independent agents are used to control
N VSL signs, the agents may receive misleading reward
signals due to the unobserved actions of their teammates,
resulting in nonstationary issues [26].

To address this challenge, several MARL algorithms have
been developed, with the multiagent deep deterministic
policy gradient (MADDPG) method being the most widely
used [29, 37]. Te MADDPG algorithm uses a structure of
centralized training with decentralized execution. Each
agent is constructed using an actor-critic architecture. Te
actor network generates the policy and provides corre-
sponding speed limits according to the real-time trafc state.
Te critic network evaluates the policy of the agent
according to the state values and actions of all agents, i.e.,
real-time trafc fow states and speed limits for all road
sections. During the execution phase, following the com-
pletion of training, only local actors are utilized to operate in
a decentralized fashion, which is well-suited for cooperative
environments. If the actions of other agents are already
known, the environment becomes stationary and its tran-
sitions become stable. Here, distributed actors generate each
control action separately, while a central critic can make
accurate evaluations and predictions for all agents’ state
transitions and reward values. Te authentic assessment of
the reward signal makes joint optimization feasible, which
inspires us to utilize the MADDPG algorithm for VSL
controls in the consecutive bottlenecks on the freeway (see
Figure 1).

Specifcally, the MADDPG algorithm starts with setting
up an experience replay buferD for each agent i. Te replay
bufer D contains the control experiences of all agents,
denoted as (s1, s2, . . . , sN, SL1, SL2, . . . , SLN, r1, r2, . . . , rN).
Given the states series and the actions series, we can obtain
a relatively deterministic reward series r1, r2, . . . , rN  and
the subsequent observations s′. Terefore, MADDPG can
guide policy learning by constructing an efective critic
network for reward estimation, making it suitable for co-
operative multiagent control tasks, such as multiple VSL
control.

Agents interact with environments and store the control
experiences in replay buferD for neural network updating.
Let μθ � μθ1, . . . , μθN

  represent the RL policy for all agents
with parameter θ � θ1, . . . , θN . In order to update the actor
network, the gradient of each agent’s expected reward is
calculated in equation (2) according to [29].
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∇θi
J μθi
  � Es,a∼D ∇θi

μθi
ai

si  × ∇ai
Q

μ
i s1, s2, . . . , sN, SL1, SL2, . . . , SLN( 

ai�μθi
si( )

 , (2)

where Q
μ
i (s1, s2, . . . , sN, SL1, SL2, . . . , SLN) is the centralized

Q function with the inputs of all the agents’ actions and the
observations.

Te critic network is updated by minimizing the loss
according to the temporal diference (TD) error as follows:

L θi(  � Es,s′ ,a,r Q
μ
i s1, s2, . . . , sN, SL1, SL2, . . . , SLN(  − y( 

2
 ,

y � ri + cQi
μ′

s1′, s2′, . . . , sN
′ , SL1′ , SL2′ , . . . , SLN

′( 
ai
′�μ′ si
′( ),

(3)

where ai
′ is the action of the ith agent at the next time step, c is

the discount factor, and μ′ represents the set of target
policies.

Within the framework of centralizedQ function learning
and decentralized policy execution, N agents can co-
operatively learn the optimal policy. After sufcient training,
the neural networks will converge, enabling each agent to
generate the optimal VSL actions with the maximal Q value
(see Figure 3). In our experiment, we employed four agents
to generate four VSL control actions, denoted as
SL1, SL2, SL3, SL4 , on a freeway with four bottlenecks.
Upon executing the actions, we acquire a reward series
r1, r2, r3, r4  and new states s1′, s2′, s3′, s4′ .

2.3.VSLBaselines. TeMARL-VSL proposed in this paper is
based on a density measurement. To ensure that the ex-
perimental results are fair and unbiased, any alternative VSL
control strategies should also be based on the density
measurement.

2.3.1. ISARL-VSL Strategy. Tis study used the ISARL-VSL
strategy as a baseline for comparison because of its simple
structure.Tis strategy employed a deep deterministic policy
gradient (DDPG) algorithm [38], and each agent learned an
optimal function independently. Multiple agents operated
independently in parallel, with each agent attempting to
maximize its own reward without any communication or
coordination between them. In this case, each agent learned
from its own experiences and independently updated its
policy or value function to optimize its own reward. Similar
to the MARL-VSL approach, the ISARL-VSL agent per-
ceived a one-dimensional vector with six components (di

up,
di

ramp, ki
down, ki

up, ki
ramp, and SLi

t), took actions to control
the mainline speed, received rewards measured from loop
detectors, and updated the network. Notably, the state,
actions, and reward settings utilized in the ISARL-VSL
strategy were consistent with those of the MARL-VSL
algorithm.

2.3.2. Feedback-VSL Strategy. A commonly used VSL
strategy in practical engineering is the Feedback-VSL
strategy, which shows efciency and robustness under

practical trafc conditions. In the current research studies,
the density measurement-based feedback-VSL strategy is
implemented locally and lacks cooperative capabilities.
Terefore, in scenarios involving multiple bottlenecks, we
adopted the typical multiple independent local feedback VSL
controllers as a baseline for comparison [33].

Te feedback VSL controller was described by the fol-
lowing equation:

s(k) � s(k − 1) + KIef(k),

f(k) � f(k − 1) + KP
′ + KI
′( eρ(k) − KP

′eρ(k − 1),
(4)

where KI, KP
′ , and KI

′ are the controller parameters, ef(k)

represents control error of the fow, eρ(k) represents control
error of the density, s(k) represents the speed limit rate
calculated by dividing the speed limit value by the free-fow
velocity, and f(k) represents the adjusted outfow.

Te simulation and modeling testing employed the
following parameters: KI = 0.0007mile·lane/veh, KI

′= 5.0
mile·lane/hour, and KP

′= 50.0mile·lane/hour. Te speed
limit was rounded to the nearest 5mph. More details can be
found in reference [33].

3. Simulation Design

3.1. Development of Simulation Platform. A macroscopic
simulation platform was developed in this research, utilizing
the cell transmission model (CTM). Our research primarily
examined the macroscopic characteristics of freeways
without delving into the microscopic driving behaviors of
individual vehicles [39–41]. Additionally, our experiments
involved extensive iterative computations, and decisions
regarding VSL control were made using the loop detector
data. Te computational cost of the microscopic simulation
platform is much higher compared to that of CTM.
Terefore, CTM is deemed more suitable for our research
purposes.

In CTM, a road is depicted as a sequence of contiguous
cells. Every cell corresponds to the distance covered by
a vehicle traveling at 65 mph within a single time step. A
fundamental diagram is utilized to approximate the trafc
conditions in each cell. Te initial parameters of CTM have
been fne-tuned to accurately simulate the efects of capacity
drops and VSL strategies.
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Te fundamental diagram utilized in this research is
illustrated in Figure 4(a). Te left side represents the outfow
rate σi(k) of the cell i, and the right side represents the infow
rate δi(k) of the cell i. Te expressions for the outfow rate
and infow rate are given by the following equations:

σi(k) � min min VSL(k), VF  · di(k) · ni, QVSL ,

δi(k) � min wi · di,jam − di(k)  · ni, QVSL ,
(5)

where k represents the time step, di(k) represents the vehicle
density, ni represents the number of freeway lanes, QVSL
represents the maximum outfow under the VSL control, wi

represents the kinematic wave speed, VSL represents the
values of the VSL control, VF represents the free-fow speed,
and di,jam represents the congestion density.

Te phenomenon of capacity drop occurs when con-
gestion happens [2, 42]. A reversed lambda-shaped funda-
mental diagram was used to describe the variation in the
bottleneck cell fow (refer to Figure 4(b)).Te outfow rate of
the bottleneck cell with a capacity drop is defned by the
following equation:

σi(k) �
VF · di(k) · ni, if di(k)≤dC,

QD, if di(k)>dC,
 (6)

where QC � VF · dC · ni represents the bottleneck capacity
before the capacity drop (veh/hour), QD represents the
maximum discharge fow after the capacity drop (veh/hour),
and dC represents the critical density.

3.2. Experiment Setup. Tis study focused on a 4.2-mile
segment of freeway, which comprises four merging on-
ramps (see Figure 5). Te segment was divided into four
regulated sections, and the speed limit for each section
was determined by a controller. Tere were four con-
trollers in total. Te study solely considered eastbound
trafc, with the four single-lane on-ramps positioned at

intervals of 0.7, 1.7, 2.7, and 3.7 miles from the beginning
of the segment. Te mainline featured four lanes, and the
segment was divided into 42 cells, each with a length of
0.1 mile. Te MARL-VSL and ISARL-VSL strategies were
integrated with the CTM, and the speed limit was de-
termined at each control period by the agents. Ten, the
trafc data from the simulated measurements were sent to
the agents for training and decision-making. After un-
dergoing the training process, the MARL-VSL strategy
was implemented in online control scenarios. Two distinct
trafc demand scenarios were employed for evaluation
purposes, namely, a static trafc scenario and a dynamic
trafc scenario. We primarily evaluated simulation results
based on the following metrics: trafc fow operations
(including volume, density, and speed) and total time
spent (TTS).

Te training quality directly afected the performance of
the algorithm. During training, the MARL-VSL and
ISARL-VSL strategies interact with the modifed CTM. Te
training process is divided into distinct episodes [43]. Each
episode comprises 122 control cycles. Diferent cycle lengths
ranging from 30 seconds to 10minutes were tested, revealing
a higher likelihood of convergence for the MARL-VSL and
ISARL-VSL control policies when the control cycle was set
to 30 seconds. A dynamic trafc scenario was used to ensure
that the agents could gain sufcient experience under dif-
ferent trafc conditions. Te entire training process lasted
approximately 326minutes, and after the training, the time
to compute the optimal VSL at a time step was less than
0.03 seconds.

Te parameters were carefully determined in our re-
search based on the preliminary testing and recommenda-
tions from previous studies [21, 29, 44–47]. Te parameters
are shown in Table 1. Te discount factor is a parameter that
specifes the relative weight assigned to current and past
rewards in a reinforcement learning context. Te learning
rate parameter regulates the speed at which Q-values are
updated in the learning process. Te batch size determines

Multiagent reinforcement learning VSL simulation platform

Perceive the traffic flow states
of each road section

Obtain the set of speed limit actions
output by each actor network

Evaluate the reward values
for each road section

Store experiences of all agents
in replay buffer

Update the actor and critic
networks for each agent

Each VSL controller obtains the
optimal speed limit actions

Post the speed limit in upstream
controlled sections

Previous traffic flow states transfer
into a new state

Evaluate effectiveness of the
training process

Implement the strategy in online
control scenarios

Figure 3: Flowchart of the MARL-VSL strategy.
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the number of state-action pairs used to update the neural
network parameters in each iteration of the learning process.

To evaluate the efectiveness of the training, we plotted
the reward and the TTS curves. Te reduction of freeway
congestion can lead to a signifcant decrease in TTS [48].

In a freeway system, trafc variables are discretely
represented with a time index, k, and a time interval, η. Te
TTS within the time range K can be calculated according to
the following equation [48]:

TTS � η 
K

k�1
N(k), (7)

where N(k) is the total number of vehicles in the freeway
system at time k. Te total reward received by all agents at
each episode is shown in Figure 6(a), while the rewards
received by each individual agent at each episode are shown
in Figures 6(b) and 6(c). After the fuctuation in the frst
2,860 episodes, the total reward of MARL agents increased
signifcantly and reached a maximum around the 3,592nd
episode, refecting that the MARL agents learned an optimal
policy to maximize the reward through appropriate training.
We estimated the performance of the MARL-VSL con-
trollers by analyzing the TTS of each episode (see
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dC dVSL djam

w

QC

QVSL

(a)

Capacity
drop

Density
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dC djam
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Figure 4: (a) Te fundamental diagram of the CTM. (b) Te fundamental diagram depicting capacity drop.

Bottleneck 1 Bottleneck 2 Bottleneck 3 Bottleneck 4

Controller 1 Controller 2 Controller 3 Controller 4

60 50 55 50

Bottleneck area

60 VMS (mph)

VSL control area

Figure 5: A freeway stretch with consecutive bottlenecks.

Table 1: Parameter values of the experiment.

Parameters Value
Free-fow speed 65mph
Critical density 26.75 veh/mile/lane
Capacity of the freeway mainline 1750 veh/hour/lane
Magnitude of the capacity drop 7.6%
Cycle of VSL control 30 s
Discount factor 0.95
Size of the replay bufer 1000000
Batch size 1024
Learning rate 0.001
Frequency of updating network 1 time/2 episodes
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Figure 6(d)). Te TTS was relatively high in the frst 2,860
episodes and decreased signifcantly later, indicating the
efectiveness of the MARL-VSL strategy. However, the
ISARL-VSL did not converge during training, and its total
reward was substantially lower than that of MARL. Fur-
thermore, the TTS of the ISARL-VSL was signifcantly
higher than that of the MARL-VSL, indicating that the
ISARL-VSL was unable to obtain the global optimum.

4. Evaluation of VSL Strategies

After the training process described in the previous
section, the learned MARL-VSL strategy was evaluated in
two diferent trafc demand scenarios, namely, a static
trafc scenario (see Figures 7(a) and 7(c)–7(f )) and
a dynamic trafc scenario (Figures 7(b) and 7(g)–7(j)).
Te static trafc scenario had a duration of 1 hour, with
a 15-minute warm-up period. Te purpose of this sce-
nario was to confrm the stability of the VSL control
method when operating in diferent trafc regimes,
particularly in cases where trafc remains stable with low
deviations in demand. In the dynamic scenario, trafc
demand on both the mainline and ramp underwent

signifcant variations over time. As with the training
process, the simulation duration for both scenarios was
set to be 1 hour, and the VSL control cycle was set to be
30 seconds.

4.1. Efect of VSL Strategies on Trafc Operation. Te
mainline trafc fow operations were refected in the evo-
lution of trafc density (see Figure 8). For comparison, we
also considered three base cases as follows: feedback-VSL,
ISARL-VSL, and no control (No-VSL). In the static trafc
scenario, obvious congestion occurred at the bottleneck
areas 1 and 3.TeMARL-VSL strategy held vehicles near the
VSL control zone, ensuring that the density near the
downstream bottleneck approached the critical density
(approximately 26.75 veh/mile/lane) to optimize the out-
fow. With the implementation of ISARL-VSL, the con-
gestion at bottleneck area 1 was alleviated, but a congestion
problem emerged in bottleneck area 2.Tis was attributed to
an inadequate control action taken by Controller 2.

In the dynamic trafc scenario, the MARL-VSL ap-
proach still achieved a good control efect. Implementa-
tion of ISARL-VSL helped to ease the congestion in
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bottleneck areas 1 and 2, although its efcacy in bottleneck
area 3 was suboptimal. Te feedback-VSL strategy par-
tially alleviated congestion, but it also led to the occur-
rence of high-density sections. It is noteworthy that, while
Feedback Controller 3 was able to alleviate congestion in
bottleneck area 3, a new congestion wave emerged in the
speed-limited zone 3 and propagated upstream, ultimately
increasing the density of bottleneck area 2 (see the black
box in Figure 8(d)). Tis was attributed to the feedback
controller’s failure to incorporate information from other
upstream controllers when generating control actions.

Overall, under the control of the MARL-VSL, the
congestion of the entire road network had been eliminated.
Te ISARL-VSL and feedback-VSL methods were able to
learn efective strategies to some degree, but many vehicles
remained trapped in high-density regions (over 50 veh/mile/
lane), accompanied by trafc oscillations propagating along
the freeway. Te diferences in control efectiveness arose
from MARL-VSL’s ability to learn precise actions and
collaborate to mitigate congestion efects between multiple
bottlenecks.

To explore the fuctuations in trafc fow characteristics
at four freeway bottlenecks, we presented the changes in
three primary elements, infuenced by the diferent VSL
strategies (see Figures 9 and 10).

Te previous analysis demonstrated that the lack of VSL
implementation led to reduced speed and increased density
in bottleneck areas caused by trafc congestion. Capacity
reduction occurred shortly after congestion onset and
persisted consistently throughout the entire duration. In the
static trafc scenario, both the feedback-VSL and the
ISARL-VSL attempted to mitigate the efects of trafc
congestion but still led to a noticeable capacity drop (see the
yellow boxes in Figure 9). On the contrary, there were only
slight speed fuctuations with the MARL-VSL in four bot-
tlenecks. Moreover, average speeds at all bottlenecks
remained consistently above 50mph, indicating smoother
driving behaviors with reduced unnecessary acceleration
and deceleration and resulting in fewer trafc oscillations.
Consequently, our proposed strategy led to more stable
density and fow curves.

It can be observed that the dynamic trafc scenario
resulted in greater speed fuctuations (see Figure 10).
Nevertheless, the MARL-VSL strategy was able to maintain
relatively high speeds (above 40mph). In the dynamic trafc
scenario, our proposed strategy was able to swiftly facilitate
trafc recovery to a low-density state. However, the other
control strategies exhibited signifcant fuctuations in fow
curves, revealing the presence of interference between
bottlenecks.
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In both trafc scenarios, our proposed MARL-VSL
strategy resulted in signifcantly higher average speeds than
other control strategies, while also exhibiting smaller
standard deviation of speeds (see Table 2). Especially under
dynamic trafc demand, the efect of the MARL-VSL was
obviously better than that of the other two control strategies.
Specifcally, the MARL-VSL reduced the speed standard
deviation by 45.03%, whereas the other two control strat-
egies only reduced it by 22.85% (ISARL-VSL) and 17.03%
(feedback-VSL). Possibly due to the lack of coordination
among controllers, the congestion waves formed by diferent
bottlenecks would propagate upstream and exacerbate trafc
fow disturbances. Te results demonstrated that the
MARL-VSL could efectively improve the average driving
speed and the speed homogeneity of the entire freeway,
thereby improving trafc efciency.

4.2. Efect of VSL Strategies on TTS. In this section, we
calculated vehicles’ TTS on the freeway with diferent VSL
strategies. Te simulations were subjected to a repetition of
ten trials, and subsequently, the outcomes were subjected to
a process of averaging prior to their presentation (see Fig-
ures 11(a) and 11(b)). In the static trafc scenario, the TTS
value was the same for all cases in the initial stage when
trafc congestion had not formed. After 0.3 hour, four
curves diverged. Te cases with no control reached the
largest TTS (over 4 veh·hour) at around 0.7 hour. Te
feedback-VSL and the ISARL-VSL reduced TTS from
0.4 hour to 0.8 hour. However, the TTS value with the two
control strategies was always larger than our proposed
strategy over the simulation period. Hence, the MARL-VSL
outperformed the existing methods, consistent with the
previous results obtained by analyzing the trafc density
evolution (see Figures 8–10). Te same results were shown
for the dynamic trafc scenario (see Figure 11(b)). We
noticed that the feedback-VSL control presented a higher
TTS value than the No-VSL around 0.3 hour. Te reason
might be that the feedback-VSL generated incompatible
speed limit values, resulting in worse trafc operations.

We calculated the statistical results of TTS (see Table 3).
As anticipated, the MARL-VSL strategy yielded the lowest
TTS value (235.19 veh·hour) in the static trafc scenario,
resulting in an 18.01% reduction in TTS. In comparison, the
feedback-VSL and ISARL-VSL strategies reduced the TTS by
8.02% and 13.82%, respectively. In the dynamic trafc
scenario, the MARL-VSL strategy achieved a 17.07% re-
duction in TTS, while the feedback-VSL and ISARL-VSL
strategies reduced TTS by 6.08% and 8.30%, respectively. It
is noteworthy that the MARL-VSL strategy demonstrated
a signifcant reduction in TTS compared to the other VSL
strategies in the dynamic trafc scenario. Hence, our pro-
posed control strategy was more efective in a more complex
fow-demand scenario. Tis was because the trafc fow
interference phenomenon between diferent bottlenecks was
more evident in a complex environment. However, our
proposed strategy could consider the trafc fow information
of the entire road section and take cooperative control ac-
tions, which further reduced the interference efect of
trafc fow.

4.3. Discussion on Diferences between VSL Actions. To ex-
plore the reasons why the MARL-VSL outperformed the
other two compared strategies, the speed limits generated by
diferent strategies were plotted (see Figures 12 and 13). Te
ISARL-VSL and feedback-VSL strategies were used for
comparison.When congestion was forming, the MARL-VSL
reduced the speed limits quickly to diferent extents at
diferent bottlenecks to prevent capacity drops. It tried to
keep the speed limit values at a fxed value with less fuc-
tuation to provide stable speed limit signals for drivers.

In the static trafc scenario, looking at the red ofsets in
Figure 12, it was evident that theMARL-VSL strategy started
to reduce the speed limit by 30mph at 0.3 hour for Con-
troller 1, Controller 2, and Controller 3. Subsequently, the
three controllers maintained a stable speed limit. However,
controllers of the other VSL strategies did not cooperate
well, leading to speed limit fuctuations (see red boxes in
Figure 12).

In the dynamic trafc scenario, the MARL-VSL strategy
again demonstrated efective coordination among control-
lers. Specifcally, Controller 1 reduced the speed to 35mph at
the 5th minute, Controller 2 reduced the speed to 25mph at
the 7th minute, and Controller 3 reduced the speed to
25mph at the 11th minute (see the red ofsets in Figure 13).
Te MARL-VSL strategy enabled the controllers to limit the
speed synchronously, making trafc speed evolution
smoother. Conversely, other control strategies experienced
difculties in fnding a suitable control action for Controller
3, resulting in a suboptimal control efect on the road (see
red boxes in Figure 13). Te MARL-VSL strategy showcased
strong coordination, as each controller considered the speed
limit values of other controllers when taking actions.
Overall, well-trained MARL-VSL controllers cooperated
efectively in generating optimal VSL values for mainline
trafc.

5. Testing of MARL-VSL Strategy in Diverse
Capacity Drop Scenarios

Te extent of capacity drop at merged bottlenecks can vary
across diferent time periods or dates [2]. A greater degree of
capacity drop results in higher vehicle densities and lower
discharge fow rates. Terefore, evaluating the efectiveness
of the MARL-VSL control approach under various capacity
drop scenarios is valuable. In our research, we set the ca-
pacity drop levels at 5%, 10%, 12.5%, and 15%, respectively
(refer to Table 4). Te fundamental diagram in the CTMwas
adjusted based on the studies of the authors mentioned in
references [8, 49].

According to the fndings presented in Table 4, the
MARL-VSL strategy demonstrated TTS values in diferent
trafc scenarios. In the static trafc scenario, TTS values of
the MARL-VSL approach ranged from 235.57 to
237.25 veh·hour when the capacity drops were set at 5%,
10%, and 12.5%. However, a noticeable increase in TTS was
observed with a larger capacity drop of 15%, reaching
261.17 veh·hour. Similarly, in the dynamic trafc scenario,
TTS values of the MARL-VSL approach remained relatively
stable within a range of 264.42 to 267.74 veh·hour as the
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Figure 10: Trafc operations at bottlenecks 1–4 in the dynamic trafc scenario. (a–c) Bottleneck 1, (d–f) bottleneck 2, (g–i) bottleneck 3, and
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Table 2: Average speed and the speed standard deviation with diferent control strategies.

Scenario Control strategy Average speed
(mile/hour) Improvement (%) Speed standard

deviation (mile/hour) Reduction (%)

Static trafc scenario

No-VSL control 51.77 None 8.70 None
Feedback 57.31 +10.70 6.44 −25.97
ISARL 57.95 +11.93 5.97 −31.37

MARL (ours) 59.71 +15.33 5.49 −3 .89

Dynamic trafc scenario

No-VSL control 50.43 None 11.86 None
Feedback 54.31 +7.69 9.84 −17.03
ISARL 55.11 +9.28 9.15 −22.85

MARL (ours) 59.31 +17. 1  .52 −45.03
Te bold numbers represent the results of our proposed MARL algorithm. Te bold formatting is solely for emphasis.
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Figure 11: (a) Total time spent with diferent control conditions in the static trafc scenario; (b) total time spent with diferent control
conditions in the dynamic trafc scenario.

Table 3: Total time spent with diferent control strategies.

Scenario Control strategy Total
time spent (veh·hour) Reduction (%)

Static trafc scenario

No-VSL control 286.89 None
Feedback 263.87 −8.02
ISARL 247.23 −13.82

MARL (ours) 235.19 −18.01

Dynamic trafc scenario

No-VSL control 319.97 None
Feedback 300.50 −6.08
ISARL 293.39 −8.30

MARL (ours) 2 5.33 −17.07
Te bold text and numbers represent the results of our proposed MARL algorithm. Te bold formatting is solely for emphasis.
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Figure 12: Comparison of speed limit with diferent VSL approaches in the static trafc scenario. (a–c) Bottleneck 1, (d–f) bottleneck 2,
(g–i) bottleneck 3, and (j–l) bottleneck 4.
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Figure 13: Comparison of speed limit with diferent VSL approaches in the dynamic trafc scenario. (a–c) Bottleneck 1, (d–f) bottleneck 2,
(g–i) bottleneck 3, and (j–l) bottleneck 4.

Table 4: Total time spent in diverse capacity drop scenarios.

Scenario Capacity drop (%) TTS of No-VSL (veh·hour) TTS of MARL (veh·hour)

Static trafc scenario

5.0 275.93 236.38
10.0 311.78 237.25
12.5 337.08 235.57
15 362.34 261.17
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capacity drop varied from 5.00% to 12.50%. Notably, a sig-
nifcant increase in TTS was observed with a capacity drop of
15%, reaching a value of 314.49 veh·hour. Tese results in-
dicate that the MARL-VSL approach can yield satisfactory
performance in most capacity drop scenarios, both in static
and dynamic trafc conditions.

6. Conclusions and Recommendations

Tis study proposed the MARL-VSL approach to reduce the
total time spent in scenarios with multiple consecutive bot-
tlenecks. Specifcally, the proposed strategy employed a cen-
tralized training with a decentralized execution structure to
achieve a joint optimal solution for a series of VSL controllers.
Te MARL-VSL was trained in a predetermined dynamic
trafc scenario. Two typical testing scenarios, namely, static
and dynamic trafc scenarios, were utilized to evaluate the
proposed method. We assessed the efectiveness of both
ISARL-VSL and feedback-VSL control strategies for the
comparative analysis. Te speed limit values of each controller
were analyzed, and trafc fow, density, and speed at the four
bottlenecks were compared under diferent control strategies.

Te simulation results provide evidence for the efective-
ness of the proposed strategies in alleviating congestion at
consecutive bottlenecks.TeMARL-VSL strategy produced an
18.01% decrease in TTS in the static trafc scenario, surpassing
the 8.02% and 13.82% reductions achieved by the feedback-
VSL and ISARL-VSL strategies, respectively. In the dynamic
trafc scenario, the MARL-VSL strategy demonstrated supe-
rior performance by achieving a reduction of 17.07% in TTS, as
opposed to the 6.08% and 8.30% reductions observed in the
feedback-VSL and ISARL-VSL strategies, respectively. Notably,
the MARL-VSL strategy signifcantly outperformed other
approaches in reducing TTS in the dynamic trafc scenario.
Tis was attributed to the more pronounced trafc fow in-
terference phenomenon between diferent bottlenecks in
complex environments. However, our proposed strategy
considered trafc fow information for the entire road section
and employed a precise and coordinated control scheme that
further reduced the interference efect of trafc fow. Addi-
tionally, the results showed that the MARL-VSL signifcantly
improved the average driving speed and speed homogeneity of
the entire freeway, thereby improving trafc efciency. Fur-
thermore, compared to other baseline methods, the control
actions of the MARL-VSL were more appropriate in main-
taining a smooth freeway trafc fow. Te fndings suggested
that the MARL-VSL could efectively improve collaboration
among the VSL controllers by considering each other’s speed
limit values when taking actions. Te MARL-VSL also
exhibited a degree of robustness by producing satisfactory
outcomes under various capacity drop scenarios.

To advance the current research, future studies could
explore various topics. At present, we only study the co-
operative VSL control under the consecutive bottleneck
scenarios due to merging fow from multiple on-ramps. Te
VSL control strategies in scenarios with numerous bottle-
necks caused by curvature sections and trafc incidents are
ongoing. Our research has mainly focused on the efciency
efect of the MARL-VSL in a multibottleneck control system.
However, the safety impact of diferent control methods
remains an important research area that requires further
investigation. In addition, although our proposed
MARL-VSL approach has demonstrated its efectiveness in
improving trafc operation in consecutive bottleneck sce-
narios, more sophisticated multiagent reinforcement
learning algorithms, such as Multi-Agent Variational Ex-
ploration (MAVEN) [50] and QTRAN [51], a factorization
method for MARL, should undergo further testing.
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