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Transit-oriented development is described as a geographic unit with multicircle structures. Most studies have analysed the impact
of the built environment within station catchment areas on metro passenger fows from a macro perspective and have lacked
analysis of the circle heterogeneity. Few relevant studies have independently investigated the impact of the built environment on
the passenger fow in each circle and indeed neglected the systematic interaction between inner circles and circles in the TOD area.
In this study, the 800m bufer from the station was equally divided into four circles. Based on the gravity model, the representative
built environment features around the metro stations on both sides were extracted using the block attention module (BAM).
Subsequently, Shapley Additive exPlanation (SHAP) was used to explore the infuence of diferent built environment variables on
passenger fow at each circle between the origin and destination stations. Te results indicate the following: (1) the station-to-
station passenger fow is signifcantly afected by the availability of transfers and the distance between the origin and destination
stations; (2) the impact of diferent built environments on ridership signifcantly varies within diferent circles; and (3) the built
environment has a similar impact on average daily passenger fow on both sides. Terefore, this study proposes strategies to
optimize the metro passenger fow by developing diferent land use in diferent circles and updating the urban spatial structure.

1. Introduction

Te metro system has been prioritized in China to address
the problems of trafc congestion and environmental pol-
lution owing to automobile-based transportation. Between
2015 and 2021, the number of cities with metros in China
increased from 26 to 49, and the total length of the network
exceeded 9000 km. Despite the impact of the antiepidemic
policy, the average daily trafc intensity still reached 4800
persons/km. Meanwhile, transit-oriented development
(TOD), which integrates the metro system and land use
development, was applied in many cities. Many studies in
this area focused on the relationship between the built
environment and metro ridership at the station or station-
to-station levels [1–3].

Since its inception, the TOD catchment area has been
considered as a geographical unit with amulticircle structure
to enhance the use of public transport [4]. Te previous
literature has highlighted the signifcant important roles of
density, diversity, and nonmotorized friendly design on
metro ridership [5, 6]. However, one critical question that
has surfaced is how the land use layout within the catchment
area afects ridership. Exploring the impact of diferent land
use in diferent circles on ridership is key to addressing the
question. Furthermore, while some studies about the de-
lineation of TOD catchment area have involved exploring
the circle heterogeneity of the built environment’s infuence
on passenger fows, there are two gaps. On the one hand, the
studies generally developed multiple models to explore the
impact of the built environment of diferent circles on
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passenger fow, respectively, ignoring the results of the
mutual infuence between diferent circles in the TOD area
as an independent geographical unit. On the other hand, due
to the black box nature of deep learning models, most of the
studies have had to abandon their predictive power and
revert to traditional statistical or machine learning models,
which ofer better explanatory capabilities but poorer pre-
dictive performance.

Against this background, this study aims to investigate
the circle heterogeneity of the impact of diferent land use
types on station-to-station passenger fow, considering the
built environment factors of the station catchment area. To
achieve this aim, the convolutional block attention module
model was selected due to its requirement for less sample
data while ensuring prediction accuracy [7]. Tis type of
attention mechanism was improved to extract the combined
characteristics of the originating and destination stations,
respectively, and modelled the average weekday metro
passenger fow within the framework of a gravity model.
Shapley Additive exPlanation (SHAP) was used to interpret
the model results.

Te main contributions of this study include the fol-
lowing aspects. First, this study strengthens the analysis of
the impact of built environment factors on ridership at the
station-to-station level and provides limited experience for
deep learning models to analyze and interpret rather than
just accurately predict travel behavior. Second, in view of the
TOD multicircle structure, the circle heterogeneity of the
impact of the built environment on ridership is studied to
provide more feasible suggestions for planners. Te re-
mainder of this paper is organized as follows. Te next
section reviews the relevant literature. Section 3 presents an
overview of the study area and data collection. Te
framework of the model is shown in Section 4. Section 5
presents and discusses the results. Finally, Section 6 provides
themajor conclusions and proposes potential applications of
the study.

2. Literature Review

In the last three decades, TOD has become a focus in the feld
of urban planning and transportation [8, 9]. A better un-
derstanding of the impacts of station-area built environment
factors on transit ridership can improve transit performance
and inform land use within station catchment planning.

In terms of land use, almost all the existing studies have
highlighted the infuence of population [6, 10–12] and
employment densities [11, 13, 14] on ridership. Te fndings
on the relationship between the diversity and metro rider-
ship are not consistent. Te entropy index, a measure of
diversity, positively infuences metro ridership [15, 16]. By
contrast, Cervero [17] found that the land use mix has no
evident impact on metro passenger fow. Several TOD-
related studies also focused on land use variables. Many
scholars investigated the efects of the diference in land use
or the diferent types of POIs onmetro ridership [11, 18–24].
For example, An et al. [25] suggested that the commercial
building is the most critical factor for the metro ridership
prediction and the efect of residential factors was

inconclusive. Li et al. [26] concluded that only common
residences efectively improve metro ridership and sug-
gested that the residential and scenic spots have nontrivial
efects on ridership.

In terms of transit service, variables such as road density,
intersection density, number of bus stops (or lines), terminal
station, and transfer station that are associated with rider-
ship were explored. Some studies highlighted the infuence
of intersection density on ridership [13, 26]. However, the
negative efect of intersection density was reported in an-
other study [25, 27]. Some previous studies also concluded
that the number of bus stops around the metro station could
infuence the metro passenger fow because the bus is one of
the primary egress and access modes to metro stations
[28–30]. E. Chen et al. [31] concluded that the efects of the
built environment around the terminal or adjacent stations
are more signifcant than those around the normal station.

Research on the station-to-station level can be consid-
ered an extension of that on the station level. Te mentioned
explanatory variables were calculated for both the origin and
destination. Moreover, the station-to-station level ridership
is afected by trafc impedance factors, including transfer
times, detours, and route distance [32–36].

Most TOD development guides and related studies
described the TOD as an area with a multicircle spatial
structure (shown in Figure 1) and emphasized the devel-
opment of diferences according to the diferent circles of
TOD. Several studies have divided the station catchment
into multiple bufer bands and modelled the impact of the
built environment on passenger fows within each bufer
band. Gutiérrez et al. [37] developed distance-decay
weighted regression using the mobility survey to forecast
the Madrid metro ridership. Tey found that the efect of
built environment factors on ridership changed with dif-
ferent bufers. Similar experiments conducted by Manout
et al. [38] in Lyon also yielded the same conclusion.Te built
environment factors in the bufer zones of 0–300m,
300–600m, and 600–900m were counted by Jun et al. [15],
and the geographically weighted regression models were
calibrated to explore the impact of land use characteristics in
these bufer zones on ridership at the station level. Te
results showed that only the population and land use mix
signifcantly afect the ridership in the 0–300m and
300–600m bufers. Pan et al. [21] conducted a questionnaire
survey of 33 sites and 11 neighborhood units in Beijing and
collected 300 responses to analyze the infuence of shopping
facilities within seven circles on the willingness of residents
to shop around the nearest metro station. Te results from
the model revealed that the infuence of diferent shopping
facilities on residents’ shopping trip willingness varies with
diferent circles in three aspects: signifcance, sign, and value.

Regarding the models that examine the relationship with
ridership, the direct ridership models (DRMs) are popular
owing to theminimal data requirement and easy application.
Initially, the relationship between the built environment and
metro ridership was assumed to be linear or log-linear
[15, 37, 39]. With the development of data mining
methods, the traditional linear model has gradually been
supplemented by machine learning models. Tese models
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have better predictive and explanatory capabilities. For
example, tree-based models have been developed in related
studies because they are more adept at dealing with non-
linear relationships [28, 34, 40, 41]. However, successful
machine learning models require extensive expertise in
capturing highly accurate features whenever possible. For
metro ridership, it is difcult to achieve high-quality feature
engineering manually. Tus, deep learning models are widely
used in transportation because of their excellent performance
in feature extraction. For example, recurrent neural network
(RNN) models, which are suitable for modelling dynamic
temporal dependency occurring in time series, were widely
used to predict ridership in isolated metro stations or lines
[42, 43]. As convolutional kernels of diferent sizes can extract
spatial dependencies of features by automatically learning
from the data, convolutional neural networks are often used
for ridership prediction at large spatial scales [44].

Although previous studies explored the relationship
between built environment factors and ridership at the
station or station-to-station level, they have some limita-
tions. Te infuence of various built environment factors in
the station catchment area on passenger fow is not in-
dependent, and it is the result of cross-infuence within the
TOD area as a system of independent geographical units. In
other words, the spatial structure and land use layout of the
catchment area also signifcantly impact passenger fows.
Furthermore, the results of studies that focus only on global
built environment factors are undoubtedly biased. However,
although deep learning models performed well in extracting
the implicit features of these interactions, they are rarely
used to explain the passenger fow correlation owing to their
black box. Modelling the efective extraction of features and
their rational interpretation is extremely important for TOD
planning and construction practice.

Overall, this study aims to fll the gaps in the literature by
(1) quantifying the circle heterogeneity of the built envi-
ronment’s nonlinear efect on ridership and (2) using deep
learning models to capture potential land use features within
the station catchment and explaining the model results.

3. Dataset Description

As shown in Figure 2, the Xi’an metropolitan area was
selected for the study. From 2011 to 2019, four metro lines
and 57 stations were built and operated in Xi’an, making the

city rank eighth among 40 Chinese cities with metro lines. A
total of 3192 pairs of the average daily station-to-station
passenger fow on the weekday during November 2019 were
counted using Auto Fare Collection (AFC) data. Although
the number of metro users is staggering, the development of
the metro system is still confronted by the uneven distri-
bution of passenger fow. In particular, the Zhonglou-
Xiaozhai route has the largest average daily passenger
fow with 2836 riders, whereas the passenger fow for
Xinjiamiao-Daminggongbei route is one rider. To optimize
travel demand management, it is important to study the
infuencing factors of OD passenger fow.

It should be noted that this study considered the land use
factors and transit service within the 800m bufers of both
origin and destination stations. Moreover, considering the
average scale of plots in Xi’an and the sample size of the
dataset, the 800m bufer was divided into four circles:
0–200m, 200–400m, 400–600m, and 600–800m. Te
number of bus stops (S) within the four circles between the
origin and destination stations was counted as the transit
service factor. Te areas of the administration buildings (A),
residential buildings (R), and commercial buildings (B)
within the diferent circles were calculated to represent the
land use factors of the origin and destination sides. Te
parks, squares, and scenic spots were classifed into one
category (G) to calculate the land use area. Some other
studies also calculated building areas according to industrial
and warehousing logistics [23]. However, most of the two
types of land use are located outside the study area.

To preserve the location information of diferent circles,
a matrix was constructed to represent the fve features of the
four circles, considering the built environment of the origin
or destination stations (shown in Figure 3). In addition, the
number of transfer times and interval (the number of stops)
between the origin and destination stations was used to
determine the impact of travel impedance factors on the
metro ridership. Table 1 describes the details and source of
the variables.

4. Method

As shown in equation (1), the original gravity model is
expressed in the multiplicative form to examine the re-
lationship with station-to-station ridership.

TOD � z ∙O ∙D ∙C,

ln TOD( 􏼁 � z + zO∙ ln(O) + zD∙ ln(D) + zC∙ ln(C),
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where TOD denotes the station-to-station ridership. XOi
,

XDi
, and XCi

represent the ith independent variable of the
station O, D, or the trafc impedance C, respectively. z, zO,
zD, and zC are coefcients that could be estimated via
logarithmic transformation.

Diferent from the original gravity model, the block
attention module-gravity (BAM-Gravity) model proposed
in this study uses the block attention module to extract built

Primary circleEdge circle

Core circle

the road

Figure 1: Te TOD multicircle spatial structure.
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environment features around the stations based on the
multiplicative form of the original gravity model. As shown
in Figure 4, the overall structure of the BAM-Gravity model
can be divided into three stages: (1) block attention module
stage, (2) fully connected stage for extracting the built en-
vironment representing the metro station, and (3) original
gravity model stage for examining the relationship with the
station-to-station level ridership.

As shown in Figure 5 and equation (2), along the circle
layer dimension, the independent variables of the origin/
destination station I5×4 are forwarded to the built envi-
ronment dimension neural network NNb to produce the
built environment attention weights W5×1

b . Te built envi-
ronment attention refned data B5×4 are generated by
W5×1

b ⊗ I5×4. Subsequently, another neural network NNc is
connected along the built environment dimension of B5×4 to
compute the circle attention weights W4×1

c . Finally, the at-
tention refnes data R5×4 are defned as W4×1

c ⊗B5×4.

R � NNc NNb(I)⊗ I( 􏼁⊗ NNb(I)⊗ I( 􏼁, (2)

where R denotes the attention refned variables, I is the input
dataset of the metro stations, and ⊗ denotes element-wise
multiplication. Te structures of NNc(∙) and NNb(∙) are
shown in Figure 5.

Te independent variables of the origin and destination
station are refned by the attention mechanism and then
connected to the two fully connected layers (FCNO, FCND),
separately. After another fully connected layer (FCNC), the
two trafc impedance variables become a one-dimension
indicator representing trafc impedance. Te overall BAM-
Gravity model can be summarized as follows:
ln TOD( 􏼁 � z + zO∙ ln(O) + zD∙ ln(D) + zC∙ ln(C) O, D, C

� FCNO AO IO( ( 􏼁􏼁, FCND AD ID( ( 􏼁􏼁, FCNC IC( 􏼁,

(3)

where TOD and IC denote the ridership and the trafc
impedance variables from the origin station to the desti-
nation station, respectively. IO and ID represent the built
environment variables of the stations on both sides. AO(∙)
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Figure 3: Illustration of data processing.
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Figure 2: Metro lines and stations in the study area.
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and AD(∙) denote the attention mechanisms for both sta-
tions. As shown in Figure 6, FCNO(∙) and FCND(∙) refer to
fully connected layers used to extract multidimensional built
environment variables refned by the attention mechanism
in one dimension. Similarly, FCNC(∙) is used to extract the

two-dimensional trafc impedance variables. z, zO, zD, zC,
and other weights within the model are estimated by the
MSE loss function and the Adam optimizer [45].

Shapley Additive exPlanation (SHAP), a method from
coalitional game theory that is as important as permutation
features, is an inspection technique that can be used for any
model [46]. Te SHAP values measure a features importance
by calculating the average of its efect on the prediction under
diferent circumstances. Specifcally, it can be defned as

Ii �
1
n

􏽘

n

j�1
θj

i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (4)

where Ii represents the importance of the ith built environ-
ment variable on the station-to-station ridership and n is the
number of the samples. θj

i denotes the efect of the ith variable
of the jth sample on ridership and is defned as follows:

θj
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where s⊆ x
j
1, · · · , x

j
p􏽮 􏽯\x

j
i refers to the variable combination

that does not contain the ith variable of the jth sample, p is
the number of the variables, and F(∙) represents the trained
BAM-Gravity model.

5. Results and Discussion

To detect overftting, 25% of the total samples were ran-
domly selected as a test subset, and the 5-fold cross vali-
dation was used during the training process. Before applying
the BAM-Gravity model, all variables were standardized.
After tuning hyperparameters, when the learning rate and
number of training times were 0.005 and 1200, the R2 for the
BAM-Gravity model was 0.88.

5.1. Importance of the Independent Variables. Te contri-
butions of the independent variables for station-to-station
ridership are shown in Table 2. Overall, there are two in-
teresting fndings that should be noted. First, the contri-
bution of the commercial/business buildings (374.66) to the
passenger fow is maximum, followed by the residential
buildings (368.22) and trafc impedance (276.83).Tis result
is consistent for most studies, and most metro trips on
weekdays are to and from residential and commercial/
business buildings that provide primary residence, daily
shopping, and job opportunities [6, 14, 18, 20, 24].

Second, the contribution of the built environment
variables in the third circle layer to ridership (403.32) is the
highest, followed by the second (353.22), fourth (298.43),
and the frst circles (258.57). To explain this counter-
intuitive result, the relationship between built environ-
ment variables in each of the circles and ridership is dis-
cussed and analyzed in detail in the following subsections.

5.2. Relationship between Ridership and the Residential
Buildings. Figure 7 displays the relationship between sta-
tion-to-station ridership and the residential buildings in

Table 1: Description of the independent and dependent variables.

Variables∗ Mean S.D Min Max

R (m2)

Te area of the residential buildings, including
villas, residences, and apartments, is calculated
from the third national land use survey data
provided by Xi’an Planning Department in 2020

R1
O/D 114620.21 99915.72 0.00 546399.12

R2
O/D 443583.68 217174.80 69839.74 1002606.26

R3
O/D 771613.44 343141.17 231646.25 1977813.50

R4
O/D 1067472.38 393039.58 381132.04 2212369.41

B (m2)

Te foor area of the commercial/business
buildings, including business and fnancial

buildings, commercial buildings, and
entertainment buildings, is calculated from the
third national land use survey data provided by

Xi’an Planning Department in 2020
B1

O/D 87132.59 89982.64 0.00 344311.12
B2

O/D 146724.61 143021.37 0.00 742934.06
B3

O/D 163076.45 166621.83 0.00 770465.13
B4

O/D 199881.19 172886.75 1516.81 803319.89

A (m2)

Te area of the administration buildings,
including administrative ofce buildings,
scientifc research ofce buildings, schools,
hospitals, sports facilities, libraries, art
exhibition halls, and other social public

facilities, is calculated from the third national
land use survey data provided by Xi’an Planning

Department in 2020
A1

O/D 19701.96 26427.84 0.00 133262.08
A2

O/D 62220.86 70693.21 0.00 347153.65
A3

O/D 95564.15 87008.39 0.00 360969.24
A4

O/D 138564.22 106691.86 1303.81 512148.79

G (m2)

Te land use area of parks/squares/scenic spots
is calculated from the third national land use

survey data provided by Xi’an Planning
Department in 2020

G1
O/D 12173.56 17420.53 0.00 81784.07

G2
O/D 36089.56 44896.74 0.00 177826.38

G3
O/D 57921.12 69070.18 0.00 281231.12

G4
O/D 80201.81 90885.71 0.00 420670.35

S Te number of bus stops is calculated from the
POI data in 2020

S1O/D 1.37 1.15 0.00 5.00
S2O/D 1.93 1.31 0.00 6.00
S3O/D 2.79 1.90 0.00 7.00
S4O/D 4.11 2.29 0.00 12.00

Travel
impedance

Te number of transfer times and interval (the
number of stops) between the origin station and
the destination station is calculated by ArcGIS

Transfer time 0.89 0.69 0.00 2.00
Interval 7.60 3.71 1.00 18.00
∗Te variable Xi

O/D denotes the land use area/foor area/number of Xwithin
the ith circle at the original or destination station.
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diferent circles of origin and destination sides. In addition
to the frst circle, residential buildings in the other circles
were found to signifcantly contribute to passenger fow. In
particular, as shown in Figures 7(a) and 7(b), the residential
buildings in the second circle of the origin and destination
stations afecting the ridership show a similar trend of

exponential contribution to passenger fow. When the
residential buildings are below 50,0000m2, the ridership is
below the average and fat values in the 0–50 range. With the
increase in residential foor area, ridership exceeds the av-
erage by a maximum of 150 persons. Te residential
buildings in the third circle of the origin (Figure 7(c)) and
destination (Figure 7(d)) stations promote ridership with
logarithmic trends. Gradual and slow increase in ridership
are observed when residential buildings are greater than
125,0000m2. Figures 7(e) and 7(f) depict the increase in
ridership with increasing number of residential buildings in
the fourth circle on both sides. When the residential
buildings are less than 100,0000m2, the ridership is below
average.

Almost all the studies claimed that residential buildings or
population density promote growth in passenger fow
[25, 47, 48]. However, several further fndings areworth noting;
the residential buildings in the frst circle do not signifcantly
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afect passenger fow. Residential buildings in the third circle
have the most signifcant impact on ridership (103.39 for O,
73.21 for D), followed by the second (46.41 for O, 52.31 for D)
and fourth circles (36.67 forO, 34.05 forD).Te area of the frst
circle is too small relative to the other circles, resulting in the
development of a smaller amount of residential foor area
within its boundaries (a maximum of approximately

50,0000m2). Several studies demonstrated that residential
buildings or population densities within an appropriate
threshold have a signifcant impact on passenger fow
[34, 41, 47]. Fewer residential buildings in the frst circle do not
fall within the efective threshold for infuencing ridership.
Moreover, the relationships between residential buildings in
diferent circles and passenger fow are slightly diferent,
exhibiting exponential, logarithmic, and linear growth in the
second, third, and fourth circles, respectively.Te combination
of distance to the metro station and the area of land available
for residential development leads to these results.

5.3. Relationship between Ridership and the Busi-
ness\Commercial Buildings. As shown in Figure 8, the
business\commercial buildings have signifcantly impact on
ridership in the frst (32.51 for O, 31.08 for D), third (60.48
for O, 35.62 for D), and fourth circles (96.98 for O, 85.05 for
D). In particular, the business\commercial buildings in the
frst and third circles are positively correlated with ridership,
whereas in the fourth circle, ridership is inhibited, regardless
of the origin or destination station.

Te results of this study difered slightly from those of
previous studies [25, 49], and this diference is attributed to
a combination of reasons. First, the development of large
commercial facilities mainly for leisure and entertainment
has a certain agglomeration efect and is mainly concen-
trated in the frst circle, whereas the commercial facilities
scattered in the fourth circle are mostly small retail busi-
nesses providing daily services within a walking distance for
residents; this not only reduces the dependence of sur-
rounding residents on the metro but also makes it less at-
tractive to outside residents. Second, the frst circle has
higher land prices owing to its transportation advantages,
and most of the large commercial or business ofce facilities
within its boundaries are geared towards the middle and
upper-income groups. Te well-equipped parking facilities
and the preference of this group to travel by private car result
in a less-than-expected contribution of the commercial
buildings in the frst circle. As a result, business\commercial
buildings have the most signifcant negative efect on rid-
ership in the fourth circle, while in the frst circle, they do not
have the expected degree of impact.

5.4. Relationship betweenRidership and thePublicGreenLand
Area\Public Administration Buildings. As shown in
Figures 9(a)–9(d), there are signifcant negative correlations
between public green space and passenger fow in the second
(48.39 for O, 66.48 for D) and third (27.53 for O, 30.51 for D)
circles, regardless of whether it is at the origin or destination
stations.

Although Du et al. [47] and similar studies [25, 50]
concluded that the public green spaces would attract more
passengers and the impact has no signifcant diference
between weekdays and weekends, the results of this study are
signifcantly diferent. Despite the fact that Xi’an is a well-
known tourist destination with many places of interest, the
corresponding AFC data analyzed for this study show that
during low tourist seasons such as November, when

Table 2: Te importance of variables (mean of SHAP values).

Variable SHAP
R1

O 13.68 (Rank 32)
R1

D 8.50 (Rank 36)
A1

O 33.64∗ (Rank 18)
A1

D 31.77∗ (Rank 20)
B1

O 32.51∗ (Rank 19)
B1

D 31.08∗ (Rank 21)
G1

O 5.43 (Rank 40)
G1

D 9.49 (Rank 35)
S1O 40.79∗ (Rank 13)
S1D 51.68∗ (Rank 9)
R2

O 46.41∗ (Rank 12)
R2

D 52.31∗ (Rank 8)
A2

O 25.35 (Rank 25)
A2

D 12.54 (Rank 33)
B2

O 13.80 (Rank 31)
B2

D 19.14 (Rank 28)
G2

O 48.39∗ (Rank 11)
G2

D 66.48∗ (Rank 6)
S2O 30.78∗ (Rank 22)
S2D 38.02∗ (Rank 14)
R3

O 103.39∗ (Rank 2)
R3

D 73.21∗ (Rank 5)
A3

O 21.21 (Rank 27)
A3

D 11.04 (Rank 34)
B3

O 60.48∗ (Rank 7)
B3

D 35.62∗ (Rank 16)
G3

O 27.53∗ (Rank 24)
G3

D 30.51∗ (Rank 23)
S3O 18.15 (Rank 29)
S3D 22.18 (Rank 26)
R4

O 36.67∗ (Rank 15)
R4

D 34.05∗ (Rank 17)
A4

O 7.15 (Rank 38)
A4

D 5.95 (Rank 39)
B4

O 96.98∗ (Rank 3)
B4

D 85.05∗ (Rank 4)
G4

O 5.07 (Rank 42)
G4

D 14.12 (Rank 30)
S4O 5.15 (Rank 41)
S4D 8.24 (Rank 37)
Transfer time 228.42∗ (Rank 1)
Interval 48.41∗ (Rank 10)
For reasons of space, the top 24 variables (with ∗) are considered to sig-
nifcantly afect ridership.
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temperatures are cooler, fewer people exercise in parks or
visit scenic areas. Terefore, the larger public open space
compresses the size of other facilities, leading to a reduction
in ridership.

Te public administration buildings signifcantly afect
ridership in the frst circle only (33.64 for O, 31.77 for D).
Te efective thresholds for public administration buildings
on passenger fows at the origin (Figure 9(e)) and destination
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Figure 7: Te relationship between ridership and the residential buildings.
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Figure 8: Te relationship between ridership and the business\commercial buildings.
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Figure 9: Te relationship between ridership and the public green land area\public administration buildings.
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station (Figure 9(f)) are 2,0000–8,0000m2 and
4,0000–8,0000m2, respectively. Te public administration
buildings include primary and secondary schools, govern-
ment ofces, university campuses, hospitals, stadiums, and
exhibition halls. Students and patients are reluctant to walk
long distances to their destinations after reaching the metro

station owing to safety and health concerns. Government
ofces only provide a small number of jobs, and therefore,
they have little impact on passenger fow. During the
working day, student travel on the university campus is
largely spread around the university, with few long journeys
by metro. At the same time, facilities such as stadiums and
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Figure 10: Te relationship between ridership and the bus stop\travel impedance.
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exhibition halls are hardly attractive to residents with busy
daily work schedules.

5.5. Relationship between Ridership and the Trafc Impe-
dance\Bus Stops. Te number of bus stops in the frst circle
at the origin station has a diferent impact on ridership from
that at the destination station. Figure 10(a) shows that when
the number of bus stops in the frst circle at the origin station
is 3, the maximum number of passengers is reached, ex-
ceeding the average by approximately 70 persons.
Figure 10(b) shows that the more the bus stops in the frst
circle on the destination side, the higher the passenger fow.
Te results are attributed to three reasons. First, the existing
metro system does not yet fully meet Xi’an’s travel demand
because a signifcant proportion of trips are made using the
metro-bus connection or the bus-metro connection. Second,
travelers prefer the metro-bus connection to the bus-metro
connection. Eighty random interviews on the preference to
metro-bus or bus-metro connections were conducted to
explore the underlying reasons for this result. Te majority
of responses received include better punctuality and speed of
the metro than bus and guaranteed subsequent travel ar-
rangements after taking the metro frst. Finally, some people
would consider abandoning the metro if there was a direct
bus to their destination, or if they do not intend to save time.
Terefore, the optimal number of bus stops on the origin
side can promote an increase in ridership; however, overly
developed bus routes can lead to a decrease in ridership.

Other studies claimed that the number of bus stops on
both sides positively afects passenger fow [11, 26, 41].
However, Figures 10(c) and 10(d) describe the impact of the
number of bus stops in the second circle on ridership as
negative, regardless of whether they are on the origin or
destination side. Te second circle of bus stops competes
with the metro, with a greater number of stops leading to
a higher chance of abandoning the metro for the bus.

Te number of transfers (228.42, Rank 1) is the most
important feature that afects OD fows. It corresponds to
the fndings of the other studies [34, 36]; people are more
likely to abandon the metro because of the transfers
(Figure 10(e)). Figure 10(f) shows that the relationship
between the intervals and passenger fow is a parabolic curve.
In particular, when the interval between two stations is in the
range of 0–2 or 10–18, the OD passenger fow is lower than
average. Furthermore, when it is in the range of 3–9, rid-
ership is above average. It is consistent with the results of
Gan et al. [34], as both studies conclude that most metro
trips are taken to cover medium distances, and considerably
short travel distance cannot refect the advantages of metro
reliability, thereby resulting in more alternative modes of
travel options.

6. Conclusion

To investigate the infuence of built environment factors in
diferent circles of the origin and destination stations on
passenger fow, fve types of built environment variables
(administration buildings, residential buildings,

commercial/business buildings, land area of the parks/
squares/scenic spots, and the number of bus stops) in four
circles (0–200, 200–400, 400–600, and 600–800m) of the
origin and destination stations and the travel impedance
variables (transfer times and intervals) were used for
modelling the metro station-to-station ridership. Te BAM-
Gravity model was employed to detect the relationship with
ridership, and SHAP was used to explain the modelling
results. Te results of this study are expected to provide
planners with better actionability.

First, the transfer is the most critical factor afecting the
metro station-to-station passenger fow. Te result indicates
that the coupling between urban spatial structure planning
and rail transit network planning should be strengthened. In
other words, it suggests that policymakers can improve
connective efciency by directly connecting two important
areas or gradually reducing the functional connection be-
tween the two regions in the process of urban renewal.
Moreover, the result shows that people are more inclined to
ride the metro for medium distances. Based on this result,
planners should pay more attention to the spatial connection
between the two areas at this scale in optimizing the urban
structure.

Second, the bus stops within the frst circle at the origin
and destination exhibit a parabola and a positive correlation
with the ridership, respectively. Tey exhibit negative cor-
relations in the second circle, regardless of the origin or
destination station. Te results show that the existing metro
network in Xi’an is not adequate to cover the city’s travel
demands. Te results also highlight the role of integrated
development of bus and metro systems in regulating the
metro passenger fow. When the utility of metro travel needs
to be increased, the connection between the metro and the
bus systems should be strengthened in the frst circle on the
destination side and the number of bus stops (at most 3) on
the origin side should be appropriately increased. When the
metro passenger fow pressure needs to be relieved, the
number of bus stops within the second circle should be
increased. Furthermore, transportation planners and oper-
ators can adjust metro ridership by optimizing the bus
schedules of the frst and second circles on both sides.

Finally, and most importantly, the results of this study
reveal the diferences and similarities in the impact of dif-
ferent land use factors within diferent circles on passenger
fow. Te fndings provide some reference for the optimi-
zation of land use around the metro station, whether it is
around the origin or destination station. Te residential
buildings contribute to noticeable improvements in pas-
senger fow, and the improvement level arranged in the
sequence is as follows: third, second, and fourth circles. It
suggests that planners should focus more on the circle-level
heterogeneity of the impact of residential buildings on
ridership and rationally develop residential land in each
circle. Similarly, planners can adjust the passenger fow by
planning commercial or business ofce buildings in diferent
circles. Although the land use of parks and squares has an
inhibitory efect on the passenger fow in the second and
third circles, it does not mean that the development of land
use such as parks should be prohibited. Planners should

12 Journal of Advanced Transportation



make the most of broken spaces by arranging public open
spaces along major pedestrian routes and enhancing the
landscaping of pedestrian spaces.

Although this study enriches the existing research on
TOD, some aspects should be further explored. First, the
results show that the built environment has essentially the
same impact on average daily ridership at the origin and
destination stations, but there is no discussion regarding the
impact on passenger fows at diferent periods of the day.
Second, this study does not investigate the competition
between travel modes and the metro in terms of trafc
impedance. Tird, based on the density of the road network
in Xi’an, 200m was used to delineate the station catchment
area circles; however, a smaller bufer band would have led to
more detailed results. Tese limitations of this study can be
addressed in the future.
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