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Crash frequency and crash severity are two major aspects of transportation safety. In this paper, we propose a decision-making
scheme combining statistical analysis and optimization modeling to be used in transportation safety study. We conduct a safety
analysis, a travel speed analysis, and an optimization analysis to develop a two-stage decision scheme to minimize crash frequency
while mitigating crash severity, using data collected in urban environments in Lincoln, Nebraska. In the safety analysis and the
travel speed analysis, we study the impact of lane width and other related road geometric design parameters on annual crash
frequency and vehicle travel speed using count models and linear regression models, respectively. In the optimization analysis, the
proposed two-stage stochastic programming model determines the lane width and other road geometric design parameters in the
frst stage, and then the posted road speed limit in the second stage for each scenario. To mitigate crash severity, we use a chance
constraint to restrict a certain percentile of the vehicle travel speed to comply with the posted road speed limit. Tis two-stage
decision scheme is shown to be efective for the data collected in Lincoln, Nebraska, when restricting the vehicle travel speed of up
to two positive standard deviations from the mean travel speed to be under the posted speed limit. Te application of a stochastic
programming model that utilizes regression analysis results serves as an innovative decision scheme that efectively connects
statistical analysis and optimization studies in road geometric design for transportation safety. Its objective is to minimize crash
frequency while simultaneously mitigating crash severity. Tis methodology has extensive potential for application in various
environments to assist in the reduction of both crash frequency and crash severity.

1. Introduction

Transportation safety is typically defned in terms of crashes,
in which at least two aspects should be considered: crash
frequency and crash severity (TRB Special Report 254 [1]). It
is a traditional way to mitigate crash frequency as well as
crash severity by improving road geometric design, in which
lane width plays an important role in afecting the perfor-
mance and cost of a roadway. Complete Streets, a trans-
portation policy and design approach, requires streets to be
planned, designed, and maintained to be safe, convenient,
and comfortable for all street users, regardless of their
transportation mode. With the recent trend in designing

complete streets, the use of reduced lane widths instead of
the 12 ft standard lanes has increased signifcantly, posing an
urgent need of guidelines to quantify the trade-ofs between
the safety and efciency of operations and the economics of
the right for way savings. Te document “A Policy on the
Geometric Design of Highways and Streets” in 2018 rec-
ommends 10 to 12 ft wide lanes for urban and suburban
arterials and urban collectors. Specifcally, 10 ft wide lanes
generally are for roadways with little or no truck trafc; 11 ft
wide lanes are for urban arterial streets; and 12 ft wide lanes
are for higher speed, free-fowing principal arterials.
According to our fve-state (Wyoming, Missouri, California,
Kansas, and Iowa) survey regarding the lane width policy in
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urban settings, the right of way limitations were the key
reason for the implementation of narrow lane widths in
these states’ roadway design. In this paper, the frst part of
our study is to conduct a statistical analysis for the impact of
road width as well as other critical road geometric design
parameters on road crash frequency, using the data collected
in Lincoln, Nebraska.

Shinar [2] indicated that there is ample, but not un-
equivocal, evidence to show that, on a given road, the crash
involvement rates of individual vehicles rise with their speed
of travel. While the true travel speed is not necessarily the
same or even close to the posted speed limit, many existing
studies showed a strong relationship between the average
travel speed with the posted speed limit and the road
geometric design parameters. Te appropriate posted speed
limit needs to be chosen based on the road geometric design
parameters to improve transportation safety. Incorrectly
posted speed limits on streets and highways might lead to
driver’s noncompliance and a speed diferential, which may
lead to accident occurrences (Najjar et al. [3]). Te second
part of our study is to investigate the impact of the road
geometric design parameters on the vehicle travel speed. In
the statistical analysis of road geometric design parameters
for both the crash frequency and vehicle travel speed, we
diferentiate the collected data according to their corre-
sponding posted speed limits to facilitate the analysis and
determination of the optimal posted speed limit.

Crash severity apparently heavily depends on the true
precrash speed. Te more severe injuries and fatalities are
especially concerned for the vulnerable road users, such as
motorcyclists, bicyclists, and pedestrians. Although most of
the drivers are aware of the negative efects and potential
dangers resulting from speeding, it is an unfortunate fact
that drivers exceed posted speed limits on any kinds of roads.
According to the National Safety Council, in 2019, the total
number of fatal motor vehicle crashes attributable to
speeding was 8,544 with 9,478 trafc fatalities. Concerning
the importance of the aftermath of speeding, the National
Transportation Safety Board (NTSB) listed “implement
a comprehensive strategy to eliminate speeding-related
crashes” as one of the 2021-2022 most wanted trans-
portation safety improvements (NTSB [4]). In practice, the
true precrash speed is nearly impossible to obtain. So to take
the crash severity into consideration to improve trans-
portation safety, we would like to restrict the possibility that
the drivers’ average travel speed obeys the posted speed limit
to be above a certain reliability level, e.g., 80%. In the op-
timization analysis in this paper, we formulate the drivers’
compliance with posted speed limits using a chance con-
straint, where the uncertainty comes from the daily and 5-
minute travel volumes.

In this paper, we collect data at mid-block segments
between signalized intersections in an urban environment in
Lincoln, Nebraska, and conduct a combination of statistical
and optimization analyses to study the impact of the lane
width as well as other critical road geometric design pa-
rameters on the annual crash frequency. Tis novel decision
scheme is developed through the utilization of a stochastic
programming model that incorporates regression analysis

results, aiming to minimize crash frequency while also
mitigating crash severity. With its broad applicability, this
methodology has the potential to be implemented in diverse
environments to help reduce both crash frequency and crash
severity.

Te remainder of our paper is outlined as follows. We
review relevant literature in Section 2. In Section 3, the
statistical safety analysis studies the impact of road geo-
metric design parameters on annual crash frequencies. In
Section 4, the operational analysis evaluates the impact of
road geometric design parameters on vehicle travel speed. In
Section 5, we propose a two-stage stochastic programming
model to determine the optimal road geometric design
parameters to minimize the expected crash frequency while
keeping the vehicle travel speed compliant to the posted
speed limits to mitigate the crash severity. At the end,
Section 6 concludes this study by summarizing the key
fndings, highlighting the ongoing work, and providing clear
directions for future research.

2. Literature Review

Many studies have investigated the impact of narrow lane
widths on the crash frequency of bicyclists, heavy vehicles,
and passenger vehicles, however, without consistent fndings
in the advantages and disadvantages. For example, Noland
[5] found that the narrow lane widths decrease the crash
frequency of bicyclists, heavy vehicles, and passenger ve-
hicles. But Potts et al. [6] concluded that the narrow lane
widths, in contrast, increase the crash frequency of bicyclists,
heavy vehicles, and passenger vehicles. To quantify the
impact, Zegeer et al. [7] conducted a statistical testing along
with an accidental prediction model and determined that
lane widening of the 10 ft lanes can reduce related accidents
by 12%, 23%, 32%, and 40% when it is 1 ft, 2 ft, 3 ft, and 4 ft
wider, respectively. Hauer [8] presented six crash frequency
models for urban four-lane undivided mid-block segments
to fnd that lane width has some association with on-the--
road property-damage-only crashes but no signifcant im-
pact on of-the-road accident frequencies. Strathman et al.
[9] found that the average lane width was positively related
to crash frequency on urban freeway segments and nega-
tively related to crash frequency on rural nonfreeway seg-
ments based on the Oregon state highway system. Harwood
[10] indicated that the preferred lane width for urban arterial
mid-block segments under most circumstances was 11 ft or
12 ft, while suggesting that narrower lane widths may bring
trafc operational or safety benefts in some situations. Potts
et al. [6] analyzed multiple roadway segments in Minnesota
and Michigan but did not fnd a general indication that the
use of lane widths narrower than 12 ft on urban and sub-
urban arterials increased crash frequency. In another paper,
Potts et al. [11] reported a possible indication that accident
frequencies may be higher on four-lane undivided arterials
with 9- to 10 ft lanes than on four-lane undivided arterials
with 11 to 12 ft lanes in Minnesota. Zegeer et al. [12] ana-
lyzed bus and motor vehicle accident characteristics and
provided recommendations for reducing bus-related high-
way crashes, such as keeping wide lane widths to minimize
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the chances of bus sideswipe collisions, and providing a lane
width of at least 11 feet, but preferably 12 feet whenever
possible. Tey found that the narrower the lanes, the larger
the potential of sideswipe accidents. Sando and Moses [13]
also indicated that narrow lane widths, especially lane widths
of 10 ft or narrower, were overrepresented in the occur-
rences of bus sideswipe crashes. Tey recommended that
12 ft wide lanes be provided if possible for roadways located
on transit routes. A recent study by Dai et al. [14] also
concurred with the conclusion that a minimum 11 ft lane
width is preferable for bus travel lanes, but also brought the
reader’s attention to the fact that the roadway design is on
a case-by-case basis and it is not always feasible to have wide
lanes for buses. Our study is conducted based on the data
collected in Lincoln, Nebraska, where the Nebraska Ad-
ministrative Code (Title 428) requires 11 ft wide lanes for
local and collector roads on municipal streets and 10 ft wide
concessions for local and collector roads on rural roads.

Speed harmony is the situation where operating speeds
are consistent with the intended function of the roadways,
which is therefore favorable with respect to safety and
mobility. Donnell et al. [15] collected feld data on two-lane
and multi-lane urban and rural roads to explore speed
harmony. Tey concluded that it is useful to include
methods of operating speed prediction during the road
design process. A lot of studies have been carried out to
investigate the relationship between operating speed and
road geometric design parameters and to propose a pre-
diction model for free-fow speed in terms of road geometry.
For example, a model to predict the 85th percentile speed on
horizontal curves for high-speed highways was presented in
Lamm and Choueiri [16]. Ali et al. [17] studied 35 four-lane
urban streets in Fairfax County, Virginia, and showed that
the posted speed limit, median width, and segment length all
had signifcant efects on free-fow speed on urban streets.
Tey proposed linear regression estimation of the mean and
85th percentile aggregated free-fow speeds. In Poe and
Mason [18], vehicle travel speed data were collected in 27
urban collectors in Pennsylvania and the mixed modeling
approach were used. Tey discovered that the lane width is
signifcantly related to the operating speed at themidpoint of
curve, while within a horizontal curve, increased lane width
brought lower operating speed for low-speed urban streets.
Furthermore, Gitelman et al. [19] indicated that the shoulder
width and recovery zone width positively impact the travel
speed. Gitelman et al. [20] adopted negative binomial sta-
tistical models to demonstrate a positive relationship be-
tween mean speeds and the number of accidents.

Speed not only afects the transportation safety in terms
of the crash frequency, but also the severity, which is
straightforward from the kinetic energy that is released
during a collision. Using national crash databases, Campbell
et al. [21] found that vehicle travel speed has a direct cor-
relation with the severity of the crash. Kloeden et al. [22]
concluded that there is a signifcant correlation between
exceeding the speed limit, even by a small margin, and an
increase in the likelihood of crashes and injury severity. Elvik
et al. [23] proposed power functions to depict the re-
lationship between speed and road safety, which is

characterized by fatal injuries, fatal and serious injuries, all
injuries, fatal accidents, fatal and serious accidents, and all
injury accidents. Teir analysis of road safety problems in
Sweden indicated that even a small variation in trafc speed
(by a factor of 1.35) can lead to a large variation in the
number of fatalities (by a factor of 3.92) as well as all injuries.
Similarly, Nilsson [24] suggested that even small reductions
in vehicle speed can result in signifcant improvements in
crash outcomes.Terefore, promoting speed compliance has
been shown to be a critical way to reduce the severity of
crashes on roads. However, to the best of our knowledge,
there is limited quantitative study on how road geometric
design and posted speed limits can be optimized to promote
speed compliance. To bridge this research gap, in this paper,
we propose a stochastic programming model that in-
corporates statistical analysis results on road geometric
design for trafc safety and travel speed. Te model provides
an innovative decision scheme for determining the optimal
road geometric design and posted speed limit that promote
speed compliance to minimize the annual crash frequency
while mitigating crash severity.

3. Safety Data Analysis

In this section, we conduct a safety data analysis using the
count model to evaluate the impact of lane widths and other
road geometric design parameters on annual crash fre-
quency at mid-block segments. Te ount-data modeling
technique was shown by Lord and Mannering [25] to be an
appropriate approach for crash frequency data analysis.
Poisson regression or its derivatives, such as the negative
model and zero-infated model, are usually used to model
the count data. But Lord and Mannering [25] indicated that,
when the mean is much lower than the variance, a Poisson
model would result in biased parameter estimates. Te
negative binomial model (Washington et al. [26]) is often
used for the overdispersed crash data. In the existing studies,
Poisson or negative binomial regression models are the two
most frequently used regression models for evaluating the
impact of lane widths on crash frequency at mid-block
segments. However, using these traditional count models,
unobserved heterogeneity between seemingly homogenous
conditions may bring inconsistent estimates of the pa-
rameters. In this paper, we apply random parameters to
account for unobserved heterogeneity in the regression
models for the efects of lane widths on annual crash
frequency.

3.1. Data Collection for Safety Analysis. Te geometry and
crash data were collected and processed in four steps: (1)
data collection site selection, (2) geometry data collection
based on feld measurements and Google Earth measure-
ments, (3) reduction of ten years of crash data, and (4)
combining geometry and crash data. All the roads were
identifed as urban collectors, urban minor arterials, urban
principal arterials-other nonconnecting link, and urban
principal arterials-other connecting link, based on the Na-
tional Functional Classifcation on the map of Lincoln
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ofered by the Nebraska Department of Roads (NDOR, now
Nebraska Department of Transportation). Te data collec-
tion sites consist of all urban mid-block segments that are of
9 to 12 feet width with a speed limit of 45MPH or lower and
located within the city boundary of Lincoln, Nebraska.

For the collection of geometry data in the safety analysis,
we considered the following parameters, as presented in
Table 1. Considering the excessive amount of time needed
for the feld data collection, we collected data using both feld
measurements and Google Earth measurements. With
Google Earth, the lane and shoulder widths were measured
by the ruler function, and median types, shoulder types,
speed limits, and so on, were observed by the street view
function. Te feld data were used to validate the accuracy of
the Google Earth data. All the crash data in Lincoln,
Nebraska, from 2003 to 2012 was provided by NDOR. To
improve the readability of the data, we converted the original
crash data fle from .txt to .xlsx format.

Te combination of geometry data collected from
Google Earth and crash data obtained from NDOR was
crucial, with a key step being the matching of data collection
sites to their corresponding historical crashes.Tis matching
was achieved by comparing street names in both the crash
and geometry information datasets. Subsequently, Microsoft
Access was utilized to segregate accidents into segment
approaches by comparing the vehicle driving direction in the
crash dataset to the direction of segment observation in the
geometry info dataset. At last, we computed the crash fre-
quency for each data collection site.

3.2. Statistical Results for Safety Analysis. Based on the
National Functional Classifcations, the roadway types were
classifed as 14-urban principal arterial other connecting
link; 15-urban principal arterial other nonconnecting link;
16-urban minor arterial; or 17-urban collector. Te range of
lane widths for the mid-block segments was from 9 to 12
feet. Since the sample sizes of segments that were less than 9
feet or more than 12 feet were too small to make the esti-
mation model, those observations were not included in the
analysis dataset. Te efects of 9 ft, 10 ft, 11 ft, and 12 ft lanes
on crash frequency were analyzed. In addition, to analyze the
impact of road geometric design parameters on the crash
frequency, this research did not count heavy vehicle or
alcohol-related crashes, crashes that were not caused by road
surface conditions, and crashes whose frst leading event was
motor vehicles in transit.

In the preliminary data processing, we found a high
correlation between the posted speed limit and all other
variables. Terefore, we develop the crash frequency models
specifcally for diferent posted speed limits. Together with
the area type used to determine if the observed segments
were in a central business district, we separated the observed
mid-block segments into fve groups: 25CBD (posted speed
limit of 25MPH and located within a central business
district), 30NCBD (posted speed limit of 30MPH and lo-
cated outside of a central business district), 35NCBD (posted
speed limit of 35MPH and located outside of a central
business district), 40MPH (posted speed limit of 40MPH),

and 45MPH (posted speed limit of 45MPH). In addition, we
observed that the number of lanes for each mid-block
segment and the average daily trafc on the segment were
highly correlated. So, a new variable, directional average
daily trafc per lane was used to represent the average daily
travel volume per lane for each direction instead of the
average daily trafc.

Table 2 summarizes the number of mid-block segments
of each lane width in each of the fve groups. Considering the
inadequate sample size of group 30NCBD, only the other
four groups were included in the following statistical re-
gression analysis.

For crash data in 25CBD, we used the Poisson regression
model, which is a typical regression model for count data
(Lord and Mannering [25]). However, we found that, in
35NCBD, 40MPH, and 45MPH, the variance of the de-
pendent variable is higher than the mean, which indicates
overdispersion. Terefore, we used the negative binomial
regression models (Washington et al. [26]) for 35NCBD,
40MPH, and 45MPH to avoid biased parameter estimates
from such overdispersed data (Lord and Mannering [25]).
We tested the efect of 9, 10, and 11 ft lane widths on the
annual crash frequency compared to the 12 ft wide lanes.Te
variables listed in Table 3 were found to be signifcantly
related to the annual crash frequency. Te descriptive sta-
tistics of these signifcant variables, as well as the variable of
annual crash frequency are also included in Table 3.

Te regression model results, including constants and
coefcient estimates of the signifcant dependent variables,
are shown in Tables 4–7.Te variable notation, which will be
referred to in Section 5.2 for the optimizationmodel, are also
included. In the regression analysis results for models
35NCBD, 40MPH, and 45MPH (Tables 5–7), the statistical
signifcance of the dispersion parameter indicates that it is
signifcantly diferent from zero. Tis suggests that the
negative binomial model is appropriate for the data of
35NCBD, 40MPH, and 45MPH.

4. Travel Speed Analysis

In this section, we conduct a travel speed analysis to evaluate
the impact of lane widths and other road geometric design
parameters on vehicle travel speed.

4.1. Data Collection for Travel Speed Analysis. To collect data
for the travel speed analysis, a total of 14 directional mid-
block segment observations were randomly selected from
the safety data collection sites in Lincoln, Nebraska, as listed
in Table 8. We collected vehicle travel speed data at these 14
sites using a Wavetronix HD Sensor during a two-hour
nonpeak period (1–3 pm) and a two-hour peak period (3:
30–5:30 pm).

4.2. Statistical Results for Travel Speed Analysis. We con-
ducted a linear regression analysis to study the impact of the
road geometric design parameters on the vehicle travel
speed. Te linear regression models test the efect of 9, 10,
and 11 ft lane widths on the vehicle travel speed, in
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comparison to 12 ft wide lanes. Te independent variables
include through lane width, shoulder indicator, shoulder
type, shoulder width, median indicator, median type, me-
dian width, number of through lanes, segment length, and
fve-minute real-time volume (heavy vehicles excluded) in
the tested segments. Categorized by the four speed limits
(25CBD, 35NCBD, 40MPH, and 45MPH) and two data
collection time periods (1–3 pm and 3:30–5:30 pm), eight
linear regression models were studied in total.

Tables 9 and 10 present the linear regression results for
the travel speed analysis. Te last columns contain the
notation for the signifcant variables, which are consistent
with those in Tables 4–7, for the optimization model in
Section 5.2. Te standard errors of the linear regression
reported in the tables will be needed in the optimization
model in Section 5.2, too.

When comparing the results between the two time
segments in the 25CBD model, the trafc volume has
a signifcant impact on lowering the travel speed due to
possible congestion during peak hours. While 9 ft wide lanes
lead to a signifcant reduction in travel speed in both time
segments compared to 12 ft wide lanes, 10 ft wide lanes
increase travel speed during peak hours.Tis could be due to
the fact that vehicles can maneuver more easily through
slightly narrower lanes to avoid peak-hour congestion.
Results of the 35NCBD models indicate that narrow lanes,

compared to 12 ft wide lanes, generally lead to higher travel
speeds in the noncentral business district with a posted
speed limit of 35 miles per hour, in both nonpeak and peak
hours. Moreover, shoulders increase travel speed and ad-
ditional lanes decrease travel speed during nonpeak hours.
In the 40MPH model, 10 ft lanes lead to a decrease in travel
speed, while 11 ft lanes increase travel speed compared to
12 ft lanes in both time segments. Tis could be due to the
fact that fairly wider lanes provide extraspace for drivers to
move at a fast speed. In the 45MPH model, for both time
segments, a 10 ft lane decreases the travel speed, while an
11 ft lane increases the travel speed compared to a 12 ft wide
lane. However, a higher trafc volume increases travel speed
for the 1–3 pm time segment but decreases travel speed for
the 3:30–5:30 pm time segment. Tis could be due to the fact
that during nonpeak hours, the road can accommodate more
vehicles without causing congestion, which leads to a more
efcient use of the available road capacity. Overall, the re-
sults indicate that 9, 10 and 11 ft wide lanes do not have
a consistent efect in lower speed limit models 25CBD and
35NCBD. However, 10 ft wide lanes consistently decrease
travel speed and 11 ft wide lanes consistently increase travel
speed compared to 12 ft wide lanes at higher speed limit
models of 40MPH and 45MPH, which may be because
narrow lanes require drivers to be more cautious when
driving in narrow lanes at high speed limit zones.

Table 1: Collected parameters.

Segment parameter Description
Trough lane width Trough lane width (ft)
Average daily trafc Average daily trafc on the street

Shoulder presence indicator 0, if there is no shoulders on the street;
1, if street has shoulder

Shoulder width Shoulder width (ft)

Shoulder type indicator

1, if street has paved shoulder;
2, if street has gravel shoulder;
3, if street has turf shoulder;

4, if street has composite shoulder

Median presence indicator 0, if there is no median on the street;
1, if there is median on the street

Median type 0, if street has painted or shared median;
1, if street has curbed median

Median width Median width (ft)

On-street parking presence indicator 0, no on-street parking;
1, has on-street parking

Road speed limit Road speed limit (MPH)
Number of lanes Number of through lanes in one direction on the street

Table 2: Sample size for each data group.

25CBD 30NCBD 35NCBD 40MPH 45MPH
9 ft 5 0 42 0 0
10 ft 23 0 88 32 2
11 ft 2 0 72 19 37
12 ft 7 0 27 32 54
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5. Optimization Analysis

Section 3 provides us with the regression results of the crash
frequency specifcally for diferent posted speed limits, and
Section 4 studies the impact of lane widths and other signifcant
road geometric design parameters on the average vehicle travel
speed. In this section, we propose a methodology to integrate
the statistical analysis results with a stochastic programming
model to determine the optimal choices of the posted speed
limits, lane widths, and other signifcant road geometric design
parameters to minimize the crash frequency while mitigating
the crash severity by promoting speed compliance.

From the statistical analysis in Sections 3.2 and 4.2, we see
there is signifcant uncertainty involved in two dependent
variables: the directional average daily trafc per lane for the
crash frequency regression model and the 5-minute travel
volume for the travel speed regression model. Instead of using
the average values of these uncertain variables, which might
cause a large error to depict the real situation, or considering
for the worst case to use a robust optimization model, which
might lead to overconservative decisions, in this paper, we
develop a stochastic programming model to optimize for the
expected crash frequency, taking all possible scenarios of the
random variables into consideration. Te scenarios will be
generated using historical data of the random variables.

In the construction or the long-term use of a road, some
variables considered in this paper have to be determined at
the beginning, such as the lane width or other road

geometric design parameters. But some variables can be
determined or adjusted later, after the uncertainty has been
revealed. For example, we can adjust the speed limit of a road
after an accurate forecast of the 5-minute travel volume of
a day is obtained or change the posted speed limit in dif-
ferent periods of a day or diferent days in a week. Instead of
making all the decisions at the beginning and keeping them
unchanged, we can wait until the uncertainty is revealed to
make recourse decisions to achieve optimality for the rest of
the planning horizon. Terefore, we apply the dynamic
decision-making scheme to develop a two-stage stochastic
programmingmodel for our problem, where the decisions of
road geometric design parameters are made in the frst stage
and the posted speed limit is determined in the second stage.

Depending on the values of the random variables and the
posted speed limit, vehicle travel speeds vary. Te more
compliant a driver is while driving on a road, the less severe
a potential crash could be. To mitigate the severity of the
potential crashes across all the scenarios, we apply a chance
constraint (Miller and Wagner [27] and Prékopa [28]) to
guarantee the probability of a certain percentage of the vehicles
(e.g., the 75 percentile vehicle travel speed) not exceeding the
posted speed limit to be beyond a certain probability (e.g., 85%
reliability). Below, we will discuss the chance-constrained two-
stage stochastic programming model for our paper.

5.1. OptimizationModel. We defne W to be the set of all lane
widths under consideration (9 ft, 10 ft, and 11 ft) in addition to
the 12 ft lane width and Q the set of variables of other road
geometric design parameters. In the frst stage, we determine the
lane width as well as other road geometric design parameters.
Let binary variable wk � 1 if lane width k ∈W is selected and
wk � 0 otherwise. Notice that 

k∈W
wk � 0 implies the selection

of the 12 ft lane width. We also have variable qi for i ∈ Q

represent the value of road geometric design parameter i ∈ Q.
Te random vector in our problem consists of the di-

rectional average daily trafc per lane and the 5-minute
travel volume, denoted as (∆, δ). Each realization of the
random vector (∆, δ) is referred to as a scenario, with
a certain probability of being realized. For example, (8000,
60) could be a scenario of (∆, δ) with probability 0.1, rep-
resenting a 10% chance to observe the directional average
daily trafc per lane as 8000 and the 5minute travel volume
as 60. We assume that the random vector (∆, δ) has fnitely
many scenarios or can be sufciently described by a fnite
collection of scenarios, denoted as (Di, di) i∈S, where
(Di, di) is the realization of (∆, δ) in scenario i ∈ S. After
observing a realization of (∆, δ), in the second stage, we
determine a scenario-specifc posted speed limit to minimize
the annual crash frequency while controlling the compliance
of the travel speed with the posted speed limit. Defne set L to
be the set of all speed limits under consideration. Let binary
variable ui

l � 1 if posted speed limit l ∈ L is adopted in
scenario i ∈ S and ui

l � 0 otherwise. Moreover, we use
a chance constraint to ensure the λ-th percentile vehicle
travel speed not to exceed the posted speed limit with
a certain probability, which is referred to as the required
reliability level and denoted as τ.

Table 4: 25CBD model estimation results.

Signifcant variable Coefcient
estimate

t-
statistic Variable notation

Constant − 1.17 − 3.82
Indicator of 10 ft lane
width for each
direction

− 0.73 − 3.51 w10

Indicator of each
direction on M st
from 11th st to
Centennial Mall st

1.19 3.84 q1

Indicator of each
direction on N st
from Centennial st to
9th St

1.4 6.33 q2

Directional average
daily trafc per lane∗

− 0.36D-05
(0.00012)

− 0.05
(4.26) Di

Number of
observations 300

Log-likelihood with
constant only − 249.29

Log-likelihood at
convergence − 218.29

McFadden pseudo R-
squared 0.12

Chi squared 62.01
Info. criterion: AIC 1.50
Finite sample: AIC 1.50
Info. criterion: BIC 1.57
∗Random parameter, the standard deviation of parameter distribution is
shown in parentheses.
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Table 6: 40MPH model estimation results.

Signifcant variable Coefcient estimate t-statistic Variable notation
Constant − 3.39 − 12.07
Indicator of 10 ft lane width for each direction∗ 0.06 (0.39) 0.56 (6.71) w10
Indicator of 11 ft lane width for each direction∗ − 0.33 (0.71) − 2.27 (6.14) w11
Directional average daily trafc per lane 0.0002 12.88 Di

Indicator of 2 lanes for each direction − 0.38 − 3.28 q7
Segment length 1.17 7.08 q8
Indicator of each direction on Cornhusker
highway between N 29th st and N 33rd st 1.01 0.09 q9

Indicator of each direction with average daily
travel in vehicles per lane less than 10000 1.79 10.145 q10

Dispersion parameter 5.03 1.08
Number of observations 830
Log-likelihood with constant only − 1649.98
Log-likelihood at convergence − 1113.51
McFadden pseudo R-squared 0.33
Chi squared 1072.95
Info. criterion: AIC 2.71
Finite sample: AIC 2.71
Info. criterion: BIC 2.77
∗Random parameter, the standard deviation of parameter distribution is shown in parentheses.

Table 7: 45MPH model estimation results.

Signifcant variable Coefcient estimate t-statistic Variable notation
Constant − 1.86 − 17.91
Indicator of 11 ft lane width for each direction∗ − 0.06 (0.52) − 0.68 (7.49) w11
Directional average daily trafc per lane 0.0001 11.73 Di

Segment length 0.65 5.35 q8
Indicator of each direction on 27th st between Old Dairy rd and Kmart Dr 1.58 7.51 q11
Indicator of each direction on Nebraska highway from S 33rd st to S 27th st 0.94 2.71 q12
Dispersion parameter 7.21 2.76
Number of observations 910
Log-likelihood with constant only − 1331.99
Log-likelihood at convergence − 1004.13
McFadden pseudo R-squared 0.25
Chi squared 655.72
Info. criterion: AIC 2.22
Finite sample: AIC 2.22
Info. criterion: BIC 2.27
∗Random parameter, the standard deviation of parameter distribution is shown in parentheses.

Table 8: Travel speed data collection sites.

Main street
Direction

From To Group Lane width
(ft)From To

12th S N O st P st 25CBD 9
M st W E 12th st 13th st 25CBD 10
12th S N N st O st 25CBD 11
12th S N M st N st 25CBD 12
Van Dorn st W E S 40th st S 48th st 35NCBD 9
16th st N S A st south st 35NCBD 10
70th N S S Wedgewood Dr Teton Dr 35NCBD 11
27th st S N Capitol Pkwy Randolph st 35NCBD 12
W O st E W N 70th st N68th st 40MPH 10
Pine Lake rd E W S 27th st Ridge rd/Helen Witt Dr 40MPH 11
Superior st W E N 14th st N 20th st 40MPH 12
27th st S N Hwy6 K mart Dr 45MPH 10
Pine Lake rd E W Beaver Creek ln S 40th st 45MPH 11
27th st N S Superior st Old Dairy rd 45MPH 12
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At last, we use Fi
l(w, q) to denote the regression

function for the annual crash frequency and Viλ
l (w, q) to

denote the vehicle travel speed at λ-th percentile with posted
speed limit l ∈ L in scenario i ∈ S, where w � ( wk k∈W) and
q � ( qi i∈Q). Below, we present the generic two-stage sto-
chastic programmingmodel with a chance constraint for our
problem.

min E(∆,δ) 
l∈L

u
i
lF

i
l(w, q) , (1)

s.t. 
k∈W

wk ≤ 1, (2)


l∈L

u
i
l � 1 i ∈ S, (3)

Pi∈S V
iλ
l (w, q)≤ lu

i
l + M 1 − u

i
l  

l∈L ≥ τ, (4)

qi ∈ Θ i ∈ Q, (5)

wk ∈ B k ∈W, (6)

u
i
l ∈ B l ∈ L, i ∈ S, (7)

where setΘ includes additional necessary restrictions for the
road geometric design parameter variables qi i∈Q. In this
model, objective function (1) minimizes the expected annual
crash frequency over all scenarios of (∆, δ). Constraint (2) is
to select exactly one lane width. Note that 12 ft lane width is
selected when k∈Wwk � 0. Constraints (3) select one posted

Table 9: Results of linear regression models for travel speed during 1–3 pm

Model summary for 25CBD
Dependent variable Number of observations Adjusted R square Standard error
Vehicles’ travel speed 1456 0.177 5.440

Coefcient estimate
Independent variable Coefcient t-statistic Variable notation
Constant 23.651 41.539
Indicator of 9 ft lane width − 6.186 − 14.445 w9
Indicator of 10 ft lane width − 4.236 − 8.654 w10

Model summary for 35NCBD
Dependent variable Number of observations Adjusted R square Standard error
Vehicles’ travel speed 3099 0.055 5.200

Coefcient estimate
Independent variable Coefcient t-statistic Variable notation
Constant 36.972 31.009
Indicator of 9 ft lane width 3.213 3.795 w9
Indicator of shoulder appearance 2.503 7.390 q13
Number of through lanes − 0.832 − 2.165 q14
Number of vehicles in every fve minutes − 0.024 − 3.998 di

Model summary for 40MPH
Dependent variable Number of observations Adjusted R square Standard error
Vehicles’ travel speed 5005 0.379 4.992

Coefcient estimate
Independent variable Coefcient t-statistic Variable notation
Constant 42.885 113.809
Indicator of 10 ft lane width − 6.279 − 24.451 w10
Indicator of 11 ft lane width 1.209 5.339 w11
Number of vehicles in every fve minutes − 0.029 − 5.129 di

Model summary for 45MPH
Dependent variable Number of observations Adjusted R square Standard error
Vehicles’ travel speed 4415 0.448 5.326

Coefcient estimate
Independent variable Coefcient t-statistic Variable notation
Constant 34.885 64.940
Indicator of 10 ft lane width − 3.587 − 18.952 w10
Indicator of 11 ft lane width 9.901 28.769 w11
Number of vehicles every fve minutes 0.029 5.934 di
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speed limit in each scenario i ∈ S. Chance constraint (4)
ensures that, across all scenarios i ∈ S, the probability of the
λ-th percentile travel speed not exceeding the selected posted
speed limit is beyond the reliability level τ, where M is a big
enough constant. Constraints (5) are additional necessary
restrictions for the road geometric design parameters, such
as binary restrictions for variables qi i∈Q\ 8,14{ } and integer
restriction for variable q14. At the end, constraints (6) and (7)
are the binary restrictions.

5.2. Case Study. In this section, we apply the model pro-
posed in Section 5.1 to the trafc environment in Lincoln,
Nebraska, using the data collected and regression models
developed in Section 4. Assuming a new road of 0.264 miles

(the average segment length of the observed sites) will be
constructed in our data collection area, we would like to
identify the optimal road geometric design to minimize the
expected annual crash frequency while keeping the vehicle
travel speed compliant to the posted speed limit to mitigate
the crash severity.

As discussed in Sections 3 and 4, the posted speed limits
applicable in our study in the urban area of Lincoln,
Nebraska, are 25, 35, 40, and 45MPH. Recall that in the
regression analysis for the crash frequency in Section 3.2, the
signifcant dependent variables with their coefcient esti-
mates and notation are presented in Tables 4–7. In the
regression analysis for the average vehicle travel speed in
Section 4.2, the signifcant dependent variables with their

Table 10: Results of linear regression models for travel speed during 3:30–5:30 pm

Model summary for 25CBD
Dependent variable Number of observations Adjusted R square Standard error
Vehicles’ travel speed 2250 0.226 5.363

Coefcient estimation
Independent variable Coefcient t-statistic Variable notation
Constant 23.717 64.830
Indicator of 9 ft lane width − 7.934 − 19.961 w9
Indicator of 10 ft lane width 1.323 4.115 w10
Indicator of 11 ft lane width − 3.497 − 9.501 w11
Number of vehicles in every fve minutes − 0.026 − 2.924 di

Model summary for 35NCBD
Dependent variable Number of observations Adjusted R square Standard error
Vehicles’ travel speed 4864 0.119 6.143

Coefcient estimation
Independent variable Coefcient t-statistic Variable notation
Constant 36.193 64.337
Indicator of 9 ft lane width 1.962 3.349 w9
Indicator of 10 ft lane width 3.947 13.738 w10
Indicator of 11 ft lane width 7.636 19.598 w11
Number of vehicles in every fve minutes − 0.067 − 9.623 di

Model summary for 40MPH
Dependent variable Number of observations Adjusted R square Standard error
Vehicles’ travel speed 7754 0.205 4.734

Coefcient estimation
Independent variable Coefcient t-statistic Variable notation
Constant 40.056 487.711
Indicator of 10 ft lane width − 5.211 − 39.248 w10
Indicator of 11 ft lane width 1.147 7.239 w11

Model summary for 45MPH
Dependent variable Number of observations Adjusted R square Standard error
Vehicles’ travel speed 6082 0.588 4.651

Coefcient estimation
Independent variable Coefcient t-statistic Variable notation
Constant 43.394 77.442
Indicator of 10 ft lane width − 6.839 − 48.637 w10
Indicator of 11 ft lane width 6.064 23.430 w11
Number of vehicles every fve minutes − 0.031 − 6.433 di

Journal of Advanced Transportation 11



coefcient estimates and notation are presented in Tables 9
and 10.

Te randomness of the two variables, directional average
daily trafc per lane and 5-minute travel volume, introduces
uncertainty to this case. To implement the stochastic pro-
gramming model presented in Section 5.1, a fnite collection
of scenarios is needed to represent the possible cases of these
random variables. We cluster historical data values into
appropriate ranges that best depict the possible cases of the
random variables. Tis approach enables us to capture the
range of possible trafc volumes while also balancing the
computational complexity of the model.

Te directional average daily trafc per lane at the 14 data
collection sites is shown in Figure 1. We sort and group them
into three cases: low directional average daily trafc per lane
with an average of 3868.4 at probability 0.714, medium di-
rectional average daily trafc per lane with an average of
9308.33 at probability 0.214, and high directional average daily
trafc per lane with an average of 19480.37 at probability 0.072.

Te 5-minute travel volumes of the 14 data collection
sites for 1–3 pm and 3:30–5:30 pm time segments are dis-
played in histograms in Figure 2. For the 1–3 pm segment, it
is observed that about 98% of the 5-minute travel volumes
fall between 0 and 120. Based on this, we divide the data into
three groups according to the 5-minute travel volume: low 5-
minute travel volume (less than 40) at 1–3 pm with an
average of 22.13 at probability 0.4344, medium 5-minute
travel volume (between 40 and 80) at 1–3 pmwith an average
of 58.93 at probability 0.3031, and high 5-minute travel
volume (greater than 80) at 1–3 pm with an average of
100.69 at probability 0.2625. Tese three groups provide
three cases for the 5-minute travel volume in the 1–3 pm
segment. Similarly, for the 3:30–5:30 pm segment, it is found
that about 93.5% of the 5-minute travel volumes are between
0 and 150. We also divide this data into three groups: low 5-
minute travel volume (less than 50) at 3:30–5:30 pm with an
average of 24.95 at probability 0.3388, medium 5-minute
travel volume (between 50 and 100) at 3:30–5:30 pm with an
average of 76.43 at probability 0.3420, and high 5-minute
travel volume (greater than 100) at 3:30–5:30 pm with an
average of 130.87 at probability 0.3192. Tese three groups
provide three cases for the 5-minute travel volume in the 3:

30–5:30 pm segment. By combining the three cases of the
directional average daily trafc per lane and the three cases
of the 5-minute travel volume for each time segment, we
generate nine scenarios for the 1–3 pm segment and nine
scenarios for the 3:30–5:30 pm segment.

Below, we summarize the parameters and variables, and
present the models for our case study.

Parameters are as follows:

(i) W � 9, 10, 11{ }: the set of possible lane widths in
addition to 12 ft lane width

(ii) L � 25, 35, 40, 45{ }: the set of posted speed limits
under consideration

(iii) S � 1, . . . , 9{ }: the set of scenarios
(iv) pi: probability of scenario i ∈ S

(v) τ: required reliability level.
(vi) ρ: the number of standard errors from the average

vehicle speed corresponding to the λ-th percentile
speed, i.e., ρ � NORM.S.INV(λ)

(vii) Di: the directional average daily trafc per lane in
scenario i ∈ S

(viii) di: the average 5-minute travel volume in scenario
i ∈ S

First-stage decision variables are as follows:

(i) wk � 1 if the lane width k ∈W is adopted, wk � 0
otherwise

(ii) qi: the value of the i-th road geometric design
parameter variable as defned in Tables 4–7 and 9,
10 with i ∈ Q

Second-stage decision variables are as follows:

(i) ui
l � 1 if road speed limit l ∈ L is adopted in sce-

nario i ∈ S, ui
l � 0 otherwise

(ii) ni
l: the expected annual crash frequency with lane

width l ∈ L in scenario i ∈ S (auxiliary variables for
ease of model presentation)

(iii) zi
l � 1 if the λ-th percentile vehicle travel speed is

under the speed limit l ∈ L in scenario i ∈ S, zi
l � 0

otherwise

Te model for the 1–3 pm time segment
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Figure 1: Average daily trafc at 14 data collection sites.
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min 
i∈S

p
i


l∈L

u
i
ln

i
l,

s.t.(2), (3), (6), (7),

(8)

n
i
25 � e

− 1.17− 0.73w10+1.19q1+1.4q2+0.0000036Di

  i ∈ S, (9)

n
i
35 � e

− 1.25− 0.36w9− 0.28w10− 0.3w11− 0.62q3+0.39q4+0.93q5+1.6q6+0.0003Di

i ∈ S, (10)

n
i
40 � e

− 3.39+0.06w10 − 0.33w11+0.0002Di − 0.38q7+1.17q8+1.01q9+1.79q10 i ∈ S, (11)

n
i
45 � e

− 1.86− 0.06w11+0.0001Di+0.65q8+1.58q11+0.94q12   i ∈ S, (12)

23.651 − 6.186w9 − 4.236w10 + 5.440ρ≤ 25z
i
25 + M 1 − z

i
25   i ∈ S, (13)

36.972 + 3.213w9 + 2.503q13 − 0.832q14 − 0.024d
i
+ 5.200ρ≤ 35z

i
35 + M 1 − z

i
35   i ∈ S, (14)

42.885 − 6.279w10 + 1.209w11 − 0.029d
i
+ 4.992ρ≤ 40z

i
40 + M 1 − z

i
40   i ∈ S, (15)

34.885 − 3.587w10 + 9.901w11 + 0.029d
i
+ 5.326ρ≤ 45z

i
45 + M 1 − z

i
45   i ∈ S, (16)

z
i
l ≤ u

i
l l ∈ L, i ∈ S, (17)


i∈S

p
i


l∈L

z
i
l ≥ τ (18)

z
i
l ∈ B l ∈ L, i ∈ S, (19)

q3 + q7 ≤ 1, (20)

q14 � 3 − 2q3 − q7, (21)

q8 � 0.264, (22)

q1, q2, q3, q4, q5, q6, q7, q9, q10, q11, q12, q13 ∈ B, (23)

where constraints (9)–(12) use auxiliary variables to
simplify the objective function and constraints (13)–(19)
are the deterministic equivalent of constraint (4) for the 1–3

pm time segment. Constraints (20)–(23) are the additional
necessary restrictions for the road geometric design
variables qi i∈Q.
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Figure 2: 5-Minute travel volume: (a) 1–3 pm and (b) 3:30–5:30 pm.
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Te model for the 3:30–5:30 pm time segment

min(8),

s.t.(2), (3), (6), (7), (9) − (12), (17) − (23),

23.717 − 7.934w9 + 1.323w10 − 3.497w11 − 0.026d
i
+ 5.363ρ≤ 25z

i
25 + M 1 − z

i
25   i ∈ S,

(24)

36.193 + 1.962w9 + 3.947w10 + 7.636w11 − 0.067d
i
+ 6.143ρ≤ 35z

i
35 + M 1 − z

i
35   i ∈ S, (25)

40.056 − 5.211w10 + 1.147w11 + 4.734ρ≤ 40z
i
40 + M 1 − z

i
40   i ∈ S, (26)

43.394 − 6.839w10 + 6.064w11 − 0.031d
i
+ 4.651ρ≤ 45z

i
45 + M 1 − z

i
45   i ∈ S, (27)

where constraints (24)–(27) together with (17)–(19) are the
deterministic equivalent of constraint (4) for the 3:30–5:30
pm time segment.

To have a comprehensive computational study of pos-
sible situations, we test for a variety of reliability levels
(τ � 0.5, 0.6, 0.7, 0.8, 0.9 and 1) and up to three standard
deviations from the estimated mean vehicle travel speed
(equivalently, 0.1 to 99.9 percentiles).

Table 11 presents the optimal objective function values of
the two-stage stochastic programming model, i.e., the
minimum expected annual crash frequencies, with the
corresponding percentile of vehicle travel speed under the
posted speed limit for time segments 1–3 pm and 3:30–5:30
pm with diferent reliability levels. “Infeasible” cases are the
models for which no feasible solution exists because of the
overrestrictive requirement for trafc speed limit control.

Te solution of each model is composed of the optimal
values of the studied road geometric design parameters as
well as the selected posted speed limit for each scenario. For
example, in time segment 1–3 pm with 80% reliability level
(τ � 0.8), if we would have 84.1% of the vehicles (ρ � 1)

compliant to the posted speed limit, the minimum crash
frequency is 0.10794 with the optimal solution as: 10 ft road
with 2 lanes each direction, 40MPH posted speed limit for

scenarios 2 and 3, 25MPH posted speed limit for all other
scenarios, and value 0 for all other parameters.

Due to the length of the complete computational results,
in Table 11 we report only the computational results with the
speed control at 0.1%, 2.2%, 15.8%, 50%, 84.1%, 97.7%, and
99.9%, i.e., ρ � − 3, − 2, − 1, 0, 1, 2, and 3, respectively. Te
complete computational results can be found in Appendix
A. Also, Figure 3 depicts the changes in crash frequency as
the road geometric design shifts to promote lower average
vehicle travel speed.

As presented, with the increase of the reliability level
(i.e., with a higher chance that the speed compliance can be
met across all scenarios), the expected annual crash fre-
quency goes up. Tis is because the chance constraint brings
to the model an additional restriction, which leads the
priority of the road geometric design to shift from crash
frequency toward crash severity. Te higher the reliability
level is, the more restrictive the model is. In other words, the
chance constraint trades of the crash frequency for the lower
severity of crashes in the road design. Similarly, at the same
reliability level, the higher the speed compliance percentile is
(i.e., the less severe the crashes may be), the more expected
annual crashes there are. Tis is also because the road design
of the lowest crash frequency is sacrifced to comply with the

Table 11: Computational results of models for 1–3 pm and 3:30–5:30 pm time segments.

Time segment Reliability level
τ

ρ, number of standard deviations from mean speed (percentile)
← High speed and high severity Low speed and low severity ⟶

− 3 − 2 − 1 0 1 2 3
(0.1%) (2.2%) (15.8%) (50%) (84.1%) (97.7%) (99.9%)

1–3 pm

0.5 0.08670 0.08670 0.08670 0.09259 0.09259 0.19312 Infeasible
0.6 0.08670 0.08670 0.08670 0.09259 0.09259 0.21410 Infeasible
0.7 0.08670 0.08670 0.08670 0.09259 0.10004 0.23528 Infeasible
0.8 0.08670 0.08670 0.08670 0.09259 0.10794 0.26316 Infeasible
0.9 0.08670 0.08670 0.08670 0.09259 0.10847 0.29785 Infeasible
1 0.08670 0.08670 0.08670 0.09259 0.11592 0.38713 Infeasible

3:30–5:30 pm

0.5 0.08670 0.08670 0.08670 0.09259 0.09259 0.18508 Infeasible
0.6 0.08670 0.08670 0.08670 0.09259 0.09259 0.22457 Infeasible
0.7 0.08670 0.08670 0.08670 0.09259 0.09259 Infeasible Infeasible
0.8 0.08670 0.08670 0.08670 0.09259 0.09860 Infeasible Infeasible
0.9 0.08670 0.08670 0.08670 0.09259 0.10608 Infeasible Infeasible
1 0.08670 0.08670 0.08670 0.09259 0.18976 Infeasible Infeasible
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speed control to have a higher percentile of the trafc fow to
be under the posted speed limit to mitigate the crash severity.
According to the computational results in Appendix A,
when no more than 24.2% of the vehicle speeds (− 0.7
standard deviation from the mean speed) at 1–3 pm and no

more than 38.2% of the vehicle speeds (− 0.3 standard de-
viation from the mean speed) at 3:30–5:30 pm are required
to be lower than the posted speed limit, the objective
function values remain the same, at 0.0867, which is the
lowest expected annual crash frequency. Tis is because at

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.05

0
-3

-2
.7

-2
.4

-2
.1

-1
.8

-1
.5

-1
.2

-0
.9

-0
.6

-0
.3 0.
30

0.
6

0.
9

1.
2

1.
5

1.
8

2.
1

2.
4

2.
7 3

Ex
pe

ct
ed

 A
nn

ua
l C

ra
sh

Fr
eq

ue
nc

y

τ=0.5
τ=0.6
τ=0.7

τ=0.8
τ=0.9
τ=1

Number of Standard Deviations from Mean Speed

(a)

-3
-2

.7
-2

.4
-2

.1
-1

.8
-1

.5
-1

.2
-0

.9
-0

.6
-0

.3 0.
30

0.
6

0.
9

1.
2

1.
5

1.
8

2.
1

2.
4

2.
7 3

0.4
0.35

0.3
0.25

0.2
0.15

0.1
0.05

0

Ex
pe

ct
ed

 A
nn

ua
l C

ra
sh

 
Fr

eq
ue

nc
y

τ=0.5
τ=0.6
τ=0.7

τ=0.8
τ=0.9
τ=1

Number of Standard Deviations from Mean Speed

(b)

Figure 3: Expected annual crash frequency with diferent reliability and speed control levels: (a) 1–3 pm and (b) 3:30–5:30 pm.

Table 12: Expected annual crash frequency for 1–3 pm with diferent τ and ρ.

ρ
Reliability level τ

0.5 0.6 0.7 0.8 0.9 1
− 3.0 to − 1.0 0.0867 0.0867 0.0867 0.0867 0.0867 0.0867
− 0.9 0.0867 0.0867 0.0867 0.0867 0.0867 0.0867
− 0.8 0.0867 0.0867 0.0867 0.0867 0.0867 0.0867
− 0.7 0.0867 0.0867 0.0867 0.0867 0.0867 0.0867
− 0.6 0.0867 0.09259 0.09259 0.09259 0.09259 0.09259
− 0.5 0.0867 0.09259 0.09259 0.09259 0.09259 0.09259
− 0.4 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
− 0.3 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
− 0.2 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
− 0.1 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
0 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
0.1 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
0.2 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
0.3 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
0.4 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
0.5 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
0.6 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
0.7 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
0.8 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
0.9 0.09259 0.09259 0.10004 0.10794 0.10847 0.11592
1.0 0.09259 0.09259 0.10004 0.10794 0.10847 0.11592
1.1 0.15001 0.16805 0.10004 0.21135 0.24603 0.27936
1.2 0.15001 0.16805 0.10004 0.21135 0.24603 0.27936
1.3 0.17774 0.19794 0.21814 0.23896 0.25916 0.27936
1.4 0.19312 0.2141 0.23528 0.26316 0.29785 0.38713
1.5 0.19312 0.2141 0.23528 0.26316 0.29785 0.38713
1.6 0.19312 0.2141 0.23528 0.26316 0.29785 0.38713
1.7 0.19312 0.2141 0.23528 0.26316 0.29785 0.38713
1.8 0.19312 0.2141 0.23528 0.26316 0.29785 0.38713
1.9 0.19312 0.2141 0.23528 0.26316 0.29785 0.38713
2.0 0.19312 0.2141 0.23528 0.26316 0.29785 0.38713
2.1 0.19771 0.2217 0.26892 Infeasible Infeasible Infeasible
2.2 0.19771 0.2217 0.26892 Infeasible Infeasible Infeasible
2.3 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
2.4 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
2.5 to 3.0 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
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least 24.2% of the trafc at 1–3 pm and 38.2% of the trafc at
3:30–5:30 pm are naturally lower than the selected posted
speed limit. When we aim to have more than 98.6% of the
vehicle speed (2.2 standard deviation from the mean speed)
at 1–3 pm or more than 98.9% of the vehicle speeds (2.3
standard deviation from the mean speed) at 3:30–5:30 pm to
be lower than the speed limit, the models are infeasible. Tis
is because the speed control requirement is so restrictive that
there is no of combination of road geometric design pa-
rameters and posted speed limit to satisfy this requirement.
Terefore, adapting road geometric design parameters for
speed compliance in order to mitigate crash severity is only
applicable on a certain range of the percentiles of the vehicle
travel speed, i.e., between 24.2–98.6% for 1–3 pm and
38.2–98.9% for 3:30–5:30 pm.

6. Conclusions and Future Research

In this study, we frst examined the safety and operational
efects of the road geometric design parameters. Te safety
analysis highlighted the impact of lane widths as well as

other road geometric design parameters on annual crash
frequency in the urban environments of Lincoln, Nebraska,
by using Poisson and negative binomial regressions. Te
operational analysis studied the efect of the lane width on
vehicle’s travel speed using linear regressions. Integrating
the regression results, we proposed a two-stage stochastic
programming model to determine the optimal lane widths,
posted speed limits and other-related road geometric design
parameters for the possible scenarios while improving ve-
hicle travel speed compliance with the posted speed limit to
mitigate crash severity. Te proposed model has been tested
on the data collected at 14 data collection sites in Lincoln,
Nebraska. Depending on the reliability and percentile of
speed compliance, the model provided us with diferent sets
of road geometric design parameters to balance the goals of
minimizing the annual crash frequency and mitigating the
crash severity. Te computational study validated the ef-
fectiveness of our decision scheme.We are also collaborating
with the government to implement this methodology and
experiment with our fndings in practice, further proving its
efectiveness.

Table 13: Expected annual crash frequency for 3:30–5:30 pm with diferent τ and ρ.

ρ
Reliability level τ

0.5 0.6 0.7 0.8 0.9 1
− 3.0 to − 1.0 0.0867 0.0867 0.0867 0.0867 0.0867 0.0867
− 0.9 0.0867 0.0867 0.0867 0.0867 0.0867 0.0867
− 0.8 0.0867 0.0867 0.0867 0.0867 0.0867 0.0867
− 0.7 0.0867 0.0867 0.0867 0.0867 0.0867 0.0867
− 0.6 0.0867 0.0867 0.0867 0.0867 0.0867 0.0867
− 0.5 0.0867 0.0867 0.0867 0.0867 0.0867 0.0867
− 0.4 0.0867 0.0867 0.0867 0.0867 0.0867 0.0867
− 0.3 0.0867 0.0867 0.0867 0.0867 0.0867 0.0867
− 0.2 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
− 0.1 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
0 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
0.1 0.09259 0.09259 0.09259 0.09259 0.09259 0.09259
0.2 0.09259 0.09259 0.09259 0.09259 0.09259 0.12546
0.3 0.09259 0.09259 0.09259 0.09259 0.09259 0.12546
0.4 0.09259 0.09259 0.09259 0.09259 0.09923 0.15833
0.5 0.09259 0.09259 0.09259 0.09259 0.09923 0.18976
0.6 0.09259 0.09259 0.09259 0.09259 0.09923 0.18976
0.7 0.09259 0.09259 0.09259 0.0986 0.10608 0.18976
0.8 0.09259 0.09259 0.09259 0.0986 0.10608 0.18976
0.9 0.09259 0.09259 0.09259 0.0986 0.10608 0.18976
1.0 0.09259 0.09259 0.09259 0.0986 0.10608 0.18976
1.1 0.18019 0.20293 0.22782 0.25078 0.27567 0.29587
1.2 0.18019 0.20293 0.22782 0.25078 0.27567 0.29587
1.3 0.18508 0.20864 0.2322 0.25648 0.28005 0.30361
1.4 0.18508 0.20864 0.2322 0.25648 0.28005 0.30361
1.5 0.18508 0.20864 0.2322 0.25648 0.28005 0.30361
1.6 0.18508 0.20864 0.2322 0.25648 0.28005 0.30361
1.7 0.18508 0.20864 0.2322 0.25648 0.28005 0.30361
1.8 0.18508 0.20864 0.2322 0.25648 0.28005 0.30361
1.9 0.18508 0.2141 0.23528 0.26316 0.29785 0.38713
2.0 0.18508 0.22457 Infeasible Infeasible Infeasible Infeasible
2.1 0.19664 0.23295 Infeasible Infeasible Infeasible Infeasible
2.2 0.19664 0.23295 Infeasible Infeasible Infeasible Infeasible
2.3 0.19664 0.23295 Infeasible Infeasible Infeasible Infeasible
2.4 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
2.5 to 3.0 Infeasible Infeasible Infeasible Infeasible Infeasible Infeasible
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Te integration of regression analysis results into a sto-
chastic programming model creates an innovative decision-
making framework for road geometric design to improve
transportation safety.Tis methodology has the potential for
widespread use, as it can be applied in diverse environments
to help reduce both crash frequency and severity. For ex-
ample, with the increasing emergence of connected and
autonomous vehicles, incorporating platoon strategies into
road geometric design is a crucial aspect of transportation
planning (Yang et al. [29], Zhong et al. [30]). Taking into
consideration the characteristics of platoon strategies in the
safety and travel speed analyses, such as platoon percentage,
platoon size, intraplatoon distance, platoon speed, forma-
tion, and coordination time, the proposed stochastic pro-
gramming model can be applied to determine the road
geometric design that minimizes crash frequency while
mitigating crash severity, accounting for the existence of
platoon strategies. Furthermore, we also found many in-
teresting future research directions to explore. For example,
the safety analysis can be done for the crashes at the in-
tersections, and a similar stochastic programmingmodel can
help determine the optimal design to improve safety at the
intersections. Also, it would be interesting to incorporate
more trafc violation events into consideration when ana-
lyzing the trafc safety, such as the vehicle lane violations.

Appendix

A. Complete Computational Results

In this appendix, we include the complete computational
results in Tables 12 and 13 for the case study in Section 5.2.
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