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Te link dynamic vehicle count is a spatial variable that measures the trafc state of road sections, which refects the actual trafc
demand.Tis paper presents a hybrid deep learning method that combines the gated recurrent unit (GRU) neural network model
with automatic hyperparameter tuning based on Bayesian optimization (BO) and the improved complete ensemble empirical
mode decomposition with adaptive noise (ICEEMDAN) model. Tere are four steps in this hybrid approach. First, the ICE-
EMDAN is employed to decompose the link dynamic vehicle count time series data into several intrinsic components. Second, the
components are predicted by the GRU model. At the same time, the Bayesian optimization method is utilized to automatically
optimize the hyperparameters of the GRU model. Finally, the predicted subcomponents are reconstructed to obtain the fnal
prediction results. Te proposed hybrid deep learning method is tested on two roads of Hangzhou, China. Results show that,
compared with the 12 benchmark models, the proposed hybrid deep learning model achieves the best performance in link
dynamic vehicle count forecasting.

1. Introduction

With the development of the social economy and urbani-
zation, travellers’ trafc demands increased rapidly. Trafc
problems such as trafc congestion, environmental pollu-
tion, and economic losses have brought challenges to urban
transportation management. Intelligent transportation
technology promises to deal with these problems, and ac-
curate and efective forecasting of trafc demands is a key
step. Traditionally, indicators such as trafc fow are used to
represent trafc demands. While in seriously congested
areas, those indicators can hardly refect actual trafc de-
mands [1]. Trafc signal control systems, such as SCOOT
(Split Cycle Ofset Optimization Technique) and SCATS
(Sydney Coordinated Adaptive Trafc System), failed to
work properly due to the inaccurate trafc demand esti-
mation in the congested period [2, 3].

Compared with the indicator of trafc fow, the link
dynamic vehicle count (LDVC) refers to the vehicle number

on a specifc road that describes the space occupancy rate of
roads [4–6] and can refect trafc demand more precisely
[7, 8]. Accurate and real-time prediction of the link dynamic
vehicle count can also provide a reliable basis for the net-
work-wide trafc signal control strategy and optimization
[1, 2, 9]. In recent years, thanks to continuous investments in
intelligent transportation systems, various sensors have been
deployed and a large amount of real-time trafc data can be
collected. Te link dynamic vehicle count data are efectively
calculated under the new data environment with mature
technology [10, 11]. However, the critical issues and chal-
lenges unaddressed in forecasting link dynamic vehicle
count in the following aspects: (a) LDVC is often disturbed
by stochastic factors. For instance, LDVC experiences a
sudden increase and decrease when trafc fow becomes
congested or trafc incidents occur, such as accidents and
temporary trafc control measures. (b) Although selecting
the “best” model among a set of baselines is signifcant, a
better alternative is to consider the strength and robustness
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of the prediction results. By decomposing trafc data into
subsequences, it can help capture both the common ten-
dency and some changes in trafc fow to improve the
prediction accuracy. (c) Most machine learning-based
methods canmine the nonlinear profle of link vehicle count,
but overftting issues may occur. It indicates that the model
extracts noise in the training data as a feature of the data
itself, which in turn degrades performance in the test dataset.

Machine learning approaches are widely used in trafc
forecasting. Researchers obtained some progress in pre-
diction algorithms, model fusion, and temporal and spatial
characteristics of trafc data. However, there are still some
crucial issues and challenges. (a) In trafc research feld,
most forecasting models focus on trafc fow [12–15], trafc
speed [16–18], or travel time [19–21]. Few forecasting
models focus on the prediction of the LDVC, let alone
considering the data characteristics of the LDVC in the
prediction model. (b) Te LDVC has nonlinear and sto-
chastic characteristics, such as the random change due to
trafc congestion and weather factors. Simultaneously, due
to the signal light control, weekday commuting, the LDVC
shows the characteristics of long short-term periodic
changes in signal cycle, day, and week pattern. (c) Te
excellent performance of deep learning methods in trafc
forecasting is inseparable from the model hyperparameter
tuning efciently and appropriately. Te prediction model
represented by deep learning requires many hyperparameter
tuning, which is time consuming and laborious but hard to
obtain suitable hyperparameters.

In response to these challenges, this paper proposes a
hybrid ICEEMDAN-GRU-BO forecasting model for the link
dynamic vehicle count. Te hybrid model fuses the ICE-
EMDAN based on hyperparameter tuning with Bayesian
optimization (BO) and the improved complete ensemble
empirical mode decomposition with adaptive noise (ICE-
EMDAN). First, the ICEEMDAN is utilized to decompose
the link dynamic vehicle count data into subcomponents.
Tus, the decomposed components reduce the stochastic
characteristics and become more regular and suitable for
prediction. Second, the GRU models are applied to predict
those components by considering the feature of long short-
term periods. Simultaneously, the BO is used to automati-
cally optimize the hyperparameters of the GRU models to
deal with the challenge problem of the hyperparameter
tuning. Finally, the predicted subcomponents are recon-
structed to obtain the fnal prediction results.

Te contributions of this paper can be summarized as
follows: (1) For the frst time, a hybrid ensemble decom-
position deep learning prediction framework is proposed to
predict the link dynamic vehicle count to improve the
prediction accuracy and reduce the prediction time. (2)
Aiming at tackling the challenges mentioned above, we
present a novel approach by integrating the GRU with
ICEEMDAN.Te data decomposition method ICEEMDAN
is used to reveal the nonlinearity and stochastic character-
istic of the link dynamic vehicle count. We propose a short-
term prediction method based on GRU model to efectively
capture the long short-term period features. (3) To avoid
overftting issues and address the considerable time

consuming and laborious in hyperparameter tuning, the
hyperparameters in our model are automatically and ef-
ciently tuned using BO. (4) Te test results show that the
proposed hybrid deep learning framework achieved the best
performance in the aspect of improvement in prediction
performance and reduction in training time compared with
a variety of benchmark models. Considering the LDVC is
one of the best inputs for real-time control applications in
urban areas, the proposed model could provide the accurate
real-time LDVC forecast data for real-time trafc control.

Te rest of the paper is organized as follows: Section 2
reviews the relevant literature about trafc prediction model,
hybrid model, and hyperparameter optimization. Section 3
proposes the framework of the prediction model, including
the logical relationship between data decomposition, model
training, parameter optimization, and prediction compo-
nent reconstruction. Te fundamental methods are
explained, including the sequence data decomposition
method ICEEMDAN, the basic model GRU, and the
hyperparameter tuning algorithmBO. Section 4 validates the
proposed model using actual link dynamic vehicle count
data collected in Hangzhou, China. We further study the
infuence of hyperparameter tuning and data decomposition
on model performance. Besides, we compare the prediction
accuracy and computing time of our model with 12
benchmark models. Section 5 concludes the paper.

2. Literature Review

In the past few decades, there has been a lot of research on
trafc system forecasting. Tis paper focus on the trafc
prediction model, hybrid model, and hyperparameter op-
timization. Te literature review of the three research lines is
summarized as follows.

Tis section frst reviews the literature on trafc infor-
mation prediction models, such as parametric models
[12, 13, 22] and nonparametric models [20, 23–28].

A parametric model mainly considers some unsteady
time series data to establish prediction models with limited
parameters. Autoregressive integrated moving average
(ARIMA) or seasonal autoregressive integrated moving
average (SARIMA) is commonly used in time series data
forecasting in transportation. For example, Williams et al.
developed a SARIMA model to identify seasonal patterns to
capture periodic changes in trafc states [13]. Van Der Voort
et al. used a self-organizing neural network graph as the
initial classifer associated with an individually ARIMA
model to predict the half hour trafc fow on French
highways [12]. Kumar et al. selected a three-lane arterial
road with limited three days of trafc fow data in Chennai,
India, to establish a SARIMA model for trafc fow fore-
casting [14].

Te nonparametric models mainly include machine
learning and deep learning approaches. Machine learning
has been widely used to predict trafc information. For
example, researchers used the k-nearest neighbor (KNN)
model to predict short-term trafc fow [23, 26, 29]. Support
vector regression (SVR) was utilized in trafc fow predic-
tion [27, 29, 30] and travel time forecasting [20]. Random

2 Journal of Advanced Transportation



forest regression (RF) was applied for trafc fow prediction
[31]. Early neural network modeling such as multilayer
perceptron (MLP) [24, 32], back propagation neural net-
work (BPN) [33], and artifcial neutral networks (ANN)
were widely employed in the prediction of trafc systems.
For example, Kumar et al. operated ANN for the short-term
prediction of trafc volume [14]. Ruiz Aguilar et al. proposed
a hybrid prediction method based on the combination of the
ARIMA and ANN models to predict the number of goods
inspected at European border checkpoints [34].

However, the traditional artifcial neural network cannot
capture time-series data features because it does not consider
time dependence. To overcome this shortcoming, re-
searchers have explored a large number of novel neural
network models. Te deep learning models are the fastest
growing algorithms in recent years. In terms of sequence
data modeling, RNN (Recurrent Neural Network) is one of
the representatives. Van Lint et al. proposed a nonlinear
state space method using RNN to predict short-term
highway travel time [19].

RNN’s variant LSTM (Long-Short Term Memory) solves
the shortcoming that RNN cannot store long-term memory of
information. LSTMhas successful applications in trafc system
prediction. For example, Ma et al. wielded remote microwave
sensor data to establish LSTM models to predict trafc speed
[35]. Zhao et al. proposed an LSTMpredictionmodel for short-
term trafc fow prediction [36]. Yang et al. applied LSTM to
predict urban rail transit passenger fow [37].

As an improved algorithm of LSTM, GRU [38] was frst
proposed by Cho et al. in 2014. In most cases, the prediction
performance of GRU is similar to LSTM, but the training
time is reduced. Zhang et al. predict network-wide trafc
speed with a deep learning model, and the results show that
GRU obtains even better performance than LSTM [39].

Te hybrid model that combines data decomposition
and machine learning or deep learning approach can ef-
ciently improve the prediction performance. Te following
part reviews the literature on hybrid models that combine
the data decomposition methods, machine learning, and
deep learning methods. Both machine learning and deep
learning models require stable inputs, and data decompo-
sition methods can efectively improve the quality of model
input data and make the decomposed data more regular
[40]. Choosing a reliable data sequence decomposition
method is critical for the stable and efective input required
in the forecasting model. Traditional data decomposition
methods, such as wavelet transform (WT), have been suc-
cessfully applied in transportation. For example, Wang and
Shi established a short-term trafc speed prediction model
based on chaotic wavelet transform and support vector
machine [16]. However, the traditional wavelet transforms
and Fourier transform techniques have disadvantages. For
example, it is difcult to choose the mother wavelet, while
empirical mode decomposition (EMD) and ensemble em-
pirical mode decomposition (EEMD) are more efective.Te
decomposition method can decompose the data into in-
trinsic mode components. Many researchers have greatly
improved the accuracy of the prediction model based on the
decomposition of EMD and EEMD [41]. For example, Wei

and Chen combined the EMD and back propagation neural
network (BPN) model to predict short-term passenger fow
in the subway system [33]. Yang and Chen combined EMD
and stacked autoencoder (SAE) for passenger fow predic-
tion in urban rail transit [42]. Jiang et al. combined the
EEMD and grey support vector machine model to develop a
hybrid short-term demand forecasting method for short-
term high-speed rail passenger fow forecasting [43]. Te
particle swarm optimization algorithm was used to optimize
the grey support vector machine, and the results show that
the model performs well in terms of prediction accuracy.
Zhang et al. proposed a hybrid deep learning prediction
model that combined 3D convolutional neural network (3D
CNN) and EEMD to predict the network-wide speed of
Beijing, and the results showed that the EEMD method
efectively improves the input data, and 3D CNN can
consider the temporal and spatial characteristics of the road
network [40]. As advantages in data decomposition, other
improved algorithms were proposed based on EMD and
EEMD, such as complementary EEMD (CEEMD) [44], a
complete EEMDwith adaptive noise (CEEMDAN) [45], and
ICEEMDAN [46].

Te excellent performance of the neural network pre-
diction model is inseparable from the parameter optimi-
zation. Te following literature reviews focus on the relevant
parameter optimization methods. Suitable parameter setting
shows an enormous impact on the performance of the neural
network prediction model [43]. For parameter optimization
in machine learning and deep learning models, manual
tuning relies on experience and vulnerable to bias, and the
tuning process is very time-consuming [47, 48]. Commonly
used automatic parameter tuning algorithms [49] include
grid search, random search, and Bayesian optimization. Grid
and random search have shortcomings, in which the new
search may separate from the previous search information
and cannot make full use of prior knowledge. Bayesian
optimization utilizes the prior distribution information of
parameters [50]. It can auto efectively search for hyper-
parameters with fewer iteration steps. Bayesian optimization
has become the most practical tool for parameter optimi-
zation in predictive systems, which is successfully applied in
the deep learning model hyperparameter tuning recently,
such as references [51–53].

In response to these challenges, we propose a hybrid
deep learning model for link dynamic vehicle count fore-
casting. Te data decomposition method ICEEMDAN is
adopted to decompose the irregular trafc demand data to
more simple IMFs components. Te GRU model is used to
predict the IMFs’ components considering long- and short-
term periodic characteristics of trafc demand, and Bayesian
optimization is utilized for automatically tuning multiple
hyperparameters of the deep learning models.

3. Link Dynamic Vehicle Count
Forecasting Model

Tis paper proposes a hybrid deep learning model that
combines ICEEMDAN and GRU with Bayesian optimiza-
tion for link dynamic vehicle count forecasting, called

Journal of Advanced Transportation 3



ICEEMDAN-GRU-BO. Figure 1 shows the framework and
the main steps are as follows:

(1) Data processing, including data cleaning, normali-
zation, and completion. For example, we fll in the
missing data according to the average value of the
previous three steps.

(2) Data decomposition. ICEEMDAN is adopted to
decompose the link dynamic vehicle count into
several intrinsic mode functions (IMFs) and a re-
sidual. Tese mode components are simpler and
more regular, which can improve the accuracy of the
deep learning model.

(3) Subcomponents prediction and hyperparameters
optimization. GRU is used to predict subcompo-
nents of diferent frequencies as the basic prediction
model. Tis framework employs a Bayesian opti-
mization algorithm to optimize the hyperparameters
of each GRU model. Tese hyperparameters include
the initial learning rate, number of hidden units, L2
regularization coefcient, and number of GRU
layers.

(4) Mode reconstruction and results evaluation. Te
fnal prediction result can be obtained by summing
up the predicted subcomponents and evaluated by
the test dataset.

Te following describes the model details.

3.1. Data Normalization. Te data normalization is
adopted in data processing to reduce data redundancy and
improve data usability. After normalizing, the original
data are converted into a pure dimensionless values. Te
training data are transformed into standardized data with
zero mean and unit variance to better ft and prevent
training divergence. Te standardized formula is as
follows:

X′ �
X − X

s(X)
, (1)

where X′ is the normalized data, X is the original data, X is
the mean of the original data, and s(X) is the standard
deviation of the original data.

In the prediction stage, the mean and variance param-
eters are denormalized for the predicted data.

X � s(X) X′ + X, (2)

where X′ is the predicted value after normalization and X is
the fnal predicted value.

3.2. Data Decomposition Method. Te EMD [54] is an
adaptive method for the analysis of nonstationary and
nonlinear signals. EMD can decompose the original signal
into the sum of amplitude and frequency modulation
functions, called “Intrinsic Mode Function” (IMF), and the
fnal monotonic trend. However, EMD has the problem of
“mode mixing,” which is very similar oscillations in diferent

IMFs. Mode mixing reduces the EMD’s ability to recognize
diferent amplitudes in the actual data of the IMF compo-
nents and afects the prediction accuracy of the hybridmodel
[43]. To overcome the problem of mode mixing, researchers
have proposed a new data decomposition method that adds
Gaussian white noise, called “Ensemble Empirical Mode
Decomposition” (EEMD) [55–58]. EEMD is a noise-assisted
data analysis method that aims to overcome the short-
comings of the EMD method. Te steps of EEMD are as
follows:

Step (1): Before EMD decomposition, Gaussian white
noise is added to the original sequence data each time,
and the construction sequence after addition is as
follows:

x
i
(t) � x(t) + w

i
(t), (3)

where xi(t) is the construction sequence data, x(t) is
the original sequence data, and wi(t) ∼ N(0, σ2) is the
added white noise sequence data.
Step (2): EMD is adopted to decompose the con-
struction sequence xi(t) into n IMFs.

x
i
(t) � 

n

j�1
c

i
j(t) + r

i
n(t), (4)

where ci
j(t) is the ith decompose of jth IMF and ri

n(t) is
the ith residual data.
Step (3): Repeat steps (1) and (2) M times, and add
diferent white noise each time to obtain M groups of
corresponding IMFs.
Step (4): Calculate the average value of the corre-
sponding IMFs of the M groups as the fnal IMFs.

cj(t) �
1

M


M

i�1
c

i
j(t), (5)

where ci
j(t) is ith decompose of jth IMF.

When the EEMD decomposition is completed, the
original sequence data can be expressed as n IMFs and a
residual.

x(t) � 

n

j�1
cj(t) + rn(t), (6)

where cj(t), (t � 1, 2, . . . , T) is the jth IMF component
decomposed at time t, rn(t) is the fnal residual, and n is the
number of IMFs.

Te main problem of the EEMD is the high computing
time and the residue of added noise present in the IMFs. In
the EEMD, it can be recognized that every xi(t) is
decomposed independently from the other realizations, and
the reconstructed signal contains residual noise and diferent
realizations of signal plus noise that may produce a diferent
number of modes. To overcome this limitation, the
CEEMDAN algorithm was frst proposed by Torres et al. in
2011 [45]. Te main idea of the CEEMDAN is to add white
noise at each phase of decomposition and calculate a unique
residue to obtain each mode.
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Te resulting dissociation is complemented by a nu-
merically negligible error. However, there are still problems
with some residual noise and “spurious” modes. Te ICE-
EMDAN technique is developed to improve the problems
with some residual noise and “spurious” modes by Colo-
minas et al. [46].

Given a composite signal x(t), where t is the sampling
sequence of the signal, and let EK(·) be the kth IMF obtained
by EMD, and defne M(·) as the operator to calculate the
local mean of the signal, then, the ICEEMDAN algorithm is
described as follows:

Step 1: Calculate the local means of I realizations using
the EMD algorithm:

x
i

� x + β0E1 w
i

 , i � 1, . . . , I, (7)

where β0 � ε0std(x)/E1(wi) and ε0 is the reciprocal of
the desired signal-to-noise ratio between the frst added
noise and the analyzed signal.
Step 2: Calculate the frst residue R1:

R1 �〈M x
i

 〉, (8)

where 〈·〉 is the action of averaging throughout the
realizations.
Step 3: Compute the frst mode at the frst stage (k� 1)
as d1 � x − R1.
Step 4: Estimate the second residue as the average of
local means of the realizations R1 + β1E2(wi) and de-
fne the second mode as follows:

d2 � R1 − R2 � R1 −〈M R1 + β1E2 w
i

  〉. (9)

Step 5: For k� 3, . . ., K; calculate the kth residue:

Rk �〈M Rk−1 + βk−1Ek w
i

  〉,

βk � ε0std rk( , k≥ 1.
(10)

Step 6: Compute the kth mode:

dk � Rk−1 − Rk. (11)

Step 7: Go back to step 4 for the next k.

Compared with EEMD and CEEMD, the ICEEMDAN
can not only reduce the noise in the mode but also decrease
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Figure 1: Framework of the link vehicle dynamic count forecasting model.
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the residual spurious pattern problems caused by signal
overlap, providing an accurate reconstruction of the original
signal.

3.3. GRU Model. As a special RNN structure, LSTM solves
the problems of vanishing gradient and explosive gradient
by changing the cell structure and adding storage cells to
determine whether it is necessary to remember information.
GRU [38] improved LSTM by reducing the number of gates
to decrease the training time. As shown in Figure 2, the GRU
units transfer the input vector xt to the output vector ht

through time t iteration. GRUs consist of two gates: the reset
gate and the update gate. Te main process in a GRU unit
can be described as follows:

rt � σ Wxrxt + Whrht−1 + br( ,

ut � σ Wxuxt + Whuht−1 + bu( ,

yt � tanh Wxhxt + Why rt ⊙ ht−1(  + by ,

ht � 1 − ut( ⊙ ht−1 + ut ⊙yt,

(12)

where ut and rt represent the update and reset gates of the
GRU, respectively, yt means the candidate activation, ht

represents the current activation, and ht−1 is the previous
activation. Wxr, Whr, Wxu, Whu, Wxh, Why is the corre-
sponding weight parameter matrices; br, bu, by is the cor-
responding bias vector; and σ and tanh are the activation
functions. For more GRU information, please see the work
of Chung et al. [59].

3.4. Bayesian Optimization Hyperparameters.
Hyperparameters are the parameters of the training algo-
rithm itself, not directly learned from the training process.
Each model has diferent hyperparameters, and a good
choice of hyperparameters can get the best performance. For
example, there are four key hyperparameters in the GRU
model, such as the number of hidden units, the learning rate,
the number of GRU layers, and the number of hidden units.
However, manual tuning is inefcient and often afected by
human subjective factors.

Te basic idea of Bayesian optimization is to use Bayes’
theorem to estimate the posterior distribution of the ob-
jective function based on the data and then select the
hyperparameter combination of the following samples
according to the distribution. Te Bayesian optimization
algorithm makes full use of the information of the previous
sampling points. Te algorithm optimizes by learning the
shape of the objective function. It will fnd the hyper-
parameters that maximize the result to the global optimal.

Bayesian optimization is generally used to minimize the
objective function f(x) as follows:

x
∗

� argmin
x∈χ

f(x), (13)

where x is a decision variable, χ is the decision space. In
general, the objective functionf(x) is unknown, so it cannot
use gradient descent to solve f(x). Bayesian optimization
utilizes a surrogate model to deal with the optimization

problem of the unknown objective function.Temodel used
to approximate the objective function is called the surrogate
model. Te surrogate model commonly used in Bayesian
optimization is the Gaussian process to obtain its posterior
distribution.

Bayesian optimization also applies an acquisition
function to direct sampling to an area that may improve the
current best observation for searching for the next suitable
sampling point. Te carefully designed acquisition functions
balance the exploration of the search space and existing
felds [48]. Te types of acquisition functions include PI
(Probability of Improvement) and EI (Expected Improve-
ment) [50, 60].

Te steps of Bayesian optimization of hyperparameter
tuning include:

(1) Model initialization. Prepare variables, such as the
initial learning rate, the number of hidden units, and
the L2 regularization coefcient.

(2) Use the Gaussian process to optimize the objective
function.

(3) Perform Bayesian optimization and calculate the
RMSE of the test set.

(4) Check the optimization results. If the results meet the
requirements, Bayesian optimization will output the
hyperparameters. Otherwise, the Bayesian optimi-
zation will be restarted or modifed for the opti-
mization options to continue.

4. Experiments and Results

4.1. Data Description. Te license plate recognition (LPR)
data collected in Jinji Road and Airport City Avenue in
Hangzhou, China, are used to verify the proposed model.
Te selected section of Jinji Road is about 280m long with
three northbound lanes without entrance and exit in the
middle. Te selected section of Airport Avenue is about
560m long. Figure 3 shows the location of the license plate
recognition detector on the Jinji Road. Te data were col-
lected from December 1, 2018 to December 24, 2018. Te
original LPR record data contains the key information, such
as license plate of the car, the timestamp of the car passing
the detected line, lane number, location information, and

σ tanh

htht-1

rt ut yt

Reset Gate

Update Gate

1-

σ

xt

ht

+×

× ×

Figure 2: Te structure of GRU.
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other information, such as car type, car color, and car length.
Ten, the raw LPR data are employed to extract the cor-
responding LDVC data with the 5min time window by the
cumulative curve model of upstream and downstream ve-
hicles [10, 11, 61]. Tus, the model provides 288 LDVC data
points each day. We divide the data into training set and test
set with the ratio of 90 per cent training set and 10 per cent
test set. Te obtained LDVC data of Jinji Road (Data 1) and
Airport Avenue (Data 2) are shown in Figure 4. Te Data 1
on the Jinji Road refects the periodic characteristics of the
data in days and weeks. Data 1 has more obvious morning
peak characteristics, while Data 2 has a slightly higher
evening peak trafc demand. Te proposed model is applied
to the one-step ahead LDVC forecasting problem.Te length
of historical time window is set as 288. Te prediction
horizon is set as 1, that is to say, we use one day historical
data to predict 5-min LDVC.

4.2. IMF Components Extraction. Te quality of input data
will afect the prediction performance, and ICEEMDAN

improves the quality of input data by decomposing the
original data into more regular pattern components. Te
calculation of the decomposition quantity m is determined
by m � fix(log 2(N)) − 1 [56], where N is the length of the
input data. We used ICEEMDAN to decompose the original
Data #1 into 11 IMF components and a residual, as illus-
trated in Figure 5. Te periods of these components range
from short to long periods and have diferent amplitudes.
Te frst subgraph represents the original LDVC data with
noise and the residual shows the trend term of the LDVC
data. Te ICEEMDAN algorithm overcomes the mode
mixing problem of EMD. Taking IMF7 as an example, after
decomposing by ICEEMDAN, the periodic characteristics of
Data #1 in days and weeks are more obvious and more
regular.

4.3. Benchmarks and Measures of Efectiveness. Te real-
world link dynamic vehicle data were divided into training
data set and test data set. We selected 12 benchmark models,
including the SVR (support vector regression) [25], RF

Figure 3: Detectors’ location in Jinji road.
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(random forest) [62], XGBoost (extreme gradient boosting
tree regression) [63], GRU-BO, LSTM-BO, EMD-GRU,
VMD-GRU (variational mode decomposition) [64],
MVMD-GRU (multivariate variational mode decomposi-
tion) [65], EEMD-GRU, CEEMD-GRU (a complete

ensemble empirical mode decomposition) [44], ICE-
EMDAN-GRU, and ICEEMDAN-LSTM-BO for compari-
son. ICEEMDAN-GRU-BO is the proposed prediction
method, which considers the data decomposition and
Bayesian optimization parameters. We choose the baseline
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model for the following reasons: the frst reason is to
compare with commonly used machine learning and deep
learning models. Te second reason is to obtain the pre-
diction performance using Bayesian optimization alone. Te
third reason compares the performance of diferent data
decomposition methods.

Tis paper applied 3 evaluation indicators to evaluate the
model, namely, mean absolute error (MAE), root mean
square error (RMSE), and coefcient of determination (R2).
Te calculation formulas are as follows:

MAE �
1
n



n

i�1
x

(i)
− x

(i)


,
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i�1 x
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(14)

where x(i) is the observed value of link dynamic vehicle
count, x(i) is the predicted value of vehicle count, and x is the
mean value of vehicle count.

A well-performing deep learning model is inseparable
from an efective hyperparameter tuning process. In the
following section, we frst analyze the impact of model
hyperparameters on the prediction performance. Ten, we
compare the prediction performance of the proposed hybrid
depth model and the benchmark method.

4.4. Hyperparameter Tuning with Bayesian Optimization.
Tis section verifes the superiority of the BO in tuning
hyperparameters by the efect analysis of hyperparameters
on the prediction performance. Te hyperparameters of the
GRU model mainly include the number of hidden units
(HS), the initial learning rate (LR), the regularization co-
efcient (L2), and the number of GRU layers (NL) [51, 53].
When we compare the prediction performance of one
hyperparameter, we fx the other hyperparameters.

Te number of hidden units has a strong infuence on the
model. If the number of hidden units is too small, the net will
not learn well, while too many hidden units will afect the
efciency and increase the risk of overftting. Te efects of
hidden layer number on the GRU model are shown in
Table 1. As the HS approaches the optimal value 80, the
prediction accuracy of the model gradually increases. When
the HS continues to increase, the RMSE and R2 gradually
decrease, refecting the possibility of overftting. Te same
rule also fts in the Data #2. Furthermore, we could conclude
that the optimal number of hidden units for diferent data is
diferent.

Ten, we tested the efects of diferent initial learning
rates on the GRU model. Te initial learning rates have
signifcant efects on the model: a too high learning rate may
cause the model to fail to converge; a too small learning rate
will cause the model to converge slowly or fail to learn. As

shown in Table 2, when the initial learning rate is set to 0.1,
the model cannot converge. In addition, the optimal initial
LR for Data #1 is 0.00 , and for Data #2 is 0.003, showing
that it is hard to manually tune an appropriate initial LR for
diferent data. Terefore, it is essential to determine a
suitable initial learning rate automatically.

Te Bayesian optimization model based on the Gaussian
process can efectively search the candidate hyperparameter
interval and determine the appropriate HS and initial LR, as
shown in Figure 6(a). Moreover, there exist interactions
between diferent hyperparameters. Te superiority of
Bayesian optimization is optimizing multiple hyper-
parameters at the same time, as illustrated in Figure 6(b).Te
Bayesian optimization can simultaneously optimize the
initial LR and HS and select the appropriate combination.

In terms of the L2 regularization coefcient, it helps to
improve the overftting issues and the generalization level of
the model. However, a too large regularization coefcient
may lead to the underftting of the model. We manually
adjust the L2 regularization coefcient to examine the
prediction performance of the model, as shown in Table 3.

Table 1: Predictive performance comparison with diferent
number of hidden units.

HS MAE RMSE R2

Data #1

LR� 0.005
NL� 1
L2� 0.001

40 0.598 0.968 0.897
80 0.588 0.959 0.899
120 0.601 0.975 0.895
160 0.601 0.969 0.897
200 0.598 0.969 0.897

Data #2

LR� 0.005
NL� 1
L2� 0.001

40 1.189 1.585 0.862
80 1.171 1.582 0.863
120 1.1 1 1.559 0.8 3
160 1.183 1.587 0.860
200 1.185 1.592 0.858

Te bold values means the best results in the data set.

Table 2: Predictive performance comparison with diferent initial
learning rates.

LR MAE RMSE R2

Data #1

NL� 1
HS� 80
L2� 0.001

0.001 0.609 0.972 0.896
0.003 0.601 0.969 0.897
0.005 0.599 0.977 0.895
0.00 0.586 0.95 0.899
0.010 0.583 0.959 0.899
0.015 0.634 1.011 0.887
0.1 NaN NaN NaN

Data #2

NL� 1
HS� 80
L2� 0.001

0.001 1.158 1.524 0.871
0.003 1.156 1.516 0.8 5
0.005 1.203 1.565 0.852
0.007 1.151 1.525 0.871
0.010 1.169 1.535 0.866
0.015 1.254 1.676 0.798
0.1 NaN NaN NaN

Te bold values means the best results in the data set.
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Te results in Table 3 show that diferent regularization
coefcients impact the model prediction accuracy. Data #1
corresponds to the optimal regularization coefcient equal
to 0.00 and Data #2 corresponds to the optimal L2 reg-
ularization coefcient equal to 0.005, showing that the
model of diferent data suits its own optimal L2 regulari-
zation coefcients.

In Table 4, we look into the impact of multilayer GRU on
the prediction performance of the model. In a multilayer
GRU, the number of hidden units in each layer is equally
distributed. Second, a dropout layer with a dropout prob-
ability equal to 0.2 is added after each GRU layer to avoid
overftting.

Te results also show RMSE increases as the number of
GRU layers increases. Te optimal number of GRU layers
corresponding to Data #1 and Data #2 is one layer. It shows
that as the number of layers increases, the model may
overft.

In Table 5, we use the Bayesian optimization algorithm to
optimize the four hyperparameters of the model. Compared
with the manually tuning method, Bayesian optimization
could obtain the best-ftted hyperparameters when all
evaluation indicator results are optimal.

Tis section shows the hyperparameters have a signif-
cant impact on the performance of the GRU model. Te
setting of various hyperparameters also presents the phe-
nomenon of trade-ofs. Manual tuning is not only time-
consuming and labor-intensive but also arduous to obtain
better results. Bayesian optimization could achieve the best
performance in tuning hyperparameters.

1.35

1.3

1.25

1.2

1.15

1.1

1.05

0.95

0.9

1

10-3 10-2 10-1

RM
SE

Inital Learning Rate

Observed points
Model mean
Model error bars Model minimum feasible

Next point
Noise error bars

(a)

10-3

10-2

10-1

0.7

0.65

0.6

0.55

0.5

0.45

0.4

0.35

RM
SE

Inital Learning Rate Number of Hidden Units

Observed points
Model mean

Next point
Model minimum feasible

150
200

100
50

(b)

Figure 6: Adjusting model hyperparameters with Bayesian optimization. (a) Bayesian optimization adjusts the initial learning rate.
(b) Bayesian optimization adjusts the initial learning rate and hidden unit size.

Table 3: Infuence of diferent L2 regularization coefcients on the
model.

L2 MAE RMSE R2

Data #1

LR� 0.005
NL� 1
HS� 80

0.001 0.614 0.989 0.892
0.003 0.593 0.962 0.898
0.005 0.599 0.980 0.894
0.00 0.582 0.955 0.900

Data #2

LR� 0.00
NL� 1
HS� 80

0.001 1.180 1.599 0.840
0.003 1.174 1.585 0.846
0.005 1.1 3 1.580 0.848
0.007 1.183 1.606 0.837

Table 4: Infuence of diferent GRU layers on the model.

NL MAE RMSE R2

Data #1

LR� 0.005
HS� 80/NL
L2� 0.001

1 0.653 0.931 0.905
2 0.657 0.941 0.902
3 0.675 0.946 0.901
4 0.677 0.950 0.901

Data #2

LR� 0.005
HS� 80/NL
L2� 0.001

1 1.122 1.603 0.833
2 1.129 1.600 0.830
3 1.125 1.601 0.831
4 1.133 1.601 0.831

Te bold values means the best results in the data set.
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4.5. Benchmarks and Model Comparisons. Tis part studies
the efect of data decomposition and Bayesian optimization
onmodel performance.We compared the performance of 12
benchmark models with the proposed ICEEMDAN-GRU-
BO model. We used a computer with a 2.9Ghz, dual-core
processor and 8G memory in our experiments.

Te parameters setting of the models are set as follows.
Te parameters of SVR, RF, and XGBoost are optimized by
the grid search method. According to the results of grid
search, the kernel coefcient, regularization parameter, and
epsilon are three essential parameters in the SVR model,
which are set as 288.83, 29.31, and 0.0017 in Data #1 and
60.2, 775.97, and 0.0061 in Data #2, respectively.Te number
of trees and max depth are two essential parameters in the
RFmodel, which are set as 138 and 15 in Data #1 and 22, 9 in
Data #2, respectively. Te number of estimators, learning
rate, and max depth are three key parameters in XGBoost,
which are set as 117 and 0.3, 6 in Data #1 and 102 and 0.4, 5
in Data #2, respectively. Te hyperparameters of the GRU
model such as the number of hidden units, the initial
learning rate, the regularization coefcient, and the number
of GRU layers are tuning with Bayesian optimization.
According to the results of section 4.4, we set the initial
learning rate to 0.005, the number of hidden units to 80, the
L2 regularization coefcient to 0.001, and the number of
GRU layers to one.

Table 6 shows the performance comparison of diferent
models and Figure 7 shows the prediction error box plot.Te
results of Data #1 show that the performance of the ICE-
EMDAN-GRU-BO model is the best. Te evaluation indi-
cators of the proposedmodel are similar to the ICEEMDAN-
LSTM-BO model in Data #2. However, the training time of
the proposed model is drastically reduced.

XGBoost and RF show similar predictive performance,
and both perform better than SVR. By comparing with
XGBoost and RF models, the GRU-BO and the LSTM-BO
models improves prediction accuracy. By comparing with
GRU-BO, EMD-GRU achieves better prediction accuracy
due to the efect of EMD, which shows that data decom-
position obtains a better outcome.

Te efect of diferent data decomposition on model
performance shows that, compared with EMD, VMD,
MVDM, EEMD, and CEEMD, the ICEEMDAN data de-
composition has the most signifcant improvement in model
prediction.

Although Bayesian optimization increases the training
time of ICEEMDAN-GRU-BO, the training time is within
an acceptable range for the improvement of prediction
performance.

Bayesian optimization efectively and simultaneously
optimizes the four hyperparameters of the model;
avoiding manual tuning that only relies on the empirical

Table 6: Performance comparison of diferent prediction models.

Data #1 Data #2

MAE RMSE R2 Training time
(min)

Prediction time
(s) MAE RMSE R2 Training time

(min)
Prediction time

(s)
SVR 0.724 1.048 0.879 3.4 0.02 1.182 1.683 0.842 2.7 0.02
RF 0.683 1.028 0.884 0.5 0.06 1.158 1.661 0.846 0.2 0.02
XGBoost 0.684 1.030 0.883 0.2 0.02 1.158 1.660 0.846 0.1 0.01
GRU-BO 0.586 0.835 0.923 12.3 3.94 1.089 1.297 0.882 11.3 3.47
LSTM-BO 0.528 0.749 0.938 19.2 4.67 1.022 1.390 0.892 17.1 4.32
EMD-GRU 0.537 0.705 0.945 11.4 5.17 0.524 0.712 0.906 9.0 5.80
VMD-GRU 0.383 0.536 0.968 4.8 3.26 0.407 0.550 0.944 4.8 2.85
MVMD-GRU 0.601 0.833 0.924 4.0 2.74 0.531 0.721 0.904 4.4 3.19
EEMD-GRU 0.335 0.457 0.977 9.6 5.48 0.374 0.505 0.953 8.9 5.69
CEEMD-GRU 0.322 0.453 0.977 9.7 5.68 0.363 0.510 0.952 9.1 5.61
ICEEMDAN-GRU 0.257 0.352 0.986 10.4 6.74 0.289 0.420 0.967 10.8 5.86
ICEEMDAN-
LSTM-BO 0.217 0.307 0.990 221.4 7.47 0.223 0.311 0.982 201.2 6.14

ICEEMDAN-GRU-
BO 0.203 0.298 0.990 146.0 6.13 0.233 0.324 0.981 136.6 6.43

Table 5: Efects of Bayesian optimization super parameters on the model.

MAE RMSE R2

Data #1
LR� 6.281e− 04; S� 173 0.580 0.835 0.923L2�1.548e− 05; NL� 1

Data #2
LR� 0.0054; HS� 184 1.089 1.297 0.882L2� 0.046; NL� 1
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methods. In addition, with the development of com-
puting technology, such as the technology represented by
cloud computing, higher-performance computing re-
sources will become cheaper and more convenient, and
the training time of the model will not be a limiting
factor.

 . Conclusions and Discussion

In this paper, we propose a hybrid deep learning model that
combines the data decomposition method, ICEEMDAN,
and GRU model with Bayesian optimization for link dy-
namic vehicle count forecasting. ICEEMDAN is used to
process and decompose the original data into specifc IMFs.
Considering the nonlinear characteristics of IMFs of link
dynamic vehicle data, GRU is used as the basic forecast
model of each IMF. BO is adapted to auto-tune hyper-
parameters of the deep learning approach. Te presented
model is compared with 12 benchmark models including
SVR, RF, XGBoost, GRU-BO, LSTM-BO, EMD-GRU,
VMD-GRU, MVMD-GRU, EEMD-GRU, CEEMD-GRU,
ICEEMDAN-GRU, and ICEEMD-LSTM-BO. Models are
validated with the real-world data collected in Hangzhou,
China. Tree evaluation indicators (MAE, RMSE, and R2),
training time, and prediction time are used to measure the
performance. Results indicated that ICEEMDAN, GRU,

and BO all contribute to the improvement of prediction
accuracy and efciency. Combining ICEEMDAN-GRU-
BO can obtain the best performance and least calculation
complexity.

Te prediction model is based on the ICEEMDAN-GRU-
BO for link dynamic vehicle count. It is necessary to establish
diferent prediction models for diferent road section sce-
narios. In the future, we will further explore whether we can
make full use of the training information of the previous
models and train the deep learning prediction model by
transfer learning to improve the modeling efciency and
prediction accuracy. Besides, LDVC is a crucial parameter in
developing efcient adaptive trafc signal controllers as
trafc-responsive control systems require reliable real-time
demand information on prevailing trafc conditions to make
sensible control decisions.Te proposedmodel can be used to
predict the basic inputs for real-time control applications in
urban areas and further extended to network-wide vehicle
counts forecasting for network-wide trafc signal control
optimization in urban trafc management.

Data Availability

Te link vehicle count data used to support the fndings of
this study are available from the corresponding author upon
request.
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Figure 7: Box plots of prediction errors of diferent models.
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