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Previous studies on pedestrian crossing have mostly focused on pedestrian crossing decisions; while as an important behavioral
aspect, the pedestrian crossing process, i.e., their motions during the entire crossing process, has been narrowly studied. Un-
derstanding how pedestrian moves across the street during their entire crossing process helps identify risky movements and
reasons for such movements, which can further help in the implementation of efective countermeasures. Terefore, this paper
proposed a new and easily applied approach for investigating and understanding the pattern of the pedestrian crossing process at
crosswalks based on vision-based trajectory tracking technology and UAV (unmanned aerial vehicle) data. Tis study uses UAV
for collecting video data which is timesaving and has a sufcient coverage area, compared to other methods. For trajectory
extraction, the vision-based Deep-SORT-Yolov5 architecture is applied. An improved DBSCAN (density-based spatial clustering
of applications with noise) algorithm is introduced for clustering and identifcation of patterns of pedestrian crossing processes
based on their trajectories. Tis approach is tested via a case study involving six marked crosswalks in Shanghai, China. By using
the proposed method, diferent crossing patterns are extracted and compared. Te results show reasonable outputs of trajectory
patterns, which reasonably explain the potential instincts of the pedestrians and afecting factors on the behavior of the pedestrian
crossing process. Suggestions are made based on the results. Tis paper contributes to a more comprehensive safety analysis of
pedestrian crossings by considering the pedestrian crossing process.Te model, along with the UAV-based trajectory observation
method, provides an easily-applied and low-cost way of trafc data collection for the purpose of pedestrian safety evaluation.

1. Introduction and Literature Review

As an important part of road trafc safety, pedestrian safety
is particularly a serious issue. Pedestrians are unprotected
road users and are the most vulnerable to road trafc ac-
cidents. According to the Global Status Report on Road
Safety 2018 [1], about 1.35 million people die on the roads
each year, with pedestrian deaths accounting for around 23
percent. In China, 14,000 accidents happened on crosswalks
among the years between 2014 and 2017, resulting in 3,898
deaths. Most of these accidents occur when pedestrians are
crossing the road and are exposed to motorized trafc [2].
Due to the heterogeneous nature of pedestrians, the

movement state of pedestrians when crossing the road
changes with the road environment and trafc conditions.
Pedestrians will perceive and assess their environment at any
time when crossing the road and make corresponding be-
havioral adaptations when necessary, which adds complexity
and causes challenges for trafc management.

Cottrell and Mu [3] proved that pedestrian crossing
safety was particularly afected by behavioral factors; thus,
many studies have focused on the analysis of pedestrian’s
behavior [4–7]. In the investigation of behavior, two be-
havioral types should be considered: (1) the decision-making
behavior and (2) the behavioral process [8]. Decision-
making behavior refers to behavior types with
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instantaneous decision-making; while, the behavioral pro-
cess is a process with continuous behavior, refecting the
dynamic interpretation of a certain behavior [8]. In the
scenario of pedestrian crossings, the former typically refers
to the pedestrian crossing decision (the decision to cross),
and the latter is normally the street-crossing process of the
pedestrian (the way how he/she crosses). Te crossing de-
cisions of pedestrians have been heavily investigated by
previous studies [9–11]. Among the few studies exploring
the street-crossing process, most of them have relied on
indicators such as the crossing speed of the pedestrians or
distance measures from the pedestrian to the crosswalk
[12–14]. However, such indicators, though providing
a rough statistical description, fall short in considering the
changes and behavioral features during the pedestrian
crossing process. Since the process of pedestrian crossing
and their exposure to motorized trafc highly (if not fully)
overlap, the characteristics during the pedestrian crossing
process should therefore be further explored.

Checking from past literature, one reason for being
lacking in the investigation of the pedestrian crossing
process should be the limited methods in data collection.
Most studies on pedestrian behavior during crossings have
relied on traditional methods including questionnaire sur-
veys [15, 16] or manual feld observations [17, 18]. Tese
methods can be biased, with subjective judgements by in-
terviewees and observers, and time-consuming, and have
reliability issues [19]. Meanwhile, traditional methods fall
short in recording detailed information which can be used as
a reference in describing the pedestrian crossing process.
Diferent trafc data collection technologies have emerged in
the recent decades [20–22], where among them video-based
tracking technologies have gained high popularity. With
advances in deep learning techniques, video-based tracking
technologies automatically track road users from videos and
record the trajectory of them with high accuracy [23]. Such
data provide detailed trajectories, i.e., positional and speed
information of the road users in the scene, and can be used as
an important data source for the analysis of road user be-
havior, including the pedestrian crossing process.

Trafc cameras have been widely installed and used for
video data collection, while limitations exist. Trafc cameras
are always not installed vertically down towards the street;
therefore, tracking accuracy is challenged in many cases in
angle calibration and the fsh-eye efect of the camera [24].
Meanwhile, positioning 4–8meters above the road surface
limits the coverage of trafc cameras [24].Tus, for this,
tracking and synchronization through multiple cameras can
be possible, but it is highly challenged [25]. Recently, with
the popularization and wide application of UAV (unmanned
aerial vehicle), the use of low-altitude video information
collected using UAV has gained popularity for trafc data
collection [26, 27]. Compared to fxed trafc cameras, UAVs
are more fexible and less afected by installation conditions
[28]. Besides, it has a large coverage area, and it can hover
high up in the air and shoot vertically down which helps
obtain a good shooting distance and avoid the obstacles in
the urban road environment thus obtaining a relatively
comprehensive and clear view [29].

Terefore, in order to study the behavior of the pe-
destrian crossing process, this paper proposes a trajectory-
based pattern recognition method based on two charac-
teristic parameters of pedestrian crossing: average speed and
average deviation value. Te Deep-SORT-Yolov5 architec-
ture is used as the image processing tool for trajectory data
extraction. An improved DBSCAN algorithm is applied to
cluster pedestrian trajectories into diferent pattern types.
Based on that, a full methodological approach that in-
vestigates the pedestrian crossing process and its related
afecting factors using trajectory motion patterns is de-
scribed. A case study involving six sites in Shanghai is
conducted for test and illustration purposes. Trajectory
patterns at these sites are identifed, results are analyzed, and
the impact of attractions is discussed. Te methodological
approach, involving data collection using UAV and vision-
based tracking, crossing pattern recognition and analysis,
and contributing factor investigation, helps us understand
the pedestrian crossing process which has remained much
untapped. It also provides a practical and easily applicable
way to investigate countermeasures and geometric designs
to improve pedestrian safety in terms of the pedestrian
crossing process.

2. Methodology

Temethodology of the study is composed of three steps: (1)
video data acquisition and processing, (2) trajectory clus-
tering using improved DBSCAN, and (3) analysis of crossing
patterns. Te framework of methodology is presented in
Figure 1.

2.1. Video Data Acquisition and Processing. Te video data
are collected using UAV (DJI Mavic2 Pro in this study, as
shown in Figure 2). After the data are collected, videos are
trimmed for data processing. For data processing, the Deep-
SORT-Yolov5 architecture [30] is used for detection and
trajectory tracking (Figure 3). Te Deep-SORT-Yolov5 ar-
chitecture used in this study involves two key steps, in-
cluding multiobject detection and trajectory tracking. After
collecting the data, the frst step involved trimming the
videos to remove segments that were not useful for the
analysis, such as drone takeof and landing, as well as
segments without pedestrian or vehicle objects. Ten, the
drone was fown at an altitude of 30meters. Tis altitude was
chosen to ensure the clarity of trafc objects while precisely
covering the pedestrian crossing scenes. Te resulting dis-
turbances in the video were relatively minor, and we applied
video stabilization using OpenCV to address them. Fur-
thermore, the DJI Mavic2 Pro automatically performed
image correction within the camera while capturing the
video, thus eliminating the need for further image distortion
correction.

2.1.1. Multiobject Detection Using Yolov5. Yolov5 locates the
object in the image while predicting its category and
eventually converts the object detection problem into a re-
gression problem [31]. In such a way, processing speed is
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much improved, making it highly efcient for object
detection.

As presented in Figure 3, Yolov5 needs to be retrained
for the scenario of this study. Existing publicly available
datasets for trafc objects typically feature roadside angles
and simple backgrounds. However, this study adopts a 90-
degree overhead perspective and captures data at crosswalks
within intersections. As a result, a new dataset is created to
cater to the specifc training requirements of this research.

As illustrated in Figure 4, LabelImg provides a user interface
for manually selecting and classifying objects. Te trafc
objects in the images are categorized and labeled as “pe-
destrian,” “nonvehicle,” and “vehicle.” Upon verifcation, we
found that the highest accuracy in target identifcation
occurs when enclosing only the pedestrian’s head within the
bounding box. As a result, we used the coordinates of the
pedestrian’s head to defne the “pedestrian” object box.
During labeling, eforts are made to align the bounding

Start
V

id
eo

 D
at

a A
cq

ui
sit

io
n

A
nd

 P
ro

ce
ss

in
g

Tr
aj

ec
to

ry
Cl

us
te

rin
g

Cr
os

sin
g 

Pa
tte

rn
A

na
ly

sis
Video data collection

using UAV

Video trimmingLabelling images using
Labelimg

Object detection
Using Yolov5

Object tracking using
Deep SORT

Trajectory processingTrajectory clustering using
improved DBSCAN

Analysis of signifcant
diference 

Analysis of afecting
factors 

Raw video data

Raw trajectory data

Continuous
trajectory data

Average crossing
speed 

Average distance to
crosswalk center 

Propose countermeasures End

Deep-SORT-Yolov5 architecture 

Two indicators

Figure 1: Methodology fowchart.

Figure 2: UAV equipment.

Journal of Advanced Transportation 3



Manual
labelling 

VOC dataset

test

train
val 

Training
data 

Parameter
adjustment

Retraining

Yolov5
model 

Detection results

Matching
cascade 

Unmatched
tracks 

Unmatched
detections 

Matched
tracks

Prediction all tracks
using Kalman flter 

IOU
assignment 

Unmatched
Tracks 

Unmatched
detections 

Matched 
tracks

Delete Tracks

Kalman
flter

update

New 
tracks

Test data

Validation
data 

LabelImg Yolov5

Update
module

Prediction &
Matching module 

Confrmed
U

nc
on

fir
m

ed

U
nc

on
fir

m
ed

Confrmed

Deepsort

Figure 3: Deep-SORT-Yolov5 architecture.

Figure 4: LabelImg user interface.

4 Journal of Advanced Transportation



boxes closely with the objects to reduce background in-
terference. Once the labeling process is completed, XML
hypertext fles are generated containing information for each
labeled object, including its name and bounding box co-
ordinates. Labelled objects are then saved as VOC data
formats [32]. Te samples are randomly split into training
and validation sets in a 8 : 2 ratio.

For details on the training process, one can refer to
reference [33]. Te specifc environmental confguration
details for the algorithm framework in this paper are pro-
vided in Table 1. Taking into consideration the hardware
environment and network characteristics of this experiment,
several parameter adjustments are made. In this experiment,
the confgurations are as follows: classes� 3; name� vehicle,
nonmotor vehicle, and pedestrian; flters� 3× (classes + 5)
� 24; learning_rate� 0.001; batch� 64; and batch/sub-
division� 64/16. Te parameters for the optimization al-
gorithm during training, specifcally momentum and decay
for stochastic gradient descent, are set as 0.9 and 0.0005,
respectively. In addition, max_batches is defned as 50000,
and steps are set to 40000 and 45000, whichmeans that when
the training reaches 40000 and 45000 iterations, the learning
rate is reduced to 0.0001 and 0.00001, respectively. Te
parameters for enhancing image data, including angle,
saturation, exposure, and hue, were all set to their default
values. Finally, the anchor box values obtained through k-
means clustering are used to replace the original anchor
values.

After the Yolo model is retrained, Yolov5 detects objects,
which are vehicles and pedestrians in this case. Figure 5
shows a sample of detection outputs.

2.1.2. Object Tracking Using Deep-SORT. Deep-SORT is
a multiobject tracking algorithm based on tracking-by-
detection [34]. In the Deep-SORT-Yolov5 architecture, the
detection part of Deep-SORT is replaced by the Yolov5
algorithm. Te bounding box and features are used for
sequentially tracking objects through frames. For details
about Deep-SORT, one can refer to reference [35].

We evaluate the model’s performance on the validation
set. Table 2 shows that themodel exhibits good detection and
trajectory tracking performance for trafc objects.

To illustrate the model’s ft to the actual data and its
generalization ability, we plotted the curve of the loss
function. As shown in Figure 6, we stopped the iteration
when the curve became fat, with the fnal iteration number
being 13000 and the average loss function value being 0.437.

2.2. Trajectory Clustering Using Improved DBSCAN.
Trajectory clustering is an efective method for analyzing
trajectory data for the purpose of pedestrian crossing process
analysis [36]. An improved DBSCAN algorithm is chosen
because it has the ability to cluster with noisy data fltered out
and is able to defne the proper number of clusters and can also
be applied to clustering unknown and skewed datasets [37].

In typical DBSCAN, distances between points are used as
the basis for clustering, while it has to be replaced by
a proper measure for trajectories, i.e., similarity (distance)

between trajectories. In this study, a new distance function is
proposed to measure the similarity, as presented in Figure 7.

As presented,A � A1, . . . , Am  and B � B1, . . . , Bn  are
the sets of points on two trajectories (traj1 and traj2, re-
spectively), where Ai � (xAi, yAi), Bj � (xBj, yBj),
∀i ∈[1, m], ∀j ∈[1, n]. An average-minimum approach is
used as follows: (1) the Euclidean distance lAiBj from Ai to the
set B is calculated and the shortest distance from Ai to traj2,
lAiBj min, is determined, (2) by iterating from each point on
traj1 to points on traj2, we get the group of shortest distance
{LAB min}, and (3) the distance between the two trajectories
is then calculated as the average of {LABmin}. Te detailed
calculation process is presented as

lAiBj �

�������������������

xj − xi 
2

+ yj − yi 
2
,



Disttraj1⟶traj2 �


m
i�1

n
j�1lAiBj min

m
.

(1)

Based on the distance calculation method, a distance
matrix of trajectories can be calculated, which is further
used as the distance measure in the improved DBSCAN.
Te rest of the work for trajectory clustering adopts the
typical DBSCAN algorithm (Figure 8), which relies on two
global parameters: Eps (radius) which is “the radius of the
adjacent neighborhood of a considered data point” and
MinPts (minimum adjacent number) which is the “ad-
jacent minimum number of data points located in the
given region” [38]. Te optimal parameter values are
selected based on the kth distance curves and the frst
derivative of the kth distance curves, as referred in ref-
erence [39]. With the parameters determined, the im-
proved DBSCAN groups the trajectories into clusters
based on the distance matrix.

2.3. Pedestrian Crossing Pattern Analysis. As presented in
Figure 1, with trajectories successfully clustered, diferent
trajectory patterns can be compared for analysis purposes. A
case study involving six crosswalk locations was conducted.
Trajectories are extracted from the six sites, respectively. Te
study compares trajectory patterns in terms of the average
crossing speed and the average ofset to the crosswalk center,
in each site, respectively, as follows:

(i) Te average crossing speed is the average speed of
the individual pedestrian during his process of
crossing the street

Table 1: Environment confguration.

Name Model/Version

CPU Inter(R)Core(TM)i9-9900K CPU
@3.60GHz

Graphics card GeForce RTX 2080 Ti
Operating system Windows 10
CUDA 10.1 version
cuDNN 7.6 version
TensorFlow TensorFlow_GPU-2.1.0
Development language Python 3.5

Journal of Advanced Transportation 5



(ii) Te average ofset to the crosswalk center is the
average distance of the pedestrian to the center line
of the crosswalk marking area (measured in each
video frame) during the entire crossing process

Te signifcance of the diference among patterns at the
same site was tested using the Mann–Whitney U test/
Kruskal–Wallis H test (the reason for using the method will

be explained in the following section) to validate the clus-
tering results (whether the clustering results can be clearly
explained).

Furthermore, analysis and discussions are made
according to the clustering results at six sites. Impacts of
attractions on pedestrians and facilities/locations where
pedestrians are moving towards (e.g., subway stations) are
discussed. Suggestions for countermeasures based on the
clustering results are also provided.

3. Case Study

3.1. Study Site and Data Collection

3.1.1. Study Site. A case study was conducted involving six
sites from Shanghai, to validate the efectiveness and illus-
trate the application of the methodology. Te selection of
research locations followed the following principles: (1) sites
located outside of no-fy zones and restricted fy zones, (2)
minimal obstructions above pedestrian crossings, (3)
proximity to facilities attracting a reasonable fow of pe-
destrians and vehicles, and (4) coverage of various in-
tersection types, lane counts, and signalization scenarios. Six
pedestrian crossing sites include four signalized in-
tersections and two unsignalized intersections. Te man-
agement of pedestrian crossings has been an issue according
to the local police department. Te details of the sites are
provided (Figure 9) as follows:

(i) SITE 1: SITE 1 (Cao’an_Moyu) is located at the
intersection of Cao’an Highway and Moyu Road.
Te Moyu Road is the main road of a two-way fve-
lane (three lanes north to south and two lanes south
to north). Te northeast side of the experimental
point is a shopping mall, and 10:30-12:00 in the
morning is the period of large trafc fow.

(ii) SITE 2: SITE 2 (Guoding_Zhengmin) is located at
the intersection of Guoding Road and Zhengmin
Road. Guoding Road is a two-way four-lane road

Figure 5: Yolov5 object recognition result.

Table 2: Performance of the model in object detection and tra-
jectory tracking.

Precision Recall mAP MOTA MOTP
Vehicle 89.03 90.14 85.32 0.67 0.85
Nonmotor vehicle 88.79 89.88 82.89 0.55 0.73
Pedestrian 82.18 84.09 80.04 0.53 0.62

Figure 6: Loss function curve.
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with a large trafc fow at 11:00–12:00 in the
morning.

(iii) SITE 3: SITE 3 (Shuangdan_Yungu) is located at the
intersection of Shuangdan Road and Yungu Road.
Yungu Road is a two-way three-lane road. Te
northwest of the experimental site is a life square,
and the southeast is where Wanda Mall and Jiading
Metro Station are located. Te crowd is more active
during the evening peak period of 17:00–18:00.

(iv) SITE 4: SITE 4 (Daxue_Zhixing) is located at the
intersection of Daxue Road and Zhixing Road,
a three-legged intersection with a metro station to
its south. Zhixing Road is a two-way two-lane road.
Te metro station, along with a shopping square,
attracts a large number of people.

(v) SITE 5: SITE 5 (Changji_Yadan) is located at the
intersection of Changji Road and Yadan Road. Te
southeast side is Changji East Road subway station,
and the other side of the facility is connected to
Changji East Road bus station. Terefore, a large
number of people are transferred from the bus to the
subway.

(vi) SITE 6: SITE 6 (Anshan_Zhangwu) is located at the
Y-type three-legged intersection of Anshan Road
(fnishing at the intersection) and Zhangwu Road
(going east-west direction, through the in-
tersection). It is the crosswalk located on Anshan
Road, the south approach at the intersection.
Anshan Road, where it is located, is a one-way, one-
lane road.

3.1.2. Data Collection. As discussed, the DJI Mavic2 Pro
UAV (3840 by 2160 pixels) was used for data collection. To
cover the crosswalk area, the UAV was positioned ap-
proximately 30m above the crosswalk, shooting vertically
down toward the site. Since the UAV relies on a battery
which lasts for less than 30minutes, the battery of the
UAV was changed every 20minutes during data collec-
tion. Video data were collected for 1 hour at each site, and
this could be efectively used for analysis in the study, as
shown in Table 3.

3.2. Description of Trajectory Data Extracted

3.2.1. Trajectory Extraction and Correction. After data were
collected, the vision-based Deep-SORT-Yolov5 architecture
was further used for trajectory extraction. Te raw trajectory
data were extracted from the image coordinates (with the
up-left corner of the video as the origin of the coordinates)
and were measured in pixels. Meters-per-pixel (m/P) was
calculated with reference to ground-truth measurements
from the feld. Ten, for the convenience of calculation and
analysis, the image coordinate system was converted into
a distance coordinate system, setting the location of the up-
left point at the start of the crosswalk (marking) as the origin
and measured in meters. Te conversion of the coordinate
system is presented in Figure 10.

Despite the good performance of tracking using Deep-
SORT-Yolov5 and vertical-angle UAV video, trajectories of
pedestrians still had common remaining issues including (1)
tracking multiple pedestrians as one and (2) one individual
pedestrian tracked into disconnected trajectories. A simple
self-developed tool was applied to correct the erroneous
trajectories. Te processing results are shown in Figure 11.
Te processing rules are as follows:

(1) Matching the object IDs in the data with the video for
classifcation, inspection, and correction.

(2) If a trajectory has missing portions at the beginning
or end and exhibits a signifcant gap, it is considered
an invalid trajectory and is removed.

(3) If a trajectory has a missing segment in the middle
and is too short, a splicing process is applied to
connect the two segments belonging to the same
trajectory. Te splicing procedure includes the fol-
lowing steps:

(i) Splitting the discontinuous trajectory under the
same ID into two segments and obtaining the
starting and ending coordinates of each segment

(ii) Calculating the distance distmin between the
starting point of the i-th segment and the ending
points of all other segments to fnd the mini-
mum distance

(iii) Calculating the diference in frames tmin be-
tween the starting point of the i-th segment and
the ending points of all other segments to fnd
the minimum diference

(4) Verifying whether distmin and tmin belong to the same
trajectory. If they do, the two segments are connected
and missing frames are flled using linear in-
terpolation to generate a new longer trajectory

3.2.2. Statistical Description of Trajectory Data. A total of
2154 continuous pedestrian trajectories were obtained (the 6
sites were 315, 359, 445, 414, 266, and 355). For the statistical
description of the trajectory data, measures including av-
erage crossing speed and the average ofset to the crosswalk
center, which have been used as traditional pedestrian
crossing process measurements, are used. Te detailed
statistics, as well as the distribution histogram of the mea-
surements for diferent trajectory groups, are given in Ta-
ble 4 and Figure 12.

A histogram is a useful tool for understanding the
distribution of data. By analyzing the frequency distribution
histograms of the average crossing speed and average ofset
for pedestrians at diferent sites, it is clear that the distri-
bution shapes of these two parameters are diferent. Hence,
this study compared the average crossing speed and average
ofset metrics among the six locations, resulting in rankings
for each of the six locations. Among all the sites, pedestrians
at SITE 5 have the smallest average ofset value and the
largest average crossing speed. Conversely, pedestrians at
SITE 1 have the largest average ofset value and the smallest
crossing speed.
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3.3. Clustering Results and Analysis

3.3.1. Trajectory Pattern Clustering. Te improved DBSCAN
algorithm was applied for pedestrians walking in diferent
directions at each site, respectively. For clustering, the pa-
rameters (Eps and MinPts) were frst determined based on
the frst derivative of the kth distance curves and kth distance
curves derived from the distance matrix. Figures 13–18 show
the outcomes of the distance curves and the distance dif-
ference curves for the eleven trajectory groups at the six sites
(the East-West data in site 5 is insufcient, so site 5 does not
perform directional analysis). Eps and MinPts parameters
were determined for each site as follows:

(1) SITE 1: according to the curve outputs, for trajec-
tories of pedestrians walking in the west-to-east
direction, the maximum change of distance curve
(determined by the distance diference curve,

Figure 13(b)) occurs when k� 4. Terefore, the
optimal MinPts� 4. Checking from Figure 13(a),
when k� 4, one can fnd that Eps is around 0.6; thus,
we determined the parameters (MinPts, Eps)� (4,
0.6). For the east-to-west direction, (MinPts,
Eps)� (3, 0.55). Te same process for other sites is as
follows:

(2) SITE 2: west-east (MinPts, Eps)� (4, 0.59)
(Figure 14(a)). East-west (MinPts, Eps)� (8, 0.88)
(Figure 14(b))

(3) SITE 3: west-east (MinPts, Eps)� (4, 0.90)
(Figure 15(a)). East-west (MinPts, Eps)� (5, 0.80)
(Figure 15(b))

(4) SITE 4: west-east (MinPts, Eps)� (7, 0.65)
(Figure 16(a)). East-west (MinPts, Eps)� (7, 0.55)
(Figure 16(b))

(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

Figure 10: Conversion of the coordinate system. (a) SITE 1: image coordinates, in pixels. (b) SITE 1: distance coordinates, in meters.
(c) SITE 2: image coordinates, in pixels. (d) SITE 2: distance coordinates, in meters. (e) SITE 3: image coordinates, in pixels. (f) SITE 3: distance
coordinates, in meters. (g) SITE 4: image coordinates, in pixels. (h) SITE 4: distance coordinates, in meters. (i) SITE 5: image coordinates, in
pixels. (j) SITE 5: distance coordinates, in meters. (k) SITE 6: image coordinates, in pixels. (l) SITE 6: distance coordinates, in meters.

Table 3: Descriptions of video recorded at study sites.

Site ID Site name Date Time Duration
of efective data Type Sample size Type

SITE 1 Cao’an-Moyu May 8th 10:30–12:00 1 hour Suburban 315 Pedestrian
SITE 2 Guoding-Zhengmin May 9th 11:00–12:20 1 hour Urban 359 Pedestrian
SITE 3 Shuangdan-Yungu May 16th 17:00–18:00 1 hour Suburban 445 Pedestrian
SITE 4 Daxue-Zhixing May 3rd 10:30–12:00 1 hour Urban 414 Pedestrian
SITE 5 Changji-Yadan May 15th 11:00–12:20 1 hour Suburban 266 Pedestrian
SITE 6 Anshan-Zhangwu May 10th 11:00–12:20 1 hour Urban 355 Pedestrian
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Table 4: Statistical summary of typical crossing process measurements based on the trajectory group.

Site Sample
size Average Min Max 15th

percentile
50th

percentile
85th

percentile

Average Crossing Ofsets (m)

1 315 1.65 0.14 4.55 0.67 1.54 2.67
2 359 1.93 0.21 5.95 0.90 1.67 3.09
3 445 2.49 0.14 10.48 1.08 2.32 3.93
4 414 2.23 0.12 8.29 0.61 1.95 4.00
5 266 5.50 2.27 10.88 4.08 5.07 7.41
6 355 1.93 0.20 8.14 0.75 1.93 3.60

Average crossing speed (m/s)

1 315 1.48 0.93 3.72 1.22 1.45 1.69
2 359 1.31 0.82 2.34 1.13 1.29 1.51
3 445 1.31 0.75 3.36 1.10 1.29 1.53
4 414 1.36 0.23 2.86 1.13 1.37 1.57
5 266 1.30 0.69 1.83 1.14 1.30 1.48
6 355 1.33 0.74 2.61 1.05 1.35 1.58
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Figure 12: Continued.
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Figure 11: Trajectory processing results compared in the fgure. (a) Before processing. (b) After processing.
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Figure 12: Distribution of average crossing speeds and average ofsets to the crosswalk center. (a) Histogram of average crossing speeds and
ofsets at SITE 1. (b) Histogram of average crossing speeds and ofsets at SITE 2. (c) Histogram of average crossing speeds and ofsets at SITE
3. (d) Histogram of average crossing speeds and ofsets at SITE 4. (e) Histogram of average crossing speeds and ofsets at SITE 5.
(f ) Histogram of average crossing speeds and ofsets at SITE 6.
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Figure 13: Results of distance curves and distance diference curves for SITE 1. (a) kth distance curves and distance diference curves for
West-East direction. (b) kth distance curves and distance diference curves for East-West direction.
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Figure 14: Results of distance curves and distance diference curves for SITE 2. (a) kth distance curves and distance diference curves for
West-East direction. (b) kth distance curves and distance diference curves for East-West direction.
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Figure 15: Results of distance curves and distance diference curves for SITE 3. (a) kth distance curves and distance diference curves for
West-East direction. (b) kth distance curves and distance diference curves for East-West direction.
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(5) SITE 5: due to the particularity of pedestrian dis-
tribution at the intersection of Changji Road, only
the one-way pedestrian crossing mode is analyzed,
and (MinPts, Eps)� (3,0.53) is obtained from
Figure 17

(6) SITE 6: west-east (MinPts, Eps)� (7, 0.55)
(Figure 18(a)). East-west (MinPts, Eps)� (14, 1.05)
(Figure 18(b))

By using the parameters, the trajectory groups were then
clustered. According to the K–S (Kolmogorov–Smirnov)

test, not both of the data groups for comparison conform to
the normal distribution, so the nonparametric test is
adopted. Te Mann–Whitney U test and the Kruskal–Wallis
H test was used for the test between two data groups.

Results of clustering and the comparison of diferent
clustered trajectories patterns, within each trajectory group,
are provided in Table 5. In SITE 1, pedestrian trajectories are
divided into four groups in the west-east direction, while
only two groups are identifed in the other direction. Pe-
destrian trajectories along the west-east direction in SITE 2
were clustered into two diferent patterns, while pedestrians
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Figure 17: Results of distance curves and distance diference curves for SITE 5.
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Figure 16: Results of distance curves and distance diference curves for SITE 4. (a) kth distance curves and distance diference curves for
West-East direction. (b) kth distance curves and distance diference curves for East-West direction.
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along the east-west direction were successfully clustered into
three categories. At SITE 3, the west-east pedestrian tra-
jectory is clustered into 4 categories and the east-west pe-
destrian trajectory is clustered into 2 categories. Te west-
east pedestrian trajectory of SITE 4 gathers two diferent
modes, and the pedestrians walking from east to west are
successfully clustered into two categories. SITE 5 due to the
particularity of its pedestrian distribution, only the west-east
pedestrian trajectory is clustered and there is only one pe-
destrian crossing mode. Pedestrians walking from west to
east in SITE 6 were identifed as two crossing modes, and
three diferent crossing modes were identifed in the east-
west pedestrian trajectory.

Comparisons were made among diferent patterns
within each individual trajectory group, in terms of the
average crossing speed and the average ofset to the cross-
walk center, based on the signifcance of diference. From the
comparison results, as shown in Table 5, the clustered results
(patterns identifed) were all signifcantly diferent from each
other, in terms of the average crossing speed and the average
ofset to the crosswalk center. Tis indicates that the pro-
posed improved DBSCAN method can efectively identify
potential features and automatically cluster trajectories
based on these features, even though the selected variables
may only partially describe the pedestrian trajectories during
the crossing process.
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Figure 18: Results of distance curves and distance diference curves for SITE 6. (a) kth distance curves and distance diference curves for
West-East direction. (b) kth distance curves and distance diference curves for East-West direction.
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Table 5: Signifcant diference analysis.

Direction Cluster Sample size
Kolmogorov–Smirnov

test
Mann–Whitney U/Kruskal–Wallis H

test
Sig Mean rank Z value P value

SITE 1

Speed (m/s)
W-E

0 5

0.000

13.00

10.081 0.0 81 6 46.33
2 69 57.32
3 26 52.81

E-W 0 123 0.000 78.97
−2.441 0.0 51 26 56.23

Distance (m)
W-E

0 5

0.008

64.00

63.372 0.00 1 6 57.17
2 69 37.39
3 26 93.38

E-W 0 123 0.068 65.11
−6.087 0.00 1 26 121.81

SITE 2

Speed (m/s)

W-E 0 20 0.004 66.40 722.000 0.04 1 82 50.30

E-W
0 163

0.001
104.85

33.817 0.0481 9 66.78
2 35 112.63

Distance (m)

W-E 0 20 0.000 67.45 701.000 0.0421 82 50.05

E-W
0 163

0.011
83.72

89.715 0.00 1 9 203.00
2 35 173.00

SITE 3

Speed (m/s)
W-E

0 137

0.003

90.56

26.361 0.0501 37 104.92
2 10 125.60
3 15 65.67

E-W 0 105 0.010 70.23
−2.085 0.0371 44 86.39

Distance (m)
W-E

0 137

0.000

126.26

94.492 0.00 1 37 47.57
2 10 54.50
3 15 19.80

E-W 0 105 0.050 91.54
−7.228 0.00 1 44 35.52

SITE 4

Speed (m/s)
W-E 0 205 0.000 103.00 7.030 0.00 1 18 214.50

E-W 0 90 0.034 45.51 8.471 0.00 1 33 106.97

Distance (m)
W-E 0 205 0.000 108.90 2.420 0.0 61 18 147.28

E-W 0 90 0.000 57.29 2.420 0.0 61 33 74.85
SITE 5
Speed (m/s) W-E 0 266 0.050 965.32 112.674 0.00 
Distance (m) W-E 0 266 0.000 1934.43 637.576 0.00 
SITE 6

Speed (m/s)

W-E 0 253 0.002 127.17
−6.956 0.00 1 18 260.17

E-W
0 34

0.200
31.47

46.094 0.00 1 16 53.44
2 13 7.00
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3.3.2. Analysis of Study Sites According to the Trajectory
Pattern. Pedestrian crossing patterns were further in-
vestigated for each site, based on the clustered results. Re-
sults are provided in Figure 19. In the fgures, blue arrows
give the direction of the pedestrians and trajectories within
diferent cluster types are represented by diferent colors (a
few gray ones were those identifed as noise). In diferent
cluster types, a solid line of the same color as the trajectory is
used to indicate the central position of the trajectory dis-
tribution of that type. 95% of the trajectories are distributed
within the range enclosed by the dotted lines on both sides of
the solid line. In the fgures, both the clustered outputs in the
X–Y distance coordinates and their projections in the aerial
view of the crosswalk are provided for visualization and
analysis purposes.

Pedestrians are categorized into three crossing styles:
conservative, ordinary, and adventurous, for risk analysis of
their behavior during the street crossing. Conservative pe-
destrians have an average crossing ofset concentrated
within 0–2meters, and they consistently stay within the
pedestrian crosswalk markings during the crossing,
beneftting from the protection provided by the crosswalk.
Ordinary pedestrians exhibit an average crossing ofset
within the range of 2–4meters. Some of their trajectories
deviate slightly from the pedestrian crosswalk, but they are
generally safe during the crossing. Adventurous pedestrians
have an average crossing ofset exceeding 4meters, entirely
departing from the pedestrian crosswalk markings, exposing
themselves to vehicular trafc, and thus engaging in
a higher-risk crossing behavior.

(i) W-E direction at SITE 1: the trajectory of the red
pattern is inclined towards the north side, and over
95% of the trajectories are distributed outside the
pedestrian crossing. Te average pedestrian
crossing speed in this mode is 1.5m/s, which
belongs to the ordinary crossing style. Pedestrians
in this pattern may be attracted by the shopping
center on the southeast side. Te trajectory of the
orange pattern has the same lateral ofset trend, but
because the starting point is on the south side, the
trajectory is distributed entirely within the pe-
destrian crossing range. Te average pedestrian
crossing speed in this mode is 1.4m/s, which
belongs to the ordinary crossing style. Te deep
green and light green trajectories are evenly dis-
tributed within the pedestrian crossing range. Te
average pedestrian crossing speed in both modes is

0.8–1.3m/s, which belongs to the conservative
crossing style. According to the analysis, the
crossing behavior of pedestrians in the red pattern
should be appropriately regulated.

(ii) E-W direction at SITE 1: the trajectories are di-
vided into two density clusters in the north-south
direction, with a higher proportion of brown
patterns, which may be related to the habit of
Chinese pedestrians walking on the right side.
Over 95% of the red trajectories are distributed on
the pedestrian crossing, with an average crossing
speed of 1.2m/s, which belongs to the conservative
style. About 30% of the trajectories on the east side
of the brown cluster are outside the pedestrian
crossing, with an average crossing speed of 1.4m/s,
belonging to the ordinary style.

(iii) W-E direction at SITE 2: the blue trajectories are
uniformly distributed on the pedestrian crossing,
with an average crossing speed of 1.0m/s, be-
longing to the conservative style. Te red trajec-
tories have an initial trend of moving northward
(95% of the trajectories are distributed outside the
pedestrian crossing), and their endpoint coincides
with the blue trajectories. Tis trajectory also be-
longs to the conservative style. Te reason for this
phenomenon may be that the presence of utility
poles and lampposts across the road causes pe-
destrians to have avoidance psychology. Terefore,
the existence of supporting facilities has a certain
degree of impact on pedestrian trajectories.

(iv) E-W direction at SITE 2: the three types of tra-
jectories converge from both sides of the pedes-
trian crossing under the obstruction of road
facilities.Te green trajectory is constantly exposed
to vehicle trafc and has an average crossing speed
of 1.7m/s, belonging to the adventurous style. Te
latter half of the blue trajectory returns to the
pedestrian crossing, with an average crossing speed
belonging to the ordinary style. At the beginning of
the crossing, 35% of the pink trajectory is dis-
tributed outside the pedestrian crossing. 80% of the
average crossing speed belongs to the conservative
style, and 20% belongs to the ordinary style.

(v) W-E direction at SITE 3: more pedestrians come
from the shopping mall and subway station, so the
orange and purple trajectories have the largest

Table 5: Continued.

Direction Cluster Sample size
Kolmogorov–Smirnov

test
Mann–Whitney U/Kruskal–Wallis H

test
Sig Mean rank Z value P value

Distance (m)

E-W 0 253 0.000 142.21
−4.890 0.0 61 18 48.72

E-W
0 34

0.000
32.21

23.140 0.00 1 16 17.00
2 13 49.92

Te bold values indicate signifcant diference.
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Figure 19: Continued.
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Figure 19: Continued.
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proportion. Pedestrians on the orange trajectory
do not walk directly along the line connecting
the start and end points to save time but choose
to detour on the pedestrian crossing. Te

remaining three trajectories have over 95% of
their parts inside the pedestrian crossing, pro-
tected by the pedestrian crossing. 25% of the
average crossing speed at this location belongs

centric position
95 % position

Raw output of clustering Output matched with Aerial Map

In the W-E Direction

(e)

centric position
95 % position

Raw output of clustering Output matched with Aerial Map

In the W-E Direction

centric position
95 % position

Raw output of clustering Output matched with Aerial Map

In the E-W Direction

(f )

Figure 19: Trajectory outputs with crossing patterns identifed. (a) Outputs of pedestrian crossing patterns at SITE 1. (b) Outputs of
pedestrian crossing patterns at SITE 2. (c) Outputs of pedestrian crossing patterns at SITE 3. (d) Outputs of pedestrian crossing patterns at
SITE 4. (e) Outputs of pedestrian crossing patterns at SITE 5. (f ) Outputs of pedestrian crossing patterns at SITE 6.
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to the ordinary style, and 75% belongs to the
conservative style.

(vi) E-W direction at SITE 3: pedestrian trajectories in
this direction are evenly clustered into north and
south clusters. Te pink trajectory is similar to the
orange trajectory from west to east, but the de-
parture and destination of the two trajectories are
opposite. Pedestrians in brown tracks cross the
crosswalk along the road. Te pedestrian trajec-
tories in this direction are all safe crossing
strategies.

(vii) W-E direction at SITE 4: the yellow trajectory is
mostly distributed outside of the pedestrian
crosswalk (over 95%), with an average crossing
speed of 1.6m/s, belonging to the adventurous
style. Te red trajectory is evenly distributed inside
the pedestrian crosswalk, with a tendency to shift
towards the south in the later stage. 20% of them
belong to the conservative style, and 80% belong to
the normal style. A subway station and a square in
front of the station are located on the southeast
side of the pedestrian crossing, while an ofce
building is situated on the northeast side. Te
reason for the southward shift of pedestrians may
be due to the attraction of the subway station
and plaza.

(viii) E-W direction at SITE 4: similar to the result for
the W-E direction, one crossing pattern (green)
had most of its trajectories within the crosswalk
marking, while trajectories clustered as the blue
pattern were mostly on the south side, outside the
crosswalk marking area, mainly due to the dis-
persion of pedestrians from the metro and square.
Te blue pattern should be avoided as pedestrians
are less protected walking outside the marking.

(ix) W-E direction at SITE 5: the average crossing
speed fuctuates around 1.3m/s.Te reasonmay be
that the intersection does not set a signal to guide
pedestrians to cross the street and does not set up
guardrails and other supporting facilities, so pe-
destrians are not subjected to any restrictions. In
addition, the coincidence degree between the
trajectory distribution and the crosswalk marking
is not high, which indicates that the geometric
design of the crosswalk is unreasonable, and the
facilities should be replanned according to the
distribution law of pedestrian crossing trajectory.

(x) W-E direction at SITE 6: blue trajectories are for
those pedestrians who are walking from the south-
west sidewalk on Anshan Road, and green ones are
for those walking from the south-west sidewalk on
Zhangwu Road. Results show that 40% of pedes-
trians walking from the south-west sidewalk on
Zhangwu Road tended to cross outside the
marking. Te results indicate that the geometric
design of the intersection and the design of the
crosswalk marking have better protection for

pedestrians walking from the south-west sidewalk
on Anshan Road (over 95%).

(xi) E-W direction at SITE 6: similar results can be
found as in the W-E direction; the number of
pedestrians walking towards the south-west side-
walk on Zhangwu Road is higher than those
walking towards the south-west sidewalk on
Anshan Road. Among the pedestrians walking
towards Zhangwu Road, their walking patterns
were successfully clustered into two. Te green
ones fall mostly within the crosswalk marking area,
while the purple trajectories are outside the
marking.

At present, the design of road signs and markings is
mainly to meet the needs of vehicles. In order to improve the
efciency of trafc fow, the demand of pedestrians crossing
the street is neglected, which leads to the setting of many
crosswalk markings that do not conform to the actual pe-
destrian crossing rules. On the one hand, setting un-
reasonable crossing facilities will reduce the efciency of
pedestrian crossing, such as the large number of pedestrians
during the peak period, which will cause congestion inside
the crowd. On the other hand, it will increase the probability
of pedestrians overfowing the crosswalk markings, and the
overfowing pedestrians are exposed to the trafc fow,
which poses a potential threat to the personal safety of
pedestrians.

Pedestrians have adopted diferent crossing modes due
to the combined infuence of external factors. Tese factors
include the design of crosswalks, the presence of ancillary
facilities such as guardrails or isolation belts, and the
properties of surrounding buildings. For example, buildings
such as shopping malls and subway stations can attract
pedestrian trafc, necessitating street crossings. Crosswalks
and guardrails can help direct pedestrian trafc. By ana-
lyzing the causes of abnormal trajectory patterns, sugges-
tions can be made for improving intersection facilities and
limiting the occurrence of abnormal trajectories.

In order to explore the overfow degree of pedestrian
crossing in this experimental point, the pedestrian distri-
bution during the peak period is selected to analyze the
boundary threshold of the width of the crosswalk. By further
drawing the pedestrian trajectory heat map during peak
hours and projecting it into the UAV aerial map, the location
with the highest probability of pedestrian overfow can be
obtained. Taking into account the distribution of each
cluster of trajectories, reasonable suggestions for optimizing
road facilities are proposed to ensure that 95% of each cluster
of trajectories is protected by pedestrian crossings.

As shown in Figure 20, the color represents the density
concentration, and the yellow color changing to red rep-
resents the density from small to large.

Based on the results, suggestions for the improvement or
countermeasures can be further provided which are detailed
as follows:

(i) For SITE 1: the clustering results show that the
overfow data are mainly from the west-east red
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trajectory (Figure 19). Te main reason is that
pedestrians are attracted by the comprehensive
shopping mall from the northeast side. An ef-
fective measure to regulate the way such

pedestrians cross the street is to extend the iso-
lation zone on the east side, thereby limiting the
pedestrian’s advance defection direction (Fig-
ure 21). We refer to the 95% dotted line position

(a) (b) (c)

(d) (e) (f )

Figure 20: Heat map of the trajectory. (a) SITE 1. (b) SITE 2. (c) SITE 3. (d) SITE 4. (e) SITE 5. (f ) SITE 6.

Figure 21: SITE 1 facilities renovation measures.

Figure 22: SITE 2 facilities renovation measures.
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of the red trajectory to determine the extension
length.

(ii) For SITE 2: a considerable part of the data points at
this point fall on the side of the crosswalk near the
side of the roadway, which greatly increases the risk
of pedestrian crossing. Te density of the overfow
point on the upper left side of the crosswalk is the
highest. An efective way to regulate such pedestrian

crossing modes is to extend the length of the
guardrail (Figure 22). Te spillover rate will be
greatly reduced after regulating such pedestrian
crossing behavior.

(iii) For SITE 3: the pedestrian trajectory of SITE 3 is
mostly concentrated on the left side of the cross-
walk. Pedestrians are always unconsciously biased
towards the source of attraction, while there is

Figure 23: Concept map of Ergo Crosswalk.

Figure 24: SITE 3 facilities renovation measures.
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Figure 25: SITE 4 facilities renovation measures.
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a certain avoidance of trafc fow. Terefore, an arc
trajectory is generated. Korean designer Jae Min
Lim presented a new crosswalk called “Ergo
Crosswalk” (Figure 23) at the 2010 Seoul Design
Fair. Te outline of the whole marking line is called
the “meniscus” with two wide ends and a narrow
middle, which fts people’s arc crossing trajectory
and can guide people to regulate crossing. We can
refer to the design of the abovementioned crescent
pedestrian crosswalk. At the same time, the parking
line is moved back or designed to be serrated
(Figure 24), which can efectively limit the pedes-
trian trajectory in the crosswalk.

(iv) For SITE 4: compared with the road design of the
abovementioned SITES, SITE 4 does not have the
facilities to restrict the pedestrian crossing, resulting
in a wider distribution of pedestrians. Terefore, in
view of the pedestrian psychology in this crossing
mode, the sign of the crosswalk can be set at the
guide sign outside the subway station or at the
entrance and exit of the subway station to remind

pedestrians to use the crosswalk facilities to cross
the street (Figure 25). However, due to the large
number of overfow pedestrians, this method can
only serve as a warning for some pedestrians. A
more efective method is to widen the crosswalk
marking. Te point is located at a three-way in-
tersection. Vehicles cannot enter the pedestrian
crossing when pedestrians are passing through.
Terefore, the pedestrian crossing can be widened
from north to south. According to China’s “urban
road trafc signs and markings set specifcations,”
the width of the crosswalk in urban roads should be
greater than or equal to 3m, and 1m should be the
frst level when widening (Te Ministry of Public
Security of the People’s Republic of China and
Ministry of Housing and Urban-Rural Develop-
ment of the People’s [40]).

(v) For SITE 5: the trend of pedestrian crossing tra-
jectory is completely inconsistent with the marking
design of the crosswalk. So, transforming the geo-
metric design of crossing facilities is necessary

Figure 26: SITE 5 facilities renovation measures.

Figure 27: SITE 6 street facilities renovation measures.
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according to the crossing mode of pedestrians in the
natural state. First, the area with the highest density
is judged based on the heat map, and the shape of
the crosswalk is roughly determined. Furthermore,
a reasonable width of the crosswalk is set according
to the boundary of the pedestrian area. We then
refer to the 95% dotted line position of the red
trajectory to determine the scope. Due to the at-
traction of the subway station to the track, pedes-
trians have a large defection in the later stage of
crossing, so pedestrians are limited to the crosswalk
by extending the greening facilities in the lower left
corner or setting a small range of guardrails
(Figure 26).

(vi) For SITE 6: pedestrians walking outside the
crosswalk to save time for crossing. Te crosswalk
marking successfully protects pedestrians both from
and towards the south-west sidewalk on Anshan
Road but fails to provide a good shield for those
crossing from and towards the south-west sidewalk
on Zhangwu Road. A best solution for this can be
expanding the crosswalk marking (in the north
direction). Vehicles are distributed along fxed
lanes, subject to specifc trafc rules, turning angles,
and inertial constraints, and the randomness of
trajectory is greatly reduced compared with pe-
destrian crossing. Considering comprehensively,
the optimized crosswalk can more efectively reg-
ulate the crossing behavior of pedestrians and ve-
hicles and can improve the trafc efciency. In this
way, the crosswalk marking can cover a higher
proportion of the pedestrian crossings; meanwhile,
pedestrians may be more willing to walk on the
crosswalk (Figure 27).

4. Conclusions

Tis paper mainly investigates the pedestrian crossing
process, an important aspect of behavior that is also closely
associated with safety but remains much unconsidered. For
the purpose of improving the efciency in data collection
from multiple study sites, an easily-applied and low-cost
data collection method using the UAV for video data col-
lection and the vision-based tracking tool for trajectory
extraction are used. Deep-SORT-Yolov5 architecture is
introduced for video data processing in the extraction of
trajectory data of pedestrians. By replacing the Euclidean
point distance measure with a distance matrix describing the
distance between trajectories, an improved DBSCAN
method is proposed for clustering pedestrian patterns in
terms of the shape and ofsets of trajectories. Te proposed
methodology, including the data collection method based on
UAV, trajectory extraction using Deep-SORT-Yolov5, and
pattern recognition using the improved DBSCAN, is applied
in a case study involving six crosswalk locations in Shanghai,
China. By dividing pedestrians walking in diferent di-
rections, two pedestrian groups walking in the opposite
directions on the crosswalks are analyzed, respectively.
Outcomes of pedestrian crossing patterns from clustering

are compared, and discussions are made on the character of
the patterns, key factors contributing to diferent patterns,
and potential solutions for avoiding improper crossing
patterns. Te following key conclusions can be made:

(i) Tested through the case study, the data collection
method using UAV and vision-based Deep-SORT-
Yolov5 tracking architecture has presented its ad-
vantages of being convenient, time-saving, good-in-
data-quality, and fexible. Compared with tradi-
tional fxed trafc cameras, UAVs have stronger
mobility, larger feld of view, lower cost, and less
operational space restrictions [41]. Meanwhile,
a good coverage is achieved for efectively collecting
high-quality data, presenting the outstanding ability
in using this method for data collection.

(ii) Te method of onsite observation and manual re-
cording is time-consuming and laborious and is
often subjected to signifcant subjective infuence of
the observer. Tis method often judges the severity
of conficts based on individual events and fails to
refect the continuous evolution process of behav-
iors. Trajectories can provide more detailed, accu-
rate, objective, and comprehensive data. Most
importantly, trajectory data containing information
such as position and time can help analyze the
patterns of pedestrian crossing behavior.

(iii) Results from clustering show that the improved
DBSCAN is able to describe the features of the
pedestrian crossing process with the trajectories of
diferent pattern types being signifcantly diferent,
measured by two typical pedestrian crossing mea-
sures including the average walking speed and the
average ofset to the center of the crosswalk.

(iv) In the case study, observations of the pedestrian
crossing process are clustered for pedestrians
walking in diferent directions at the six study sites.
Improper crossing patterns are identifed, and the
main reasons for such patterns are explained. Based
on the clustering results, practical treatment sug-
gestions are made in terms of the issues identifed.
Overall, the methodology proposed in this paper has
shown a good performance in investigating the
pedestrian crossing process.

As a key contribution, the study provides a novel ap-
proach in investigating pedestrian crossing behavior from
the aspect of the crossing process, which will further con-
tribute to studying pedestrian safety and behavior in a more
comprehensive way. Besides, the study also provides
a practical and convenient way of trafc safety analysis
benefting from the fexibility in data collecting using UAV,
the detailed and formatted information in trajectory data
processed using deep-learning tracking algorithms, and
advanced measures in safety and behavior analysis.

While the study has several advantages associated with
the use of UAVs, limitations do exist. Te reliance on battery
power limits the duration of data collection to amaximum of
half an hour. Furthermore, obtaining permission from the
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city municipality to fy a UAV above urban roads adds to the
difculty of data collection. As a result, the amount of data
collected is insufcient. In addition, the paper only proposes
a “prototype” method for investigating the pedestrian
crossing process using a distance measure to cluster patterns
of trajectories. However, diferent trajectory features should
be further considered. For future work, the proposed
methodology will be updated with vision-based tracking
technology, more advanced trajectory mining models ca-
pable of considering diferent trajectory features, and the use
of long-lasting data collection equipment available in the
UAV industry. Investigations into the efects of various
environmental and trafc factors on the pedestrian crossing
process will also be conducted using the data collected from
diferent locations.
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