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To investigate the heterogeneity of car-following behaviors across diferent vehicle combinations from the perspective of driver
visual characteristics, the NGSIM dataset from I-80 and US-101 highways was selected and distinct car-following segments were
extracted for analysis. Firstly, all the efective vehicle trajectories were extracted and categorized into diferent vehicle types based
on their widths, resulting in four combination types of car-following segments. Visual angle and its change rate were introduced as
variables representing driver visual characteristics. Additionally, one-way analysis of variance (ANOVA) was used to compare
these variables with traditional ones.Te driver’s visual characteristic variables were then incorporated to improve the full velocity
diference (FVD) model. Genetic algorithms were employed to calibrate the model under diferent car-following types, revealing
pronounced behavioral variations. After implementing the enhanced drivers’ visual angle (DVA) model, substantial reductions in
calibration and validation errors were observed, with calibration errors decreasing by 51.93% and 42.22% and validation errors
decreasing by 56.61% and 45.26%. Tis indicates the DVA model’s remarkable adaptability and stability. Lastly, through
a sensitivity analysis of errors, the DVA model demonstrated greater robustness toward the improved error evaluation function.
By integrating drivers’ visual characteristics, this study provides in-depth insights into heterogeneous car-following behaviors,
enhancing our understanding of driver behaviors and micro-trafc simulation systems.

1. Introduction

Car-following models have long been a focal point in the feld
of trafc fow theory. By modeling car-following behaviors, it
becomes possible to quantify the longitudinal interactions
between following vehicles (FVs, the vehicles located behind in
the process of car-following, will receive the stimulus of the
front car and produce a response) and leading vehicles (LVs,
the leading vehicles in the process of car-following, which can
bring certain stimulation to the FVs), thereby deciphering the
operational characteristics of trafc fow and revealing the
underlyingmechanisms of micro-level driving behaviors. Since

the inception of the car-following concept by Pipes [1], more
than 70 years of development have transpired. Numerous car-
following models have been proposed and gradually refned,
with scholars like Dian-hei and Sheng [2] systematically cat-
egorizing and delineating these models from both trafc en-
gineering and statistical physics perspectives. With the advent
of big data and the rise of technologies such as machine
learning and deep learning, various data-driven car-following
model theories and trajectory prediction methods [3–6] have
emerged. However, amidst the rapid theoretical progress of
these models, their physical signifcance and interpretability
have gradually waned, and attributes like driver characteristics
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and vehicle heterogeneity have been overlooked. Nevertheless,
human-driven vehicles remain the primary actors in road
trafc fow. Hence, drivers continue to be the most crucial
element within road trafc components. Yao et al. [7] assessed
patterns of individual emergence during the pandemic; Qu
et al. [8] explored how ridership contributes to the planning
and operation of urban and rural bus systems, showing that
individual behavior rules can afect macro-trafc conditions.
Tang et al. [9] introduced drivers’ bounded rationality into the
speed guidance model and demonstrated through simulation
results that drivers’ bounded rationality signifcantly impacts
vehicle fuel consumption and emissions. Jin et al. [10] studied
drivers’ behavior of using mobile phones at intersections, and
the results show that using mobile phones has a signifcant
negative impact on driving behavior. Furthermore, Liao et al.
[11] improved the traditional car-following model by taking
into account drivers’ driving habits, enhancing the model’s
safety and comfort. To better describe the impact of the driver’s
stochastic characteristics on car-following behaviors, Luo et al.
[12] proposed a stochastic full velocity diference model
(SFVDM) considering the stochastic variation of the desired
velocity. Accurately comprehending the drivingmechanisms of
drivers during the driving process and establishing behavior
models that are closer to real-world driving scenarios from
a driver’s perspective hold signifcant importance for a deeper
understanding of driving behavior mechanisms and micro-
trafc simulation systems [13].

Conventional car-following models frequently assume
homogeneity among both drivers and vehicles. However, in
real-world scenarios, the presence of driver individuality,
vehicle disparities, and even environmental distinctions
such as weather and road conditions introduce heteroge-
neity into car-following behaviors. Tis heterogeneity is
closely associated at a macroscopic level with phenomena
including the reduction of road capacity, trafc congestion,
trafc oscillations, and the emergence of stop-and-go waves
[14, 15]. Ossen and Hoogendoorn [16] designated this form
of heterogeneity as the divergences in car-following behavior
exhibited between diverse drivers or distinct vehicle com-
binations operating within the same environmental context
(i.e., identical road segments, comparable trafc conditions,
and analogous weather conditions).

At the driver level, An et al. [17] introduced a delay
parameter in reaction time to capture variations in responses
among drivers with diferent levels of experience. Tey
formulated the extended full velocity diference (FVD)
model that takes driver heterogeneity into account. Sub-
sequently, Cheng et al. [18] investigated the diferences in
car-following characteristics among drivers with varying
cultural backgrounds through virtual driving experiments.
Pan and Guan [19] employed quantile regression to model
driver heterogeneity at diferent quantiles. Makridis et al.
[20] proposed a novel framework based on identifying driver
characteristics through acceleration behavior, demonstrat-
ing driver heterogeneity in microsimulation scenarios.

At the vehicle level, Peeta et al. [21] pioneered categorizing
diferent vehicle types into distinct car-following groups, ex-
amining diferences in car-following behavior between heavy
vehicles and regular automobiles. Liu et al. [22] extended the

intelligent driver model (IDM) by considering various vehicle
combinations (C-C, C-T, T-C, and T-T, where C represents
cars and T denotes trucks). Tey coupled the extended model
with NGSIM dataset calibration to derive corresponding
fundamental trafc diagrams. Raju et al. [23], utilizing data
collected from two road sections in India, introduced “lateral
separation” to combinations such as C-C, C-T, T-C, and T-T
and recalibrated the Wiedemann model in Vissim software.

Existing studies predominantly focus on car-following
behaviors between vehicles of diferent functional categories,
considering combinations such as cars with trucks, buses, or
heavy vehicles. Nevertheless, due to the limited represen-
tation of trucks and buses in actual collected data, the sample
size often fails to adequately support their conclusions.
Moreover, current research predominantly centers on het-
erogeneity in vehicle performance and driving behaviors
among diferent functional vehicle types. However, there is
limited investigation into the heterogeneity within the same
functional category of vehicles. Furthermore, considering
that the primary source of stimuli for drivers is visual input,
the existing research that considers vehicle types still relies
on traditional car-following variables, neglecting the in-
vestigation of the visual stimuli brought about by diferent
vehicle types on drivers.

To address these issues, this study aims to characterize
the infuence of heterogeneous vehicle types on car-
following behaviors within the same functional category
of vehicles from the perspective of drivers’ visual charac-
teristics. Te study utilizes the NGSIM dataset to extract all
passenger cars, categorizes them into vehicle types, and
obtains four types of car-following segments. To investigate
vehicle-type heterogeneity in car-following, visual charac-
teristics are introduced as variables and subjected to nu-
merical simulation. Single-factor analysis of variance is
employed to compare the diferences in car-following be-
havior performance between traditional car-following var-
iables and visual characteristics. Finally, a drivers’ visual
angle (DVA) model incorporating visual characteristics is
established, and its efectiveness is evaluated through
comprehensive and type-specifc calibration, validation, and
error sensitivity analysis.

Te contributions of this study can be summarized as
follows. First, this study introduces the drivers’ visual charac-
teristic variables into the context of heterogeneous vehicle-type
car-following models. Based on trajectory data, the visual angle
and its rate of change are constructed to study vehicle-type
heterogeneity from the perspective of drivers’ visual charac-
teristics, showcasing the efectiveness of visual characteristic
variables in addressing heterogeneity in car-following scenarios.
Second, an improved model is proposed based on visual
characteristic variables.Trough comprehensive calibration and
validation, as well as validation for four diferent combination
types, the method is proven to signifcantly enhance model
ftting performance. Additionally, the error sensitivity analysis
demonstrates the model’s robustness across various road
conditions, vehicle combinations, and diferent error evaluation
criteria. Finally, the statistical analysis of visual characteristic
variables and model comparison substantiate that modeling
from the perspective of drivers’ visual characteristics is of vital
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signifcance in enhancing model ftting performance and re-
solving the issue of heterogeneous car-following combination
types.Tis study introduces novel avenues for investigating car-
following behavioral heterogeneity.

Te remainder of this paper is organized as follows. In
Section 2, the preprocessing of trajectory data and the
classifcation criteria of four heterogeneous car-following
combination types are introduced, and the visual charac-
teristic parameters are extracted for numerical simulation.
Statistical diference analysis of heterogeneous car-following
behaviors is introduced in Section 3. Section 4 elaborates the
results of model calibration and verifcation and discusses
the results. Te fnal section concludes the study.

2. Data Description

2.1.Data Source andTrajectoryReconstruction. To investigate
the impact of vehicle type heterogeneity on driver behavior, this
study utilizes the publicly available NextGeneration Simulation
(NGSIM) dataset [24] provided by the United States Federal
Highway Administration. Trajectory data from two roadways,
I-80 and US-101, are selected for analysis. Te dataset captures
vehicle trajectories at a frequency of 10Hz, encompassing
dynamic vehicle motion information such as acceleration,
velocity, and headway, as well as static vehicle attributes like
width and length. Tese attributes are crucial for vehicle type
analysis. To mitigate the infuence of high-occupancy vehicle
(HOV) lanes and entrance/exit ramps, analysis is confned to
vehicles on lanes 2 to 5 of the selected roadways. Te road
confguration is illustrated in Figure 1.

Te raw trajectory data are acquired through video
processing software. However, inherent anomalies and ran-
dom noise in the data result in signifcant deviations between
obtained trajectories and actual trajectories. Tus, prior to
utilization, corrective actions are necessary to rectify outliers
and smooth noise. In this study, the abnormal data points
were corrected by threshold cleaning and spline interpolation,
and the noise was smoothed by symmetric exponential
moving average (sEMA) [25]. Maczak et al. [26] conducted
a comparative assessment of sEMA, locally weighted re-
gression, Butterworth flters, Kalman flters, and multiple
spline methods based on identical evaluation criteria. Ulti-
mately, sEMA was determined to markedly minimize ac-
celeration standard deviation and outlier counts.Tis method
has since been widely adopted in subsequent analyses of
NGSIM vehicle trajectory data [27, 28]. Te smoothing
process is outlined in equations (1) and (2).
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In equation (1), X(tk) represents the ftted driving
parameters of the vehicle at time tk, which includes po-
sition and driving speed. i denotes the sample point in the
trajectory, dt is the sampling interval of 0.1 seconds, andm
is the total length of the trajectory. In equation (2),D is the
window width for boundary smoothing, and Δ is the
window width for intermediate data smoothing. Tie-
mann et al. [25] conducted a comparative analysis of
various window widths for displacement, velocity, and
acceleration. Ultimately, they selected a displacement
smoothing window Tx of 0.5 seconds, a velocity
smoothing window Tv of 1.0 seconds, and an acceleration
smoothing window Ta of 5.0 seconds.

Te process involved selecting a random sample of
vehicles from the I-80 and US-101 roadways. Te smoothing
of vehicle speeds and accelerations is schematically depicted
in Figure 2. Subsequently, the reconstructed trajectories
from the I-80 and US-101 datasets were analyzed. Prior to
reconstruction, approximately 12.4% of the acceleration
values exceeded 10 ft/s2 (approximately 3.048m/s2). How-
ever, following the reconstruction process, the accelerations
stabilized within the range of ±3m/s2. Moreover, the pro-
portion of accelerations with magnitudes exceeding ±15m/
s³ (referred to as jerk) decreased from 45.7% to 0%. Tis
reduction underscores that the reconstructed trajectories
align more closely with authentic driving scenarios.

2.2. Car-Following Segment Extraction and Classifcation.
Following the trajectory data reconstruction, car-following
segments were further extracted with constraints on car-
following gap, duration, and following vehicle (FV) speed,
based on the studies by Liu et al. [22] and Higgs and Abbas
[29]. Te criteria for defning car-following behavior in this
study are as follows.
① Te preceding vehicle’s ID remains unchanged, en-

suring that the vehicle consistently follows the LVs.②Te
average speed of the FVs is≥ 5m/s to avoid uncertainties in
car-following behavior during congested conditions.③Te
car-following gap is≤ 120m to ensure that the FVs operate
under non-free-fow conditions. ④ Te car-following du-
ration is≥ 30 s to ensure the stability of the car-following
state. ⑤Te relative lateral displacement between the LVs
and FVs is≤ 1.5m, ensuring that they remain in the same
lane. Te car-following samples extracted based on these
criteria are summarized in Table 1.

Segmentation of diferent car-following types requires
vehicle classifcation. Based on the distribution character-
istics of vehicle width on I-80 and US-101 roads, a critical
vehicle width of 1.95meters (corresponding to the 40th
percentile for I-80 and the 50th percentile for US-101) was
selected to diferentiate between small and large vehicle
types. According to the vehicle types of the lead and fol-
lowing cars within car-following segments, these segments
were categorized into four types: Small-Small (S-S), Small-
Large (S-L), Large-Small (L-S), and Large-Large (L-L) car-
following types. Te statistical results for each type of car-
following segment are presented in Table 2.
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2.3. Extraction of Driver’s Visual Characteristics.
Conventional studies on car-following behavior often em-
ploy input variables such as following car velocity, relative
velocity, and distance to obtain the following car’s accel-
eration. However, psychological research suggests that
drivers are unable to accurately perceive speed and distance
information. Moreover, their judgments of the distance to
the leading vehicles (LVs) are not based on these parameters.
Car-following behavior fundamentally constitutes a driver’s
response to external trafc stimuli. Tese stimuli primarily
originate from the LVs and directly impact the driver’s visual
perception. As the visual stimuli from the LVs change,
drivers adopt various actions (such as maintaining a steady
speed, accelerating, decelerating, or changing lanes) to
achieve the desired following state. To characterize the visual
stimuli perceived by drivers, considering both LVs’ in-
formation and inter-vehicle distance, we introduce the
concept of visual angle along with its rate of change, as
depicted in Figure 3. Te calculation of these parameters is
defned by equations (3) and (4):

θn(t) �
wn− 1

∆xn(t) − ln− 1
, (3)

θn
′(t) �

dθn(t)

dt
�
θn(t) − θn(t − 1)

∆t
. (4)

In equation (3), θn(t) represents the visual angle of the
FV’s driver at time t, wn− 1 is the width of the LV, ∆xn(t) is
the headway between the LV and the FV at time t (space
headway), ln− 1 is the length of the LV, l0,n− 1 is the distance
from the rear of the LV to the front of the FV, and θn

′(t) is the
change rate of the visual angle of the FV’s driver at time t.
Te sampling interval ∆t is 0.1 s.

By combining equations (3) and (4), visual angle and its
rate of change sequences can be extracted for each car-
following segment. To mitigate the impact of outliers, a two-
step threshold cleaning method [29] is employed to cleanse
the data. Firstly, the 98th percentile values of both variables
are selected as the thresholds for the initial cleansing step,
eliminating extreme outliers. Te postcleansing data
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Figure 2: Vehicle trajectory reconstruction. (a) Velocity smoothing. (b) Acceleration smoothing.
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Figure 1: Diagram of NGSIM roads. (a) I-80. (b) US-101.
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distribution is depicted in Figures 4(a) and 4(b). Sub-
sequently, guided by the distribution plots, an upper limit of
0.8 is applied to the visual angle (corresponding to 1.25 times
the vehicle width based on equation (3)) and a range of
±0.1 rad/s is set as the upper and lower bounds for the visual
angle rate of change.Te resulting cumulative distribution of
cleansed data is shown in Figures 4(c) and 4(d). Following
the two-step cleansing process, visual angles are consistently
distributed within the range of 0 to 0.8 rad, thereby further
eliminating segments associated with congestion. Similarly,
the rate of change of visual angle remains within the
±0.1 rad/s range, aligning with the expected visual variation
characteristics of drivers under normal driving conditions.

2.4. Numerical Analysis of Visual Characteristics. To gain
a deeper understanding of the performance of visual angle
and its rate of change variables under diferent vehicle types,
numerical simulations are conducted based on equations (3)
and (4). A comparison is made between the visual angle
variable and the traditional car-following gap in various
vehicle types. Initially, equation (3) is substituted into
equation (4) and further manipulated as follows.
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where ∆x � l1 − l0 � ∆v · ∆t represents the change in space
headway of the FVs at time ∆t, ∆v represents the relative
velocity of vehicles, l0 represents the current time’s space
headway, and l1 represents the next time’s space headway.
Based on the extracted car-following segment samples, the
mean of l1 is − 0.36m/s, with a minimum of − 8.84m/s and
a maximum of 14.77m/s, and hence it can be taken as
− 1.5m≤∆x≤ 1.5m.

Te numerical simulation of the visual angle variable is
depicted in Figure 5. It is evident that as the space headway
reduces, the visual angle gradually increases, with a larger
increase observed when the headway is small. Tis suggests
that drivers are more signifcantly infuenced by the LVs
when the headway is tight. Additionally, for smaller head-
way, the visual angle increases notably with an increase in
vehicle width. However, at greater distances, the diferences
in visual angle among vehicles with diferent widths di-
minish, indicating that at longer distances, the stimuli from
vehicles of varying widths remain relatively consistent, and
drivers tend toward a state of free driving.

Concerning the visual angle rate of change variable, as
indicated by equation (5), it varies with both space headway
l0 and ∆x. Figure 6 illustrates the distribution surfaces of the
visual angle rate of change concerning ∆x under four vehicle
width scenarios. Similarly, at longer headway, the visual
angle rate of change tends to converge to a single plane and
approaches zero for various vehicle widths. However, at
smaller headway, signifcant diferences in the visual angle
rate of change emerge among diferent vehicle widths.
Larger vehicle widths correspond to larger visual angle rate
of changes. In summary, visual angle and its rate of change,
as visual characteristic variables of drivers, efectively refect
the diversity in stimuli perception by drivers for diferent
vehicle types at varying distances, aligning more closely with
drivers’ real-world car-following behaviors.

3. Analysis of Heterogeneous Car-Following
Behaviors Based on Visual Characteristics

Te numerical simulation results presented earlier fnd vali-
dation in real-world driving situations. When following larger
LVs, drivers often adopt more cautious driving behaviors, such
as reducing vehicle speed or increasing space headway. Tis
conservative response is attributed to the greater visual stimuli
produced by larger vehicles, which also increases the psy-
chological load on drivers. Hence, drivers tend to opt for safer
driving strategies. In this section, real driving data will be
utilized to compare the disparity between traditional car-
following variables and visual characteristic variables across
diferent car-following types. Furthermore, the signifcance of
visual characteristic variables in modeling heterogeneous car-
following behaviors will be analyzed.

Table 1: Sample statistics of efective following fragments.

Road Vehicle number Efective fragments Sample number Duration (min)
I-80 2030 2104 1193900 1989.833
US-101 3879 4031 2364904 3941.507

Table 2: Sample statistics of heterogeneous car-following
segments.

Road Types S-S S-L L-S L-L

I-80 Number 525 430 487 662
Duration (s) 887.8 757.6 752.5 1106.5

US-101 Number 1153 755 813 1310
Duration (s) 1976.2 1371.4 1330.9 2454.9

n

θn wn-1

l0, n-1 ln-1

Δxn

n-1

Figure 3: Schematic diagram of driver visual angle calculation.
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3.1. Correlation Analysis of Car-Following Variables.
Firstly, the min-max normalization technique is employed
to mitigate diferences stemming from varying scales among
diferent features. Subsequently, partial correlation co-
efcients are calculated between diferent features using the
method outlined in [30]. Te correlation matrices of I-80
and US-101 roads are shown in Figures 7(a) and 7(b), re-
spectively, where the horizontal and vertical axes denote
following vehicle (FV) speed and acceleration, visual angle
and its change rate, leading vehicle (LV) speed, space
headway, and relative speed. According to [31], when the
absolute value of a correlation coefcient is between 0 and
0.09, it is considered as having no or very weak correlation. A
correlation coefcient between 0.1 and 0.3 is considered
weak, 0.3 to 0.5 is considered moderate, and 0.5 to 1.0 is
considered a strong correlation. Te analysis reveals a sub-
stantial correlation between visual angle and space headway,
both of which exhibit strong correlation with FV speed
(correlation coefcient: ±0.74 of I-80 and ±0.78 of US-101).
Similarly, the correlation between visual angle change rate

and relative speed is noteworthy, exhibiting similar strong
correlation with FV acceleration (correlation coefcients:
− 0.57, 0.61 of I-80 and − 0.59, 0.64 of US-101). Consequently,
visual angle and its change rate features can potentially
replace traditional space headway and relative speed, ren-
dering the analysis of car-following behavior from the
perspective of driver visual characteristics a feasible
approach.

3.2. Heterogeneous Car-Following Behavior Analysis. To
analyze the disparities in car-following behavior among
heterogeneous vehicle combinations, it is necessary to ex-
tract stable car-following segments. Te extracted segments
for analysis have a duration exceeding 30 seconds. Given the
dynamic nature of car-following behavior, where drivers
continuously adjust their actions in response to real-time
stimuli from LVs, the duration of stable car-following
segments is signifcant. For a comprehensive portrayal of
micro-level driving behaviors, further small sample
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Figure 4: Comparison of distribution before and after data cleaning. (a) Visual angle before cleaning. (b) Visual angle change rate before
cleaning. (c) Visual angle after cleaning. (d) Visual angle change rate after cleaning.
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extraction is performed using a time window of 3 seconds
and an overlap of 1 second based on the stable car-following
segments as depicted in Figure 8. Tis process yields 35,044
samples for the I-80 road and 71,334 samples for the US-101
road. For each small sample segment, the mean following
vehicle speed, mean headway distance (MHD), mean visual
angle (MA), mean relative speed, and mean acceleration are
extracted as corresponding car-following features. Tese
features serve as the foundation for analyzing heterogeneous
car-following behaviors across diferent vehicle types.

To elucidate the disparities in car-following behavior
types across various driving conditions, the average headway
distance (MHD) and mean visual angle (MA) for each car-
following type are examined within distinct car-following
vehicle speed ranges, as indicated in Table 3. Te values
within parentheses indicate the growth rate of the car-
following features when transitioning from a small car
leading to a large car [28]. Te analysis reveals that with
increasing car-following vehicle speed, the headway distance
signifcantly increases while the visual angle decreases
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Figure 6: Distribution characteristics of visual angle change rate. (a) Numerical simulation of visual angle change rate under diferent
vehicle widths. (b) Evolution characteristics of visual angle change rate under diferent vehicle widths.
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notably. Tis suggests that at higher speeds, drivers tend to
maintain a safer driving state, resulting in a larger following
distance or reduced visual stimulation. Furthermore, across
diferent speeds, the shift from a small car leading to a large
car is associated with a respective 7.53% increase (S-S to S-L)
and 7.37% increase (L-S to L-L) in average headway distance.
In contrast, the visual angle exhibits a more substantial
increase of 22.32% (S-S to S-L) and 29.17% (L-S to L-L). Tis
signifcant increase is attributed to the ability of the visual
angle to refect drivers’ sensitivity to the stimulus of the LV
size. Te visual angle variable efectively captures this sen-
sitivity from both physiological and psychological per-
spectives, highlighting its crucial role in describing car-
following behavior. Te same conclusions are drawn from
the analysis of the US-101 road.

Subsequently, using car-following type as a categorical
variable, one-way ANOVA is conducted on the normalized
data to explore the diferences in headway distance and
visual angle distributions across car-following types. Tables 4
and 5 illustrate that both the mean gap distance (MGD) and
mean angle (MA) variables exhibit statistically signifcant
diferences across the four car-following types. Subsequent
quantifcation using η2 (partial eta-squared) and Cohen’s f
values further afrms this diference. For both the I-80 and
US-101 roads, signifcant diferences are identifed in MGD

and MA among diferent car-following types. When fol-
lowing larger vehicles, both MGD and MA signifcantly
increase. Te quantifcation analysis reveals that the dif-
ferences in MGD and MA among various car-following
types are 0.5% and 3.6%, respectively. Corresponding
Cohen’s f values are 0.074 and 0.192, signifying that the
visual angle variable efectively captures the diferences
among diferent car-following types.Tis variable reveals the
physiological and psychological stress experienced by
drivers when facing vehicles of diferent sizes.

4. Model Calibration and Validation Results

4.1. Constructing Car-Following Models Based on Visual
Characteristics. Calibration results from existing highway
data models reveal that the FVD (full velocity diference)
model outperforms other car-following models such as
the GHR model and the Gipps model, demonstrating
advantages including higher calibration accuracy, fewer
parameters with clear physical signifcance, and robust-
ness [32]. To comprehensively compare the diferential
modeling efects of visual characteristic variables and
traditional variables in car-following behavior, this study
selects the FVD model based on headway distance and the
DVA (drivers’ visual angle) model based on visual angle
for calibration and validation. Te FVD model is repre-
sented by equations (6) and (7).

an(t) � α V ∆xn(t)􏼂 􏼃 − vn(t)􏼈 􏼉 + λ∆vn(t), (6)

V ∆xn(t)􏼂 􏼃 � V1 + V2tan h c1 ∆xn(t) − ln− 1( 􏼁 − c2􏼂 􏼃, (7)

where an(t) denotes the acceleration of the following vehicle
at time t, V[∆xn(t)] is the driver’s desired speed function
based on headway distance, and α, λ, V1, V2, c1, and c2 are
the model parameters.
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Figure 7: Correlation coefcient matrix of car-following features. (a) Feature matrix of I-80. (b) Feature matrix of US-101.

Time window=30×0.1 s
Moving Direction
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Figure 8: Sketch of small sample fragment extraction.
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To evaluate the performance of visual angle and its rate
of change variables on heterogeneous vehicle types, the
visual angle and its rate of change variables extracted are
incorporated into the improved FVD model, creating the
DVAmodel. Tis model has been validated through stability
analysis and numerical simulation [33]. Te specifc form of
the model is presented in equations (8) and (9).

an(t) � α V θn(t)􏼂 􏼃 − vn(t)􏼈 􏼉 + λθ′(t), (8)

V θn(t)􏼂 􏼃 � V1 + V2tan h c1
wn− 1

θn(t)
􏼠 􏼡 − c2􏼢 􏼣, (9)

where V[θn(t)] represents the driver’s desired speed func-
tion based on visual angle.

4.2. Driver Reaction Time Calibration. During car-following
processes, individual drivers exhibit variations in their re-
action times [34]. In this study, the two-related sequences
coefcient method [35] is employed to calibrate driver re-
action times at the individual level. Based on prior research,
the relative speed and acceleration of the preceding and
following vehicles are used for calculation. Te specifc
procedure involves predefning a series of reaction time
values at intervals of 0.2 seconds within the range of
0–2 seconds. For each reaction time value, the correlation
coefcient between relative speed and acceleration is com-
puted. Te reaction time corresponding to the maximum
correlation coefcient is selected as the calibrated reaction

time for that driver. Te distribution of the maximum
correlation coefcients for each driver’s two sequences is
shown in Figure 9(a). Te two sequences exhibit a high
correlation, with reaction times primarily falling within the
range of 1.0–1.6 seconds.

After obtaining the calibrated reaction times for each
driver, the distribution of reaction times for diferent-sized
vehicles is compared (Figure 9(b)). Te distribution curve for
larger vehicles shifts toward the lower right corner, and the
percentage of vehicles with reaction times exceeding
1.4 seconds or less than 1.8 seconds is higher for larger vehicles
compared to smaller ones. Tis suggests that the distribution
of reaction times for larger vehicles is more dispersed. Sta-
tistical analysis conducted on diferent-sized vehicles from the
two roadways reveals that larger vehicles have a 0.458-meter
increase in width, representing a 26.4% rise. Furthermore, the
average reaction time increases by 0.33 seconds, indicating
a 2.8% increment. Specifcally, the average reaction time for
larger vehicles is 1.212 seconds, while it is 1.178 seconds for
smaller vehicles. Te standard deviation also increases by
0.434 seconds. Tis can be attributed to the inherent char-
acteristics of larger vehicles, including their acceleration, de-
celeration capabilities, and inertia.

4.3. Error Index Selection and Improvement. To assess the
disparity between model calibration results and actual
outcomes, it is essential to establish appropriate error
evaluation metrics and criteria. In past car-following model
calibrations, parameters like car-following speed or headway
distance have been commonly employed as evaluation

Table 4: Results of one-way analysis of variance of following behavior of heterogeneous vehicle on US-101 road.

Variables Following types Sample size Mean Standard deviation F P Partial η2 Cohen’s f value

Mean gap distance (MGD)

S-S 8878 0.134 0.085

63.49 <0.001∗∗∗ 0.005 0.074
S-L 7576 0.143 0.085
L-S 7525 0.139 0.088
L-L 11065 0.151 0.097

Overall 35044 0.142 0.09

Mean angle (MA)

S-S 8878 0.205 0.123

430.554 <0.001∗∗∗ 0.036 0.192
S-L 7576 0.256 0.138
L-S 7525 0.197 0.122
L-L 11065 0.249 0.142

Overall 35044 0.228 0.135
Note: ∗∗∗, ∗∗, and ∗ represent signifcance levels of 1%, 5%, and 10%, respectively.

Table 5: Results of one-way analysis of variance of following behavior of heterogeneous vehicle on I-80 road.

Variables Following types Sample size Mean Standard deviation F P Partial η2 Cohen’s f value

Mean gap distance (MGD)

S-S 19762 0.086 0.055

16.709 <0.001∗∗∗ 0.001 0.027
S-L 13714 0.089 0.054
L-S 13309 0.09 0.059
L-L 24549 0.088 0.058

Overall 71334 0.088 0.057

Mean angle (MA)

S-S 19762 0.165 0.114

972.8 <0.001∗∗∗ 0.039 0.202
S-L 13714 0.206 0.124
L-S 13309 0.163 0.11
L-L 24549 0.216 0.133

Overall 71334 0.19 0.124
Note: ∗∗∗, ∗∗, and ∗ represent signifcance levels of 1%, 5%, and 10%, respectively.
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indicators [36–39]. In this study, to contrast the modeling
efcacy of headway distance and visual angle, both car-
following speed and headway distance variables are adop-
ted as evaluation indicators. Furthermore, the changes in
evaluation outcomes under diferent weightings are
analyzed.

As the error indicators, car-following speed and headway
distance are chosen. Te mean absolute relative error
(MARE) is employed as the evaluation function to compare
the goodness of ft of the models. Te objective function is
defned as follows.

MARE(v,∆x) � w1 ×MARE(v) + w2 ×MARE(∆x), (10)

MARE(y) �
1
T

·
􏽐

T
i�1 y

real
i − y

pre
i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

􏽐
T
i�1y

real
i

, (11)

w1 + w2 � 1, (12)

where MARE(v,∆x) represents the comprehensive aver-
age percentage error of car-following speed and headway
distance and MARE(v) and MARE(∆x), respectively,
denote the average percentage errors of car-following
speed and headway distance. T represents the number
of data points in the car-following segment. vreali and ∆xreal

i

represent the actual speed and actual headway distance of
the following car at time i, while v

pre
i and ∆x

pre
i denote the

model-predicted car-following speed and headway dis-
tance at the same time. w1 and w2 are the weighting
coefcients for the relative speed error and headway
distance error, respectively, both initially set to 0.5 during
the initial calibration.

4.4. Calibration and Validation of the Overall Samples.
Five hundred car-following segments were selected ran-
domly from both I-80 and US-101 highways for calibration
and validation using a genetic algorithm combined with a 5-
fold cross-validation approach [39]. Among these, 400
segments were designated for calibration, while the
remaining 100 segments were reserved for validation. Te
model parameter calibration outcomes are detailed in Ta-
ble 6. Te results indicate that the DVA model exhibited
calibration errors below 0.5 for both roadways. Conversely,
the FVD model displayed calibration errors nearing 0.8,
marking an increase of 51.93% and 42.22% for the I-80 and
US-101 segments, respectively. Furthermore, the standard
deviation of the FVD model’s calibration results also
exhibited signifcant augmentation.

Te parameter means obtained after calibration were
employed as model parameters for validation on the re-
served dataset. Te validation results are presented in Ta-
ble 7, while the cumulative distribution of calibration and
validation errors is depicted in Figure 10. Te I-80 road’s
validation error decreased from 1.409 to 0.611, resulting in
a precision improvement of 56.61%. Similarly, the US-101
road’s validation error decreased from 1.425 to 0.780,
leading to a 45.26% enhancement in precision. Te com-
bined improvement across the two roadways was 50.94%.
Te calibration and validation outcomes across both
roadways underscore the superior precision of the DVA
model in comparison to the FVD model.

Further investigation into the relationship between error
and sample duration is illustrated by the error distribution
against the car-following duration, as depicted in Figure 11.
Te linear ftting of the two models’ errors with respect to
sample duration shows that both models’ errors increase in
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Figure 9: Correlation coefcient and reaction time distribution. (a) Distribution of correlation coefcients. (b) Distribution of
response time.
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tandem with sample duration. Tis indicates that both
models are comparably infuenced by the sample duration.
Additionally, an examination of the FVD model’s ftting
errors revealed a denser distribution within the 0-1 range,
with greater dispersion in ftting errors beyond 1. Conse-
quently, the ftting line shifts upward, indicating higher
ftting errors. To elucidate the origin of this discrete error,
FVD model calibration results with errors exceeding 1.0
were extracted. Upon categorizing these errors, it was

observed that among the two roadways, the L-L type samples
accounted for 84 instances, constituting 50.91% of the total.
Te remaining types were distributed as follows: L-S: 34
instances, 20.61%; S-L: 27 instances, 16.36%; and S-S: 20
instances, 12.12%. Tis highlights that the increase in FVD
model errors primarily stems from the L-L type, signifying
that optimal ftting outcomes are achieved when both the
lead and following vehicles are small cars. Conversely, as the
lead or following vehicle transitions to a large car, the ftting

Table 6: Overall calibration results of the model.

Road Sample
size Model c1 c2

v1
(m/s)

v2
(m/s) α λ Error

I-80 400

DVA
Mean 6.755 11.528 4.228 3.908 0.079 3.684 0.370
Std.
dev. 6.084 5.674 2.609 2.417 0.091 6.677 0.238

FVD
Mean 8.578 10.640 4.141 4.262 0.211 0.677 0.769
Std.
dev. 6.330 5.787 2.889 3.107 0.345 4.095 0.929

US-101 400

DVA
Mean 7.258 11.609 6.141 5.957 0.079 4.949 0.453
Std.
dev. 6.223 5.736 3.907 4.104 0.083 6.516 0.388

FVD
Mean 9.243 11.097 5.333 5.898 0.206 − 0.205 0.784
Std.
dev. 6.439 5.853 3.759 4.010 0.333 1.827 0.878

Table 7: Overall validation results of the model.

Road Model
Validation error

Mean Std. dev. Min Max

I-80 DVA 0.611 0.363 0.061 1.381
FVD 1.409 1.027 0.160 4.116

US-101 DVA 0.780 0.641 0.060 2.822
FVD 1.425 1.115 0.087 5.854
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Figure 10: Cumulative distribution of the overall calibration and validation errors. (a) Cumulative distribution of calibration errors. (b)
Cumulative distribution of validation errors.
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performance diminishes, reaching its poorest state when
both are large cars, thus demonstrating a signifcant degree
of error dispersion.

4.5. Calibration and Validation by Diferent Car-Following
Types. To compare the performance of the two models
under diferent car-following scenarios, a subset of car-
following samples was selected from various car-following
types on the I-80 and US-101 highways. Specifcally, 300
samples with a car-following duration ≤60 s were randomly
chosen. Among these, 200 samples were designated for
calibration, leaving 100 for validation. A 3-fold cross-
validation method was employed. Te model calibration
and validation procedures outlined in Section 4.4 were re-
peated for each of the four car-following types, yielding
parameter calibration results as presented in Table 8.

Te analysis of the results indicates notable disparities
between the DVA and FVD models in terms of sensitivity
coefcients α and λ. In the former, λ is signifcantly larger,
while α is signifcantly smaller, compared to the latter.
Moreover, both are comparatively smaller in the FVD
model, signifying lower sensitivity to relative velocity and
distance, as well as a reduced capacity for diferentiation
between the two. Te heightened sensitivity of the DVA
model to changes in visual angle is attributed to the con-
gested trafc conditions on both roadways. Given the
prevalent low speeds of drivers, adhering to the expected
velocity is challenging, making the direct stimulus from the
LVs a prominent infuencer on the car-following behaviors.

Furthermore, a comparison of the calibration errors for
diferent car-following types between the two models is il-
lustrated in Figure 12. Across both roadways, the DVA
model exhibited a signifcant improvement in the mean
calibration error in comparison to the FVD model. Addi-
tionally, the standard deviation of errors for the DVAmodel

noticeably decreased, indicating a more concentrated error
distribution. Tis reduction in error variability underscores
the higher stability of the model calibration process. Fur-
thermore, the DVA model displayed a more uniform error
distribution across all four car-following types.

Using the optimal parameter means from the calibration
results as model parameters, the validation process was
conducted on a set of 100 samples from the validation set.
Te validation results are presented in Table 9.Te outcomes
reveal signifcant accuracy improvements across all four car-
following types on the I-80 highway, with the highest in-
crease reaching 62.0% for the L-S type. Te remaining types
exhibited accuracy enhancements exceeding 50%. On the
US-101 highway, accuracy improvements varied consider-
ably among diferent types. For the S-L and L-L types, the
model’s accuracy increased by 35.8% and 32.3%, re-
spectively. In contrast, for the S-S and L-S types, the model’s
accuracy is improved by 46.1% and 44.1%, respectively. Tis
indicates that the ftting accuracy of the DVA model is more
signifcantly enhanced when following a small LV. As il-
lustrated in Figure 13, the DVA model incorporating the
visual angle variable demonstrated substantial improvement
in ftting efectiveness under various car-following types,
showcasing its adaptability and stability across diferent
types of car-following combinations.

4.6. Sensitivity Analysis of the Errors. With the multitude of
existing car-following models, a unifed evaluation standard
for model performance remains lacking. To investigate the
performance of both models under diferent evaluation
criteria, by assigning diferent weights to the space headway
and speed, we improve the traditional error functions seeing
in equations (11) and (12). A series of values are set for w1
and w2, and 400 samples are randomly selected from I-80
road and US-101 road for calibration. Te calibration results
are illustrated in Figure 14. It is evident from these results
that when w1 is equal to 0 (at this moment, w2 equals 1),
considering only the headway as the error indicator, both
model errors for all four scenarios reach their maximum. As
w1 increases, the errors for both models gradually decrease.
When w1 equals 1 (w2 equals 0), with consideration solely
given to the following vehicle’s speed, the error reaches its
minimum.

Further comparison reveals that the FVDmodel exhibits
substantial discrepancies in ftting results between the two
road types, while the DVA model’s performance remains
similar across both road types. Tis suggests that the DVA
model displays higher adaptability under varying road
conditions. As w1 increases, the error of DVA model de-
creases slowly, indicating its overall stability, while the FVD
model demonstrates a more pronounced decline. Tis sig-
nifes that the DVA model boasts greater robustness against
diferent error indicators, resulting in a more consistent
model performance. To delve into this phenomenon,
a comparison of errors for diferent indicator weights and
combinations is conducted, as illustrated in Figure 15. Tis
analysis reveals that under varying weights, the FVD model
shows signifcant diferences in error outcomes among
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Table 8: Calibration results of heterogeneous car-following model.

Road Model Following types c1 c2 v1 v2 α λ
Calibration error

Mean Std. dev.

I-80

DVA

S-S 6.160 11.877 4.046 4.235 0.076 4.042 0.430 0.292
S-L 6.482 11.697 4.034 4.180 0.086 4.209 0.399 0.251
L-S 7.263 11.918 3.546 4.381 0.091 3.952 0.387 0.227
L-L 7.141 11.465 3.791 4.245 0.080 3.938 0.348 0.223

FVD

S-S 8.049 11.205 4.052 4.247 0.216 − 0.149 0.894 0.941
S-L 8.711 9.765 4.026 3.956 0.260 − 0.106 0.769 0.618
L-S 9.057 10.472 3.883 4.279 0.275 0.110 0.890 0.976
L-L 9.569 10.364 4.014 4.171 0.211 − 0.213 0.730 0.754

US-101

DVA

S-S 6.385 11.624 5.304 5.592 0.069 6.007 0.455 0.372
S-L 7.331 11.393 5.819 6.737 0.060 4.927 0.434 0.309
L-S 7.594 11.580 5.400 6.721 0.063 5.353 0.459 0.389
L-L 6.570 11.385 5.721 6.573 0.070 4.992 0.424 0.341

FVD

S-S 8.489 10.950 4.832 4.917 0.176 − 0.337 0.905 0.703
S-L 9.005 10.094 4.955 5.881 0.150 − 0.264 0.634 0.612
L-S 8.227 10.197 5.294 5.121 0.185 − 0.332 0.658 0.508
L-L 7.765 10.545 4.463 6.064 0.181 − 0.213 0.727 0.653
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Figure 12: Calibration results of diferent car-following combinations. (a) Distribution of calibration error at I-80. (b) Distribution of
calibration error at US-101.

Table 9: Verifcation results of heterogeneous vehicle-following model.

Road Model S-S S-L L-S L-L

I-80
DVA 0.821 0.835 0.649 0.640
FVD 1.695 1.886 1.707 1.441

Accuracy increase (%) 0.515 0.558 0.620 0.556

US-101
DVA 0.663 0.866 0.769 1.013
FVD 1.231 1.348 1.374 1.496

Accuracy increase (%) 0.461 0.358 0.441 0.323
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diferent types. Notably, when the current vehicle is a larger
vehicle, the model error notably increases. Conversely, the
DVA model exhibits smaller variations in error under dif-
ferent types. Combining these fndings with the statistical

analysis from Section 2.3, we could draw the conclusion that
incorporating driver visual angle variables can enhance the
model’s ftting stability across various vehicle combinations,
leading to a better performance.
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Figure 13: Verifcation results of diferent car-following combinations. (a) Distribution of verifcation error at I-80. (b) Distribution of
verifcation error at US-101.
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5. Conclusions

Tis study is based on heterogeneous car-following seg-
ments extracted from the NGSIM dataset. Visual char-
acteristic variables are extracted for numerical
simulations and compared with traditional car-following
variables to investigate the diferences in heterogeneous
car-following behaviors. Statistical analysis reveals sub-
stantial variability in driver behavior within heteroge-
neous car-following scenarios. Furthermore, the use of
visual characteristic variables efectively refects the visual
stimuli experienced by drivers when following larger
vehicles. In contrast to traditional car-following distance
variables, these visual stimuli exhibit more pronounced
diferences across diferent car-following types, empha-
sizing the signifcance of incorporating driver visual
characteristics in the study of heterogeneous car-
following behaviors.

To evaluate the merits of modeling driver visual char-
acteristics in comparison with traditional car-following
variables, both an improved DVA model and an FVD
model were calibrated and validated. Te results demon-
strate that the enhanced DVA model signifcantly out-
performs the FVD model.

Te calibration results for diferent car types and the
sensitivity analysis of errors reveal that the DVA model,
based on driver visual characteristics, exhibits high adapt-
ability and stability across diverse road conditions, vehicle
types, and various error metric weights. Tis indicates the
model’s potential for broader application and imple-
mentation. Terefore, investigating micro-driving behaviors
from the driver’s perspective, analyzing physiological and
psychological characteristics during driving, refning car-
following modeling theories, and addressing the challenges
of heterogeneous car-following are of paramount
importance.

It should be noted that this study solely focuses on
improving the input variables of the FVD model, which
yielded signifcant improvements. However, the potential
infuence of model structure on diferent variables cannot be
ruled out. Further experimentation is needed for other
commonly used models such as the Gipps model and the
Wiedemann model. Additionally, the NGSIM dataset fea-
tures high trafc fow on both roadways, typically involving
car-following distances below 50meters. Drivers are sub-
jected to substantial visual stimuli in such scenarios. As car-
following distances increase further, driver stimuli tend to
diminish. Analyzing the changing characteristics of driver
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Figure 15: Error sensitivity distribution of diferent car-following combinations. (a) w1 � 0.0, w2 � 1.0. (b) w1 � 0.2, w2 � 0.8. (c) w1 � 0.4,
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visual stimuli under relatively smoother trafc fow condi-
tions presents a crucial challenge in understanding driver
driving mechanisms.
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