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Vehicle trajectory data is in high demand for transportation research due to its rich detail. Lane information is an important aspect
of trajectory data, which is typically obtained using sensors such as cameras or LiDAR, which are able to extract road lane features.
However, some sensors for trajectory tracking (e.g., MMW radar sensors) are unable to provide lane information. Vehicle
detection and trajectory tracking systems based on these sensing technologies can integrate with lane information throughmanual
calibration during initial installation, but this process is labor-intensive and requires frequent recalibration as the sensors
gradually become deviated by wind and vibration. Tis has posed a challenge for trajectory tracking, particularly for real-time
applications. To address this challenge, this paper proposes a method for estimating lane-level road geometrics using microscopic
trajectory data. Te method involves segmenting the trajectory points using direction vectors and clustering them and ftting
a series of cluster center points. Te mean error (ME) of the distance between the estimated result and the ground truth reference
is used to measure the accuracy of the lane-level road geometrics estimation in diferent conditions. Results show that when the
average trajectory data includes at least approximately 30 points per meter in each segment, the ME is always less than 0.1m. Te
method has also been tested onMMWwave radar data and found to be efective.Tis demonstrates the feasibility of our approach
for dynamic calibration of road alignment in vehicle trajectory tracking systems.

1. Introduction

Vehicle trajectory data are a valuable resource in the feld
of transportation, and there has been a proliferation of
research on topics such as road safety, microdriving
behavior, and autonomous driving using trajectory data
acquired through various sensing technologies, including
computer vision [1, 2], radar [3, 4], and LiDAR [5, 6].
Vision-based tracking is the most commonly used
method for extracting trajectories, as seen in datasets
such as the Next Generation Simulation (NGSIM) [7]
which uses video data from cameras mounted on tall
buildings, and the highD dataset [8], which uses un-
manned aerial vehicles (UAVs) to collect data from above
the roads. MMW radar, which extracts trajectories using
the Doppler efect of waves, has also been shown to be

efective for trajectory extraction [3] and has been applied
to a wide range of scenarios [9]. LiDAR, on the other
hand, provides rich, detailed trajectory data and has been
used in numerous experimental studies [5, 6].

Despite advances in trajectory extraction techniques,
a crucial question remains: how can we accurately obtain
geometric information for further analysis? Road geometric
information is important at the microscopic behavior level,
as lateral maneuver information such as lateral ofsets and
accelerations is a key aspect of behavior and related road user
safety [10]. In addition, the current trend of sensor fusion
(both trajectory splicing and data fusion) also requires
proper identifcation of lane information [11]. It is worth
noting that the road geometry mentioned in this paper refers
specifcally to features such as curves and lanes on the plane
and does not include longitudinal sections. Because
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trajectory extraction is typically carried out on expressways
or urban expressways, which tend to be relatively smooth.

Tere are two main approaches for obtaining geometric
information from vehicle data: the direct detection ap-
proach, in which geometrics are directly detected using
sensors such as cameras and LiDAR, and the indirect es-
timation approach, which estimates geometric information
based on vehicle trajectory data collected by sensors such as
MMW radars. For example, the highD dataset [8] manually
obtained geometric information from clear lane lines in
UAV images, which can even provide complex geometry
information for interwoven regions where highways enter
and exit [12]. LiDAR can also provide point cloud data
containing road information for geometric information
extraction [13]. MMW radars, which ofer better tracking
capability and speed accuracy compared to video cameras
[14], have gained increasing popularity for real-time trafc
data collection [3]; for these sensors, as geometric in-
formation cannot be directly recorded, studies have
attempted to estimate geometric information from extracted
trajectories. For instance, roadside MMW radar can extract
road information through trajectory clustering and
ftting [15].

Despite the eforts made in obtaining geometric in-
formation, current methods have their limitations. Direct
methods, such as deep learning or image processing using
images or LiDAR point clouds, are often complex and can
result in slow processing times. Tese methods may also
not be applicable in all scenarios, such as at night or in low
visibility, and often require clear lane lines for accurate
results [16, 17]. Indirect methods, which rely on the ac-
curacy of trajectory data [18], can provide some level of
accuracy [15], but the range of geometric information
obtained is usually limited [15, 18] and may require
supplementary information for completeness [19]. Ad-
ditionally, sensor fusion technology, which combines
multiple sensors to improve accuracy, can be expensive
due to the need for periodic recalibration and can be
afected by ofsets caused by wind and vibration. In order
to obtain high quality data, these sensors must be con-
tinuously calibrated.

Tis study aims to develop a method for estimating lane-
level road geometry using trajectory data. To do so, we used
existing datasets for experimentation and validated the
ground truth reference acquired from these datasets using
manually calibrated data from UAVs. We then presented
a method for segmenting and clustering trajectory data to
generate a series of points, which were used to estimate
lane-level geometry after undergoing polynomial ftting
and smoothing. We conducted a case study using UAV
trajectory data to validate the method and compared the
results under diferent conditions, including the presence
or absence of lane change vehicle trajectories, diferent
amounts of data, diferent lengths of trajectory segmen-
tation, and diferent clustering methods. Finally, we ap-
plied the method to MMW radar data in a case study,
demonstrating its efectiveness in calibrating lane esti-
mation in existing radar systems and other sensors that do
not provide lane information.

2. Literature Review

Lane-level road geometrics have been widely studied in the
context of autonomous driving and advanced driver assis-
tance system [20]. Te purpose of identifying lane lines is to
construct a driving scene and to determine the driving
environment [21]. Most existing studies on lane detection
using on-board equipment have focused on extracting lane
lines from image features through camera-based methods
[17] or point cloud features through LiDAR-based methods
[22]. Eidehall et al. [19] demonstrated that combing the
trajectory data with road information can improve the ac-
curacy of lane detection. Zhang [18] further showed that
road shape can be successfully estimated solely based on
trajectory data. It is worth noting that although direct de-
tection and indirect estimation methods are diferent, their
accuracies are similar. For roadside sensors, information in
a fxed area can be acquired over a long period of time.
Cameras are a commonly used solution as they can acquire
target images efectively. Meanwhile, LiDAR provides
a high-precision advantage with its ability to gather three-
dimensional point cloud data [23]. Both LiDAR and cameras
can directly obtain lane lines through data features. While
millimeter-wave radar cannot directly provide lane line
information, it is generally less expensive than LiDAR and is
increasingly being used for roadside trafc detection [4, 9].
Some studies have reported that millimeter-wave radar
combined with other sensors (primarily cameras) as a fusion
sensor is reliable [24, 25]. To the best of the author’s
knowledge, there has been very little research directly in-
vestigating road geometrics using trajectory data.Wang et al.
[9] presented a real-time road-range tracking of vehicle
trajectories using millimeter-wave radar sensors, in which
trajectory splicing (combining the trajectory data of adjacent
areas to obtain the trajectory data of a larger area [26]) is
necessary. However, some work relies on a multicamera
tracking system and the road geometry is obtained through
image processing [27]. With road geometry, the spatial
relationship of vehicles can be more easily aligned across
diferent sensors. Wang et al. [9] mentioned that road ge-
ometry can also be accurately estimated from high-precision
trajectory data in pure millimeter-wave radar systems.

In both direct detection and indirect estimation
methods, despite the variations in approaches, the repre-
sentation of road geometry is consistent in most studies.
Previous studies have shown that road geometry is com-
monly described in a fat 2D plane as an assumption [20].
Tere are three types of models that can be used to ft road
geometry: parametric, semiparametric, and nonparametric.
Zhang [18] suggested that a polynomial model is efective in
describing road geometry with few parameters. Li et al. [28]
also found that the least-squares method is efective in ftting
lane lines. However, it is worth noting that the alignment of
a road consists of various types of lines, and it can be difcult
to ft sharp changes in the road using a single model when
the ftting section is too long [29]. Feature points used in the
ftting process include lane line feature points [20] and
roadside object [30]. It is worth noting that most of the
studies still require real environmental data.
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While past literature has not extensively explored the use
of trajectory data for lane-level road geometry detection,
researchers have recognized the potential of this data for
estimating road geometry. Liu and Sun [31] found that the
wheel rails of vehicles have diferent distributions in dif-
ferent lanes in the cross section of the road, although the
exact distribution cannot be accurately expressed due to the
limitations of the data. Huang and Jianchuan [32] also
discovered that diferent types of vehicles have distinct
distributions in the road cross section, with larger vehicles
having a center value of their lateral trajectory distribution
that is closer to the center line of the lane. While there have
been fewer studies on using trajectory data to detect road
alignment, there have been numerous studies on using
trajectory data to evaluate driving characteristics under
diferent road alignment conditions [33, 34].

Terefore, previous studies have demonstrated that
trajectory data can be used to express road alignment. Tis
research aims to address the gap in the use of microscopic
trajectory data, specifcally roadside equipment collection
trajectory data, for estimating lane-level road geometry.
Even if there is a sensor ofset, road information can still be
estimated through the trajectory data by dynamically cali-
brating road alignments for vehicle trajectory tracking
systems.

3. Methodology

Te methodology for this research is outlined in Figure 1. It
consists of three main steps: (i) data collection and ground
truth reference acquisition, (ii) trajectory clustering and
estimation, and (iii) comparison and application.

3.1. Data Collection and Ground Truth Reference Acquisition.
Te NGSIM dataset is widely used in transport research and
consists of trajectory data derived from video. While these
datasets do not provide road alignment or lane line in-
formation, they can be used as a reference for comparison of
estimation results. To obtain ground truth reference for each
lane center line, we used the method proposed by Zhang [18]
of ftting all in-lane trajectories with a smoothing spline
function using a third-degree polynomial model. It is worth
noting that this method is only suitable for road sections
without complex facilities, such as bus stops and entry and
exit ramps, or road sections with drastic changes in cross-
section.

To acquire the ground truth reference for each lane
center line, we frst eliminated interference items from the
trajectory data, such as lanes afected by ramps in the
NGSIM data, which were labeled as the 6th and 7th lanes. In
this research, we removed the trajectory data for lanes 6 and
7, following Zhang’s approach. Next, we ft all in-lane tra-
jectories with a third-degree polynomial model using the
least squares method in the global coordinate frame. Tese
samples were then treated as the ground truth reference for
the lane lines in the global coordinate frame and served as
a reference for each lane, as shown in Figure 2. However,
since the NGSIM data does not have lane line information, it

is impossible to verify the reliability of this method. To test
the results, we manually annotated the lane center lines
using UAV video, which can be used as validation of the
method. Specifcally, we marked feature points on each lane
line manually, and then ft these points with a third-degree
polynomial model using the least squares method. Te
calibrated lane center line was then obtained by averaging
the models of the nearest lane lines.

In the UAV video, the vehicle trajectory data were also
manually calibrated. Considering the need to study the
impact of diferent data volumes on clustering methods, the
current hovering time of drones is generally limited, which
makes it difcult to provide continuous long-term trajectory
data. Additionally, manual calibration is time-consuming, so
we used the previous ground truth reference estimation
method as a supplement after validation [18], if a large
amount of data was needed. Note that throughout this paper,
the term “ground truth reference” does not refer to the true
value, but rather serves as a reference value for lane esti-
mation. Te manually annotated value obtained from the
UAV is referred to as the ground truth lane center line in this
research.

3.2. Trajectory Clustering and Lane Estimation. Sensors such
as MMW radar can detect vehicle trajectories without ini-
tially recording their lane information. In the NGSIM I80
dataset, we can infer the lane information of a vehicle
through the video. Terefore, in the processing process, we
need to remove the label indicating the lane ID that the
vehicle is on. To obtain lane change information, we use
a polynomial ftting on each vehicle trajectory to remove
lane change data. Tis results in pure discrete points with
only time and position, which can be treated as the pure
trajectory of a sensor that does not provide lane information.
Te UAV trajectory data are also processed in this way.

Since pure trajectory data does not provide lane di-
rection and road geometry is not a straight line, it is im-
possible to capture lane-level geometry in road latitude and
longitude. To approximate the lane direction, we randomly
select the start and end points of a vehicle’s trajectory to
represent a direction vector. Tis selection is used only to
confrm the approximate direction, and the normal vector
perpendicular to the direction vector is divided equally, as
shown in Figure 3(a). Te blue dashed line is called the
divide line, which produces a block area. Each lane ID is then
obtained by clustering as shown in Figure 3(b). Te edges of
the lanes are not shown in these fgures because this is pure
track data.

For lateral clustering, we prepare the trajectory segment
and start clustering according to Figure 3(c) to obtain the
segment cluster center of each lane on the entire road
(representing the cross-section center point of each lane). To
avoid local optima, we delete any data sets where the cluster
centers for diferent segments are too close or unreasonable.
Tis step is repeated for each segment, resulting in a se-
quence of discrete points. Finally, by ftting these points
(cleaned segment clustering centers) with a third-degree
polynomial model using least squares, we can obtain the
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estimation of the lane center line as the black curved line as
shown in Figure 3.

For a trajectory segment, the vehicle’s trajectory points can
be thought of as a random variable input, similar to the
problem of an archer shooting a target. Tis includes an as-
sumption that the lateral distribution of trajectories on each
lane follows a normal distribution, meaning that the sample
mean can be used to represent the distribution mean, which is
at the centerline of the lane. However, this assumption is only
used in the lane cross-section, and the coordinate system of this
dataset does not align with the cross-section. As shown in
Figure 4, the segment centers represent the center point of the
cross-section after the clustering is completed and can be
represented by the center of all the trajectory points in that
segment. Using these cluster centers as lane feature points, we
can estimate the lane center line. Te process for doing so will
be demonstrated in formulas (1)–(6). Details are explained in
the following part.

A cluster of trajectory data segment is presented in
Figure 4. Te midpoint of the projection of all trajectory
points on the cross-section, represented by (x′, y′), is used
as the center point of the segment. Te value of y′ can be
calculated using the following equation, and the value of x′
can be similarly determined:

y′ �
􏽐

N
i yi − di sin θ􏼂 􏼃

N

�
􏽐

N
i yi

N
−

􏽐
N
i di sin θ

N
,

(1)

where di represents the distance between the trajectory point
i and the red line (cross-section line) and θ represents the
angle between the x-axis and the di of the point, measured
clockwise. N is the number of trajectory segment points. In
addition, the center of all trajectory points is (x″, y″), and
y″ can be calculated based on the following equation.
Similarly, x″ is not listed anymore either.

y″ �
􏽐

N
i yi

N
. (2)

Te center point of the cross-section can be represented
by the mean of the trajectory segments only if
(x′, y′) �(x″, y″) are equal, which can be verifed using the
following equation:

􏽐
N
i di sin θ

N
� 0. (3)

Ground truth reference

Figure 2: Illustration of ground truth reference data.
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Te cross-section line equation is given as
Ax + By + C � 0, where A, B, and C are all constants. Tis
line should be perpendicular to the edge line. Te distances
can be calculated, and equation (3) can be rewritten as the
following equations:

􏽘
N

i

Axi + Byi + C � 0, (4)

A 􏽘

N

i

xi + B 􏽘

N

i

yi + N × C � 0, (5)

Ax″ + By″ + C � 0. (6)

Tis suggests that if the cross-section line equation
passes through the points (x″, y″), it will satisfy equation
(3). In other words, the center of all trajectory points
(x″, y″) can represent the segment center (x′, y′) on the
cross section.

In this study, we used two clustering methods: the
commonly used K-means method and the k-medoids
method, which uses actual points in the class as the cen-
ter instead of the mean center to reduce error caused by
outliers. It should be noted that the k-values of these two
methods are consistent with the actual number of lanes. For
instance, if trajectory data is collected on a 3-lane road, we

select the k-value as 3, and so forth. Te length of the
segment afects the number and accuracy of the clusters
directly. To ensure that each segment contains at least one
point, we considered the speed of the vehicle. For example, if
the data frequency is more than 10Hz and the average speed
of the road is 20m/s, the segment length should be more
than 2m. We compared the clustering efect under diferent
segmentation lengths.

Another issue we had to address was the presence of
“jagged” edges at the start and end of the radar detection
range, where vehicles are not detected at the same position,
resulting in abnormal clustering. To fx this, we trimmed the
start and end of the trajectory range. With these prepara-
tions, the trajectory clustering is essentially completed.

3.3. Comparison and Application. Te fnal estimation result
is measured using the average distance between the curves as
the error, as shown in Figure 5. Specifcally, we calculate the
diference between the estimated value and the true value curve
at certain points along the length by fnding the closest distance
from each point to the true value and then take the average to
get the error of the entire curve. When measuring all lanes, we
take the average of the mean error (ME) for diferent lanes; ME
can be calculated using the following equation:

ME �
􏽐(d1, d2, . . . , dn)

n
. (7)

(a) Direction vector and trajectory data segment

(c) Clustering result Fitting(b) clustering

Trajectory point

Direction vector 
divide line 

Segment clustering center

Cluster range

Fitting and Estimation result

Figure 3: Process of the lane-level geometry estimation method.
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To analyze the efects of various experimental conditions
on the estimated results, we repeat the above process for the
NGSIM datasets using diferent segment lengths, clustering
methods, and data amounts and with or without lane change
data. Te parameters with the best results are selected and
then verifed with the manually calibrated data. Finally, the
method with the selected parameters is applied to the tra-
jectory data from the MMW radar. Since the radar data does
not have real lane line data, we also use the ME of two
adjacent geometric estimation results for evaluation.

4. Validation

4.1. Site and Data for Validation. In this paper, two datasets
were used to evaluate the proposed method for estimating
lane-level road geometry using microscopic trajectory data.
Te frst dataset, NGSIM, open-sourced, contains a large

number of microscopic trajectory data points, while the
second dataset consists of a relatively small amount of
manually calibrated UAV trajectory data. Te UAV data
were used as a validation method to assess the efectiveness
of the ground truth reference method of the NGSIM data.
Te lane-level road geometry estimation results of the two
datasets were then compared under diferent conditions,
including diferent segment lengths, the inclusion or ex-
clusion of lane-changing values, and diferent amounts
of data.

4.1.1. Description of the NGSIM Datasets. Te NGSIM
datasets used in this research were extracted from video
images taken by cameras mounted on top of buildings, as
shown in Figure 6 [7]. Te study site, located on I-80, is
approximately 500meters in length and has 6 lanes, with the

(x1, y1)

x

y
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(x’, y’)

di

(xi, yi)

edge line 

edge line 

divide line 

divide line 

Segment center

divide line 

edge line Trajectory point
Direction vector 

Segment clustering center

Cluster range

Figure 4: A cluster in the trajectory data segment. ∗Note that the edge line is the edge of a lane, the red dash-dot line is the road cross section
perpendicular to the edge line, and the blue dashed line is perpendicular to the direction vector and serves as the divide line. Te zoomed
fgure is slightly skewed for ease of presentation.
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Figure 5: Distance between the estimated and ground truth curves.
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6th lane merging with an entrance ramp, and the ramp is
number 7 lane in the dataset. To eliminate the infuence of
vehicle trajectories at the ramp, the trajectories in the 6th
and 7th lanes were removed from the analysis.Te data were
collected at a frequency of 10Hz during two time periods:
15minutes from 4:00 p.m. to 4:15 p.m. and 30minutes from
5:00 p.m. to 5:30 p.m. on April 13, 2005.

4.1.2. Description of Hangzhou Xifu Freeway Dataset.
Te second dataset used in this research was collected using
a DJI Mavic2 Prounmanned aerial vehicle (UAV) on the
Hangzhou Xifu Freeway, as shown in Figure 7. Te UAV
few above the road section for a duration of 8minutes,
recording video of the trafc with a resolution of
3840 ∗ 2160. Te captured road section was approximately
190meters in length, and the video provided clear enough
lane line markings for calibrating the lane center line.

4.2. Analysis and Discussions

4.2.1. Ground Truth Reference Acquisition Method
Validation. Te results of the lane center line calibration are
shown in Figure 8. As shown in Figure 8(a), the red line fts
the lane lines well, and the mean of the two-lane lines (blue
line) also fts well. Te comparison between the lane center
line and the ground truth reference is shown in Figure 8(b).
It should be noted that the ground truth was obtained by
ftting the trajectory data after removing the lane change
data, and it serves as a reference.TeME of the ftting model
is 0.087 in lane 1, 0.035 in lane 2, and 0.160 in lane 3, as
shown in Figure 8(c). Te average ME is below 0.1meters,
which is less than 2.6% of the lane width of 3.75meters in
this study. However, it is ambiguous whether these results
prove the high accuracy of this method. Te purpose of this
validation experiment was to demonstrate that this method
is relatively efective, and the ground truth of the NGSIM
I-80 datasets will be estimated using this method as a ref-
erence, as shown in Figure 9.

4.2.2. Lane-Level Road Geometrics Estimation. To investigate
the efect of diferent segment lengths, clustering methods,
inclusion or exclusion of lane-changing values, and diferent
amounts of data on the lane-level geometry estimation, the
estimation results were analyzed under diferent conditions.
Te results are shown in the following fgures and tables.

(1) NGSIM Dataset. As can be seen in Figure 10, four groups
of control experiments were carried out, respectively. k is
a simple k-means method, km is a simple k-medoids
method, ku and kmu mean corresponding methods after
lane change data are removed, as the amount of data in-
creases, and the ME of all the results gradually decreases.
From the fgure, it appears that the performance is better
when the lane change data is removed, especially for high
amounts of data. However, for low amounts of data, the
performance is worse without the lane change data. Using
the k-medoids method for clustering can also efectively
improve the results for large amounts of data, but the ftting
efect is not as good as the k-means method for small
amounts of data.Tis may be because the k-medoids method
is less sensitive to anomalous data for large amounts of data.
It is worth noting that all the data points in the fgure are the
mean values obtained from multiple experiments. Te large
diference when the amount of data is small is mainly due to
the fact that, in this experiment, the lane change data was
completely removed, not just part of the trajectory, resulting
in signifcantly diferent data used for analysis (in actual
operation, it is usually easier to remove the entire lane
change trajectory rather than just a part of it).

Results related to lane analysis are presented in Table 1
and Figure 11. Based on the results of the estimation using a 1-
meter segment length, the ME difers between lanes. One
interesting aspect of the data shown in this fgure is that the
errors for lanes 1 and 2 are relatively small, the errors for lane 3
are in the middle, and the errors for lanes 4 and 5 are relatively
high. Tis may be due to the diferent lateral distribution
characteristics of vehicles in diferent lanes and the fact that
lanes 4 and 5 are relatively close to the ramp. When the
amount of data is large, the accuracy of lane 2 is higher than
that of lane 1, which may be due to the fact that the vehicle
velocity on lane 1 is faster and the majority of vehicles are cars,
resulting in larger lateral deviation from the center line [31].

Results related to segment length are presented in Table 2
and Figure 12. Tis part of the experiment uses k-medoids
method. From the fgure and table, it can be clearly seen that
when the cutting length is higher than 5m, the accuracy
decreases signifcantly, and when the cutting length is less
than 4m, the accuracy is still high. Tis is because the seg-
mentation length determines the clustering area will be too
long and the clustering will fall into a local solution. In ad-
dition, the width of the lane is around 3.75m. Overall, while
the segment length is less than 4m, length did not afect the ft
result accuracy; the fnal ftting accuracy can still be around
0.05.When the amount of data exceeds 100,000, it can be seen
that the accuracy of the result of experiment length below 4m
has reached 0.1m. From Table 2, when the data amount
reaches 80000, as indicated by the boled row in the table, the
NGSIM road involved is approximately 500 meters length

Figure 6: Description of the NGSIM I-80 dataset [7].
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190 m

Figure 7: Data collection for the UAV video.
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with 5 lanesone can further prove that the accuracy is about
0.1m, with a average of about 30 points one lane per meter
(obtained by dividing 80000 by 500 and then by 5).

(2) UAV Manually Calibrated Trajectory Data. From the
data extraction results, there are a total of 11152 trajectory
points in the calibrated data from the UAV (of which only 3
are lane-changing vehicle data). Te k-means method was
chosen for clustering, with a segmentation length of 3m.
Figure 13 and Table 3 show the error between the ground
truth reference and the estimation result, with an average
ME of 0.018. Our method involves returning lane labels
through clustering, with subsequent ftting that is approx-
imately equivalent. Te table also shows that the ME of the
estimation result and lane center for lane 1 is 0.064, for lane
2, it is 0.067, and for lane 3, it is 0.182.Te averageME is also
below 0.1m.

Based on the validation representingminimal diferences
between ground truth reference and lane center lane, the
estimation results tended to be consistent with the ground
truth reference. Tis was primarily due to that the ground
truth reference and the estimation result are both based on
the same trajectory data. Consequently, both the estimated
results and the ground truth reference exhibited a larger
ftting error in the third lane compared to the other two
lanes. Tis could be attributed to the greater distance of the
center line of the third lane’s vehicle distribution from the
lane center, which aligns with the results from the previous
NGSIM comparative analysis across diferent lanes.

5. Case Study

While some of the trajectory datasets mentioned above
provide a stable basis for signifcant research on trafc safety
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Figure 9: Te ground truth reference of NGSIM I-80.
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Figure 10: Te estimation result in the diferent clustering methods.
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Table 1: Te estimation result in each lane.

Data amount
Te ME/(m) of each line

Average ME
Lane 1 Lane 2 Lane 3 Lane 4 Lane 5

20000 0.141 0.136 0.187 0.160 0.167 0.158
40000 0.109 0.118 0.158 0.130 0.136 0.130
60000 0.095 0.105 0.132 0.114 0.125 0.114
80000 0.086 0.096 0.118 0.108 0.115 0.105
100000 0.081 0.086 0.108 0.098 0.106 0.096
120000 0.076 0.079 0.100 0.090 0.100 0.089
140000 0.073 0.072 0.093 0.084 0.096 0.083
160000 0.068 0.066 0.087 0.079 0.092 0.078
180000 0.062 0.062 0.082 0.078 0.090 0.075
200000 0.057 0.058 0.076 0.078 0.089 0.072
220000 0.053 0.053 0.072 0.079 0.088 0.069
240000 0.049 0.048 0.069 0.080 0.088 0.067
260000 0.048 0.043 0.066 0.079 0.087 0.065
280000 0.048 0.039 0.064 0.078 0.087 0.063
300000 0.047 0.037 0.062 0.077 0.086 0.062
320000 0.046 0.036 0.062 0.075 0.086 0.061
340000 0.047 0.034 0.060 0.074 0.085 0.060
360000 0.046 0.032 0.058 0.072 0.085 0.059
380000 0.046 0.031 0.056 0.070 0.083 0.057
400000 0.046 0.030 0.053 0.068 0.082 0.056
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Figure 11: Te estimation result in each lane.

Table 2: Te estimation results for segments with diferent lengths.

Data amount
Te ME/(m) of each segment length

1m 2m 3m 4m 5m 6m
20000 0.158 0.159 0.160 0.262 0.391 0.571
40000 0.130 0.131 0.133 0.161 0.242 0.401
60000 0.114 0.114 0.113 0.126 0.191 0.305
80000 0. 05 0. 04 0. 03 0. 04 0.132 0.274
100000 0.096 0.094 0.095 0. 02 0.139 0.254
120000 0.089 0.087 0.088 0.093 0.118 0.240
140000 0.083 0.082 0.080 0.084 0.097 0.231
160000 0.078 0.077 0.077 0.081 0.105 0.197
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and management, their coverage and data size are limited by
the resolution and size of the video. Previous studies have
not been able to easily test or confrm their models on larger

datasets [35]. To date, few studies have been published on the
subject of long-wide trajectory data collection systems,
particularly those that are environment-insensitive [9].
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Figure 12: Te estimation results for segments with diferent lengths.
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Figure 13: Te estimation results based on the UAV trajectory data.

Table 2: Continued.

Data amount
Te ME/(m) of each segment length

1m 2m 3m 4m 5m 6m
180000 0.075 0.073 0.073 0.077 0.095 0.174
200000 0.072 0.069 0.069 0.071 0.090 0.176
220000 0.069 0.067 0.067 0.071 0.083 0.174
240000 0.067 0.066 0.064 0.069 0.088 0.152
260000 0.065 0.064 0.064 0.066 0.080 0.152
280000 0.063 0.063 0.061 0.066 0.076 0.166
300000 0.062 0.061 0.059 0.065 0.073 0.146
320000 0.061 0.060 0.058 0.060 0.079 0.145
340000 0.060 0.059 0.059 0.062 0.070 0.131
360000 0.059 0.057 0.056 0.057 0.076 0.157
380000 0.057 0.057 0.053 0.058 0.072 0.158
400000 0.056 0.055 0.052 0.060 0.073 0.133
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Long-range millimeter-wave (MMW) radars have been
recognized as having weak atmospheric attenuation and the
ability to achieve over 200meters of sensing and detection
[36]. In this study, we apply the above method to the tra-
jectory data of a MMW radar.

Te trajectory data for this study was collected from an
MMW radar installed 8m above the Hangzhou Xifu Free-
way, as shown in Figure 14(a). Te radar system operates at
77GHz and records vehicle location at a frequency of 10Hz,
with a maximum radar range of 250m. Approximately,
10minutes of radar data were collected and examined, with
all trajectory points shown in Figure 14(b). Te road seg-
ment has 3 lanes and 1 emergency lane, though the trajectory
of the emergency lane was not collected in this study.

Based on the validation described above, the k-means
method was chosen for clustering with a segmentation
length of 3m for around 10000 trajectory points. Since lane
information is not available, the width of each lane is known

to be 3.75m. Te ME value of the geometric estimation
results for two adjacent lanes was evaluated based on
whether it is close to 3.75m.

As shown in Figure 15, the ME between the adjacent
geometric estimation results is 3.61 and 3.75, respectively.
While we do not have access to the actual lane widths for
comparison, this result from our estimation method is very
close to the expected lane widths. Te efectiveness of the
method has been demonstrated in previous sections, which
increases our confdence in its application to pure trajectory
data. It is reasonable to assume that the results of the es-
timation using millimeter-wave radar data are reliable.

6. Conclusion

In this paper, we presented a method for estimating lane-
level geometry using trajectory data, which is based on the
prior features of lateral and longitudinal of vehicle
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Figure 14: Te MMW radar and the trajectory data. (a) Te MMW radar installation position. (b) All trajectory points of the MMW radar.
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Figure 15: Te estimation result of the MMW radar trajectory data.

Table 3: Te estimation results in diferent lanes based on the UAV trajectory data.

ME/(m) Lane 1 Lane 2 Lane 3
ME of the ground truth reference and lane center lane 0.087 0.035 0.160
ME of the estimation result and ground truth reference 0.021 0.022 0.011
ME of the estimation result and lane center lane 0.064 0.067 0.182
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trajectories without lane information. Te choice of param-
eters in the method was determined through experiments in
various scenarios, including diferent data amounts, segment
lengths, lane change removal, and two clustering methods.
Te results of the manual calibration data showed that the
method is efective after parameter selection. Based on these
results, we can draw the following main conclusions:

(i) While the accuracy may not be high when the
amount of data is small, it can still reach 0.1. When
the data amount reaches a certain level, there is little
improvement in ftting accuracy. Additionally, the
ME is below 0.1m when the number of trajectory
points reaches an average of about 30 trajectory
points per meter per segment.

(ii) Removing lane-changing data and using the k-
medoids clustering method can slightly improve
accuracy in the case of a large amount of data.

(iii) It is clear that the clustering algorithm will converge
to a local optimum when the segmentation is too
large. A segmentation of around 3m (roughly the
same as the lane width) is more appropriate.

(iv) Te mean of vehicle trajectory lateral distribution
may deviate from the center of the lane for various
reasons, such as the innermost lane in the UAV data
and lanes close to the ramp in the NGSIM I80 data,
resulting in lower accuracy of lane-level geometry
estimation.

As the main contribution of this study, we provide
a method for estimating lane-level geometry using trajectory
data from any sensor without the need for road information.
Tis method can also be used for automated calibration
caused by sensor ofset under diferent conditions. Te case
study of MMW radar trajectory data is also demonstrated,
though it would be more meaningful if the results could be
compared to actual ground truth. Additionally, there has
been no detailed analysis of the potential error patterns that
may arise due to the ofset caused by the clustering as-
sumption. Te current study is limited by the amount of
microscopic trajectory data with lane line information and
cannot be verifed on a larger scale. In the future, we plan to
conduct experiments under diferent road alignments and
estimate road scenes with cross-section changes, such as
ramps and bus stops. We also plan to investigate the per-
formance of this method under diferent conditions and
explore its potential use in information completion methods
for fusion systems. However, our current knowledge of the
characteristics of diferent lane and vehicle type trajectory
lateral distributions is not sufcient to be used in this study.
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