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Te development of the automatic fare collection (AFC) systems provides signifcant support for predicting passenger fow on
urban rail transit. Tis paper extracts passenger travel patterns using AFC data on urban rail transit in Chengdu, China, over
a one-month period. Passengers are divided into two categories based on their travel habits and data mining models, and
multinomial logit (MNL) models are separately used to predict their destinations. Furthermore, a two-way search algorithm is
developed to search the optimal paths between origin-destination (OD) pairs by considering interchange constraints. Start a path
search through the origin point and destination point, respectively, until the shortest path is found.Temaximum efectiveness of
a path is measured by travel time, interchange time, and the number of interchanges between the OD pairs. Finally, the validity of
the proposed passenger fow path prediction method is verifed by using the AFC data of Chengdu metropolitan rail transit from
April 2018.

1. Introduction

By March 2022, there were 49 cities in mainland China that
had constructed urban rail lines, totaling 8,837 km,making it
one of the fastest-growing countries in terms of urban rail
transportation. As people’s living standards continue to
improve, higher demands are being placed on the safety,
efciency, and service levels of urban rail systems. Te AFC
System’s ridership data provide information for passenger
fow-related analysis and station/line status assessment. Te
accuracy of the model prediction results can be fully
guaranteed by simulating and testing the established station
passenger fow or passenger fowOD prediction model using
historical AFC data. For example, Guo et al. [1], Tang et al.
[2] predicted station passenger fows and validated them
using historical AFC data; Yang et al. [3], Cao et al. [4], and
Yao et al. [5] built an OD matrix prediction model and
compared the prediction results with real data to verify their
validity. However, people’s travel patterns are heterogeneous

[6] and may change over time. Te models need to be
updated with new indicators or calibration parameters due
to changes in the operation of the urban transportation
system (e.g., changes in urban land use types or the in-
troduction of new routes). Using the previous model may
lead to relatively inaccurate predictions.

To obtain relatively accurate prediction results of urban
rail trafc, an increasing number of studies have used data
mining on AFC data to extract information, such as station
cross-sectional passenger fow and inbound and outbound
passenger fow [7], or to obtain travel preferences of
established cardholders to build prediction models with
stronger generalization capability. Figure 1 shows the
timeline of the search in the Web of Science core database
with the search formula “(rail∗ or metro or subway or
underground) and (forecast∗ or predict∗) and passenger∗
and (AFC or OD)” (97 search results as of March 31, 2023),
and the search results were imported into CiteSpace for
visualization. In the two fgures of Figure 1, time is
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increasing in years along the time line from left to right, and
the rows represent the category results of clustering, de-
creasing in number from top to bottom. Te clustering
results of Figure 1(a)) and Figure 1(b)) are consistent, but the
diference is that Figure 1(a)) labels the literature with
keywords and Figure 1(b)) is labeled with titles. Observing
the two fgures in Figure 1, most research on short-term
passenger fow forecasting is followed by those considering
forecasting methods in terms of spatiotemporal correlation,
while #2 and #3 both forecast OD passenger fows and
mostly use deep learning to provide algorithms for mining
AFCs (more spanning lines between #2 and #3 implies more
common literature in both categories). Moreover, in the last
two years of research, passenger fow forecasting, especially
OD passenger fow forecasting, has been studied further,
revealing that there are indeed urgent problems in this area
in the current period. Terefore, current research mainly
tends to employ data mining algorithms for OD passenger
fow prediction in urban rail transit, considering spatio-
temporal correlation factors [1, 2, 8–13].

Te urban rail transit OD passenger fow forecasting can
be divided into two steps: D-point forecasting (also called OD
matrix forecasting) and inter-OD fow allocation (also called
inter-OD path selection). On the one hand, based on the
passenger fow characteristics, passenger fow distribution
patterns [14], and passenger travel preferences [7], combined
with the urban rail topology network [15], it is possible to
build a generalized model to measure the ODmatrix of urban
rail passenger fow for the prediction of passenger point of
interest (POI) [16]. For example, the improved LSTM al-
gorithm [15, 17, 18] is a more widely used method for
predicting the OD matrix, and there are also nonlinear
models [3], HW-DMD [19], etc. On the other hand, in the
transportation domain, a trip is generally described by an OD
pair, and there are usually many paths between each OD pair
that can be chosen by the traveler. Initially, people may
choose the path that costs the least amount of time, money,
etc. to travel, i.e., the “shortest path.” However, because of the
combination of diferent factors such as the passenger’s travel
purpose, travel time [14], and the attractiveness of the des-
tination station [20–22], passengers tend to choose the path
with the least cost in a broad sense, which is called the path
with the greatest efectiveness in transportation science. As
the path with the greatest efectiveness is continuously
chosen, an increasing number of people will be on this path,
resulting in increased congestion and time costs, and the
efectiveness values between the shortest path and the second
shortest path will gradually approach, even if the shortest path
can no longer be the shortest path. Terefore, path selection
probability prediction andOD demand prediction are studied
as branches of research on inter-OD trafc assignment. For
example, some studies have predicted the paths chosen by
groups by constructing probabilistic models of path selection
[23] or by matching travel time clustering to OD routes [24];
others have predicted the OD demand by constructing im-
proved LSTMmodels [4, 25], improved CNNmodels [26, 27],
or for emergency [28] or COVID-19 periods [29].

In terms of data mining depth, current research is
mainly divided into the extraction of overall indicators

from AFC data, such as the direct extraction of inbound
and outbound passenger fow and time-of-day passenger
fow from AFC data [9, 30], or the mining of travel habits of
specifc passengers from AFC data and the use of set
counting models to conduct research at the category level
[4, 7, 22, 30, 31]. However, the current models cannot
match the efcient response needs of real-time systems due
to the sheer volume of their parameter systems, and the
information obtained based on real-time AFC data is likely
to be data that has not been fully populated due to data
transmission lag and cannot be mined for historical travel
preferences to obtain prediction results. Te multinomial
logit (MNL) model [32] is based on each passenger’s choice
and simulates the process of passengers deciding travel
options. When passengers’ travel habits are developed, the
results of the choice will be closer to the actual situation
because their travel perceptions will not change extensively
in a short period, which is more suitable for station
forecasting of passenger fow destinations in urban rail
transit. Terefore, the logit model [33] and its improved
form [34–37] are more interpretable and provide a more
signifcant representation of passenger travel preferences
and behaviors than the deep learning algorithm-based
prediction approach described above.

In this study, we utilize a combination of data mining
techniques and a logit model to predict passenger behavior
for diferent passenger types. By analyzing massive historical
automatic fare collection (AFC) data, we analyze the travel
patterns of two distinct passenger groups - specifc card-
holders and those without prior travel data. In addition, we
introduce area attractiveness to predict origin–destination
(OD) matrix and identify efective travel routes. Our pro-
posed method can be utilized for real-time passenger fow
prediction in an online environment.

Te paper is structured as follows. Section 2 provides
a comprehensive description of the database used in the
study. In Section 3, we construct the road network passenger
fow OD dynamic estimation and passenger fow path as-
signment model. In Section 4, we demonstrate the numerical
analysis approach to predict passenger fow paths and re-
lated issues. Finally, we summarize our research fndings and
propose future research directions in Section 5.

2. AFC Data of Network Passengers

China’s rail transit system has basically implemented the
automatic collection of passenger entry and exit information
for AFC systems.We take an AFC dataset of ChengduMetro
Line 2 in China as an example to describe the structure of the
AFC data, as shown in Table 1.

In the current situation of urban rail transit operation, AFC
data usually have problems such as missing key information
and abnormal data, resulting in poor data integrity and ac-
curacy. To improve the accuracy of data mining, the “dirty
data” in the historical AFC data should also be fltered, such as
ticket card data lacking key information, data with duplicate
records, data with identical OD points, illogical entry and exit
times, data with numerous rides in a short period, or data with
long travel times that do not conform to normal travel patterns.
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2.1. Site Type. To conduct an OD point analysis and identify
rail stations with more intensive commuter trafc, it is es-
sential to classify the stations. However, subdividing each of
the 156 rail transit stations in Chengdu into multiple factors
would require signifcant human resources, time, and efort.
As an alternative approach, we classifed Chengdu rail transit
stations into seven distinct types based on the distribution of
incoming and outgoing trafc over time. Tese classifca-
tions include: residential-concentrated, ofce-concentrated,
residence-dominated residential-ofce, ofce-dominated
ofce-residential, commercial-concentrated, hub, and
other types, which can be found in Table 2.

From the above classifcation, it can be seen that the size
of the inbound and outbound passenger fow of a station has
a certain relationship with the attractiveness of the area
around the station [22]. For example, the purpose of pas-
senger trips in residential stations is mainly commuting to

and from work, commuting to and from school, and
shopping trips, while the purpose of passenger trips in ofce
stations is mainly commuting to and from work. Terefore,
diferent trip purposes also lead to diferent spatial and
temporal distributions of OD between diferent sites.

3. Methodology

In this section, we construct an AFC-data-based passenger
fow path prediction model for urban rail transit. As shown
in Figure 2, the model consists of two parts: dynamic es-
timation of network passenger fow OD and passenger fow
path assignment based on AFC data. Among them, the
dynamic estimation of the network passenger fow OD
model divides passenger travel data into two categories:
travel habits and not-forming travel habits, and performs
D-point prediction on the acquired urban rail transit route

2011 2015 2020 2023

#0 traffic engineering computing

#1 spatial-temporal correlation

#2 deep learning

#3 origin-destination matrix prediction

#4 rail transit

#5 urban rail transit

#6 urban rail transit network

#7 agent-based modeling and simulation

#8 crowdedness detection

#9 air transport

(a)

2011 2015 2020 2023

#0 short-term passenger flow forecast

#1 metro passenger flow prediction

#2 two-stage od flow prediction

#3 passenger flow

#4 capturing station interaction

#5 passenger demand forecast

#6 urban rail transit network

#7 urban transit coordination

#8 smarttransfer

#9 air service

(b)

Figure 1: Visualization results of the literature in the feld of rail AFC and OD. (a) Literature timeline results tagged with keywords.
(b) Literature timeline results tagged with titles.
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network according to the travel data categories. Te pas-
senger fow path assignment model determines the efective
path set between the OD pairs by a two-way search algo-
rithm and uses travel time, number of interchanges, and
transfer time as the infuencing factors, combined with the
AFC data, to determine the fnal prediction results between
the OD pairs.

3.1. Dynamic Estimation of Passenger OD Flow. To estimate
the real-time passenger fow, a pattern analysis of passengers
is needed to quickly fnd their chosen outbound station
(point D) for all passengers entering the station at point
O. However, in the AFC data of the urban rail passenger
fow, the following four situationsmay occur, resulting in the
unavailability of outbound station results:

(1) Te amount of ridership data for a passenger is too
small to reach the baseline value and is judged in-
sufcient to form a travel habit.

(2) Te base value is too high, resulting in the inability to
flter out suitable outbound stations.

(3) Te same entry information cannot be found in the
history data of a passenger.

(4) Te number of predicted D points in the output is
greater than one.

We divide all AFC data into two categories: passengers
who have formed travel habits and passengers who have not
formed travel habits. Te frst three cases are grouped into
the second group, and a group-level data mining strategy is
carried out. For the fourth case, we narrow down the his-
torical data matches by using count period segmentation to
flter the similarity data in the time dimension.

Te notations of the variables used in this section are
given in Table 3.

3.1.1. DataMining Algorithm. Among all historical records, it
is clearly unreasonable to judge and classify passengers’ travel
habits by only one swipe of the card data. To determine the
number of baseline values, we use the data of Chengdu
metropolitan rail transit in April as sample data. Out of the
total data, 5 million samples were taken, and all rides with the
“Tianfutong Stored Value Ticket” (a long-term card held with
high travel dependency) were selected and grouped by card
number. In the judgment, the number of trips of the same ID
card number is selected as the base number, i.e., if the base
number is set to 1, all trip records of the same card number
with the number of trips greater than 1 within the data are
screened, and the amount of data conforming to the base
number is output and specifed as “Regular Number.” In
addition, the data were regressed by the name of the outbound
station and compared to the last day of April to calculate the
accuracy rate, and the results are shown in Table 4.

It can be seen from Table 4 that as the number of baseline
values increases, the number of rides that conform to the
regular number gradually decreases, but the accuracy rate
gradually increases.When the baseline values are assumed to
be three and four, the number of samples does not decrease

signifcantly, but the accuracy rate increases substantially. To
balance the constraints between the accuracy rate and the
baseline value, we consider four as the baseline. In addition,
the determined value of travel habits is calculated based on
the actual situation of the Chengdu subway system ε, taking
35% of the experience value. Te idea of the mining algo-
rithm is as follows:

Step 1: Obtain the passenger entry information uploaded
from the real-time AFC data and match the ID card
number in the historical ride record database; if there is
nomatching result, deal with the data with the process of
D-point prediction of passengers who have not formed
travel habits (the method stated in Section 3.1.2)
Step 2: Count the number of rides corresponding to the
ID card number and judge whether it is lower than the
baseline value. If it is, we deal using the data with the
method stated in Section 3.1.2. If it is greater than the
baseline value, execute Step 3;
Step 3: Filter the passenger inbound station Xi cor-
responding to the current AFC data, and output the
information of all outbound stations X1, . . ., Xj, . . ., Xn
in the specifed counting period (such as month, day,
etc.), obtainN1, . . ., Nj, . . .,Nn by counting the number
of times the passenger exits at each station, and cal-
culate the travel habit determination value εj:

εj �
Nj

􏽐
n
j�1Nj

. (1)

Determine whether εj is greater than 35%, if it is greater
than 35%, enter Step 4; if it is less than 35%, it is judged
to be a passenger without travel habits, and the data of
this ID card number are plugged into the method stated
in Section 3.1.2
Step 4: Count the data whose value of εj is greater than
35%. If there are multiple data points, refne the
counting period, then fnd the historical ride-out sta-
tions and return to execute Step 3. If there is only one
data point, execute Step 5
Step 5: Output the outbound station corresponding to
the value of εj, defned as the predicted outbound
station Xj, which is the predicted outbound station for
the passenger.

3.1.2. Spatiotemporal MNL Prediction Method Based on
Unformed Travel Habits. According to the classifcation of
passengers’ travel habits, the travel data that do not reach above
the baseline value indicate that the passengers corresponding to
such data have not yet been explored for travel habits and
cannot be pinpointed. For passengers who have not yet formed
travel habits, we treat them as a group and perform a group
probability distribution study because we cannot analyze the
historical preference data of individual passengers.

Te probability function Pp(j) of the MNL model de-
scribes the probability that a choice set j (in our study, the
choice set denotes the outbound station chosen by passenger
p) will be chosen.
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Table 3: Notation and description of the OD dynamic estimation model.

Notation Description

Baseline

In the historical period contained in the AFC data, when the number of times
a passenger enters the station with the same ID card number is greater than or equal
to four. It is determined that the passenger has reached the baseline value and has

a certain travel pattern
p Te number of the passenger corresponding to the ID card number
i An inbound station. i � 1, 2, . . . , m.

j
When the inbound station i is determined, the corresponding passenger outbound

station j. j � 1, 2, . . . , n

Nj Te number of exits of passengers from station j during the counting period

ε

When a passenger corresponding to a certain ID card number has a record of an
inbound swipe that reaches the baseline value at the same station, the number of
times that a certain outbound station j accounts for a percentage greater than or
equal to εi of all outbound stations corresponding to that inbound station, the

D-point prediction result for that passenger is j

Pp(j) Te probability that passenger p chooses outbound station j when travelling

Uij

Te efectiveness function of passenger p travels when i enters - j leaves. Te
efectiveness function is expressed quantitatively in terms of the factors afecting the
choice of the outbound station. Te efectiveness function is divided into a fxed

term and a probability change term

Cjp
A fxed term of the efectiveness function Uij for passenger p to select the outbound

station j

Ap

Passenger p travels to select all choice sets of the outbound station j. Te number of
elements of the choice set Ap determines the number of items in the logit model

Tij

Total travel time between inbound and outbound stations (in seconds) [37]. In the
AFC data without clear travel habits, the short distance between ODs is associated
with a high probability of being selected and high trafc volume, so it is assumed
that the higher the trafc volume between stations, the shorter the travel time, i.e.,
there is a negative relationship between the trafc volume between stations and

travel time

O

D

O

D

O

D

Urban rail road network

D-point estimation for formed travel habits

D-point estimation for unformed travel habits

D-point estimation results

Effective path set

Dynamic estimation of network passenger flow OD

Passenger f low path assignment based on AFC data
Path selection results

Figure 2: Flow diagram of the method in this chapter.
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Pp(j) �
e

Cjp

􏽐j∈Ape
Cjp

. (2)

In general, the greater the attractiveness of the area, the
shorter the travel time, and the greater the volume of
passengers, the greater the probability of passengers exiting
the station. Terefore, we defne the efectiveness function
Uij as a linear function based on the MNL model with the
following mathematical expression:

Uij �
αTij

3600
+ βDj + cGij. (3)

All Uij in the above equation are fxed terms, so that
Cjp � Uij in the probability function. Terefore, the spa-
tiotemporal MNL model is constructed jointly with equa-
tions (5) and (6) to predict the outbound station (D)
corresponding to a given inbound station (O).

Using the April 2018 Chengdu city rail transit data as
sample data for regression analysis, it is possible to determine
the parameter estimates generated by each factor afecting the
efectiveness function on the choice of passenger D points,
thus calibrating the efectiveness function equation (6) pa-
rameters of the D point prediction logit model.

(1) Travel Time. TijClustering. Te travel time of Tij from
Gaoxin station to each station is selected as the case, and
because of the variability of individual samples, the average
travel time is considered the value of Tij. Meanwhile, stations

with smaller outbound passenger fow will be fltered out,
and the travel time from Gaoxin station to each station is
fnally estimated, as shown in Figure 3.

(2) Regional Attractiveness. DjQuantifed. To facilitate the
analysis, we will select the most representative station of each
type, count its interstation trafc in April, and then compare
the average value of the inter-OD trafc of all stations. If the
actual trafc is greater than the average value, the result is
recorded as 1; otherwise, it is recorded as 0.Te results of the
inter-OD trafc calculation for the six representative stations
are shown in Table 5.

For the statistical classifcation of the OD passenger fow
between diferent types of sites, the OD volume between
diferent types of sites is compared with the average value of
the OD volume of 12,297 passengers of all sites, and if the
actual OD volume is greater than the average value, it is
recorded as 1; otherwise, it is recorded as 0. Te results are
shown in Table 6.

(3) Quantifcation of Scale Variable. Gij. In the AFC data of
Chengdu city rail transit used in the study, the average value
of inbound and outbound station trafc for all stations was
calculated as 884,565, and the maximum inbound and
outbound station trafc was 6,165,033 at Chunxi Road.
According to the grade progression, the grade increases by
one for each million increase in trafc after grade 5; before
grade 5, the grade increases by one for each 170,000 increase
in trafc. Tus, the total inbound and outbound passenger
fow at the major stations of the Chengdu Metro from April
1 to 30 is shown in Figure 4.

Based on the maximum likelihood method for estima-
tion [38], the values of each parameter of the calibrated
efectiveness function equation (6) are taken, and the results
are α � −0.2310, β � 0.2132, and c � 0.3387.

3.2. Passenger Flow Path Assignment Based on the AFC Data.
In this section, the efective path topology model is frst
established and solved to obtain the efective path set, and
then the path selection model is used to calculate the se-
lection probabilities of diferent paths to realize the refned
passenger fow allocation.

Table 3: Continued.

Notation Description
α Coefcients of total travel time variables

Dj

Outbound station regional attractiveness, describing the number of people (in
person) that the outbound station can attract [19]. Defne the regional attractiveness
as 0-1 variable, and the outgoing number of outbound stations is judged to be
attractive and defned as 1 if it is greater than the average value; it is defned as 0 if it

is less than the average value
β Coefcients of regional attractiveness variables

Gij

Te OD size variable, noted by rank, describes the efect of inbound and outbound
station size on OD volume. Te average value of inbound and outbound trafc

corresponds to rank 5, and the maximum inbound and outbound trafc
corresponds to station rank 10

c Coefcients of origin and destination scale variables

Table 4: Judgment of the relationship between the base number,
the regular number, and the accuracy rate.

Baseline value Regular number Accuracy rate
1 969073 0.834
2 660626 0.898
3 533521 0.918
4 420108 0.946
5 344493 0.957
8 154567 0.963
10 29883 0.974
15 2038 0.979
20 181 0.984
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Te symbols of the models covered in this section and
their interpretations are shown in Table 7.

3.2.1. Efective Path Topology Model and Solving Algorithm.
Considering that the algorithm needs to conform to the
actual travel habits of passengers travelling normally, the
following assumptions are made:

(1) Stations and each interval section of the urban
railway can only be passed once.

(2) Te number of interchanges for passengers using
urban rail transit is limited, i.e., the number of in-
terchange stations in the efective path is limited.
According to experience, the number of interchanges

from the original point to the destination station is
generally not more than three.

(3) Passengers who use urban rail transit to travel will
generally not transfer into a line again if they change
out of a line when transferring. Tat is, the paths in
the efective route are continuous on each rail line.

(4) If the passenger’s OD point is on the same route, the
passenger will only travel on that route, i.e., if the OD
point is on the same route, the valid trail is also on
the same route (hypothesis 3 and hypothesis 4 are
complementary to each other).

In turn, the rail network is transformed into a directed
connectivity graphG�<V, E, T> to describe the rail network
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Figure 3: Average travel time between Gaoxin station (O) and other stations (D).

Table 5: OD trafc at representative sites.

O\D Chengdu east
passenger station Jinjiang hotel Gaoxin North renmin

road Baiguolin

Chunxi road 136183 13064 47918 56875 55495
Baiguolin 34771 3254 9989 5637 —
Gaoxin 30169 23292 — 31086 —
North renmin road 41795 12421 — — —
Jinjiang hotel 17245 — — — —
Unit: person.

Table 6: OD trafc distribution and site type.

O\D Ofce-concentrated
type

Residential-ofce
type

Ofce-residential
type

Commercial-concentrated
type Hub type

Residential-concentrated type 0 0 0 1 1
Ofce-concentrated type — 0 1 1 1
Residential-ofce type — — 1 1 1
Ofce- residential type — — — 1 1
Commercial-concentrated type — — — — 1
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Figure 4: Passenger fow and OD size of each station.

Table 7: Passenger fow distribution model notation and description.

Notation Description

vl
k

Te station with the number k and the line l to which it belongs; if vl
k is an

interchange, then k is the number of the interchange online l

eh,d
k1 ,k2

Te interval with the original station number k1, the ending station number k2, the
direction d and the number h; d � ((k1 − k2)+1/2)

t
m,(d1 ,d2)

k1 ,k2

Te virtual interchange section with the starting interchange level number k1, the
ending interchange level number k2, the interchange direction (d1, d2), and the

number m is connected
W Efective path set
TO

i Adjacent stations of the original station O, including TO
1 TO

2
TD

i Adjacent stations of the ending station D, including TD
1 , TD

2

Ll

Te collection of stations (including interchange stations and ordinary stations)
included in the urban rail line of l th

D Line interval collection
S Collection of stations along the valid path
B Efective path along the interval collection
n Combined count parameter of adjacent stations, i.e., number of interchanges
m Valid path count parameters
Krs Set of valid paths between OD pairs

Urs
k

Te random efectiveness of the traveler’s choice of an efcient path k between OD
pairs, k ∈ Krs

Vrs
k

Te determined efectiveness value of the traveler can be expressed in terms of the
path cost

εrsk Random error

θ
Constant, inversely proportional to the variance of εrsk , is commonly used as

a conversion of route cost into efectiveness. It can be interpreted as an indicator of
the overall familiarity of passengers with the urban rail network

prs
k Probability of choosing a valid path k for r − s passengers between OD pairs

Crs
k

Te subset of valid paths of a valid path k, the smallest set of selectable paths for
passengers

Crs
min Te shortest path cost between OD pair r − s

Ttra Passenger transfer time

ti
twa

Te travel time (s) of the i th transfer, i.e., the time from the disembarkation
platform to the waiting platform for the passenger’s i th transfer

ti
tpl Waiting time at the platform for the i th transfer (s)

tLl

Passenger travel time online l, i.e., the transfer arc consumption time for a particular
transfer, obtained from the survey

fl Te interval between departures of line l in a particular interchange
Tk
rs Travel time on the path k

nk Number of interchanges on the path k

Tk
tra Interchange time on path k

H Nonnegative constant, called the stretch factor of the path
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model by hierarchical sequencing of the network, where V is
the set of stations, E is the set of intervals, and T is the set of
interchange virtual intervals [38, 39].

v
l
k ⊂ V, e

h,d
k1 ,k2
⊂ E, t

m, d1 ,d2( )
k1 ,k2

⊂ T. (4)

Given any OD points, let the set of ordered intervals
contained in the valid path be C, where the actual interval
ordered set is X, and the virtual interval ordered set is Y.
Ten, the valid path should satisfy the following conditions:

C � · · · , x
j− 1

, x
j
, y

j+1
,􏽮

x
j+2

, x
j+3

, · · ·􏽯,
(5)

X � · · · , x
i
1, x

i+1
1 , · · ·􏽮 􏽯, (6)

Y � · · · , y
n
, y

n+1
, · · ·􏽮 􏽯, (7)

X + Y � C, (8)

k
xj

2 � k
xj+1

1 , (9)

k
xj

2 � k
yj+1

1 , (10)

k
yj

2 � k
xj+1

1 , (11)

l
yn1

2 ≠ l
yn2

1 , (12)

􏽘 y≤N, (13)

i � 1, 2, 3, · · ·

j � 1, 2, 3, · · · n � 1, 2, 3,
(14)

where l1 and l2 denote the lines belonging to the virtual
intervals connecting the OD stations k1 and k2, respectively.
Equation (12) represents the two real intervals xj and xj+1

adjacent to each other in the ordered set C. Te k2 of the
former is the same as the k1 of the latter to ensure the
continuity of the efective paths on the same line. Similarly,
equations (13) and (14) ensure the continuity between the
actual and virtual intervals of the efective paths during the
interchange process. Equation (15) represents any two dif-
ferent virtual commutation intervals yn1 and yn2 , in the
efective path, with l2 of the former being diferent from l1 of
the latter, so that the efective path satisfes the basic as-
sumption (3). Equation (16), limiting the number of in-
terchanges n satisfes the basic assumption (2).

To reduce the complexity of the algorithm and solve the
above efective path topology model, we store the road network
information in the station number in advance, omit the step of
introducing the adjacencymatrix, reasonably use the feature that
the number of interchanges n does not exceed 3 times, and adopt
the “two-way search algorithm”with bothO andD points as the
starting points as the efective path set solving algorithm. Te
steps of the “two-way search algorithm” are as follows:

Step 1: Initialize the efective path set W, original
station O, destination station D, Ll � v1, v2, . . . ,vk􏼈 􏼉 (k
is the total number of stations), D, S, B, n, and m.
Step 2: Determine the adjacent interchange stations TO

1 ,
TO
2 , TD

1 , and TD
2 according to the original station O and

the destination station D. If one end is the end station
or is itself an interchange station, only one adjacent
interchange station needs to be determined. Based on
the line where the two adjacent stations are located,
determine the line where the station is located for
comparison. Ten, determine whether the OD points
are on the same line (based on our line number); if yes,
then go to Step 5; if not, then go to Step 3.
Step 3: Cross-determine whether adjacent interchange
stations are on the same line, discriminate up to four
groups in total: (TO

1 , TD
1 ), (T

O
1 , TD

2 ), (T
O
2 , TD

1 ), and (TO
2 ,

TD
2 ), and denote their order by n. Initialize n � 1. If on

same line, a valid path is found. For example, if (TO
1 ,

TD
1 ) is discriminated on the same line, then a valid path

O⟶ TO
1 ⟶ TD

1 ⟶ D expressed by interchange
can be determined, and the path is stored in the set of
valid paths W. Meanwhile, n � n + 1. If not on a line,
let n � n + 1 . When n> 4, go to Step 4.
Step 4: Since the algorithm specifes that the maximum
number of interchanges n is three, when adjacent in-
terchange stations are not on the same line with each
other, to determine a valid path, one must fnd a station
that satisfes the following requirements: the station is
simultaneously on the same line with one of the ad-
jacent stations at point O and on the same line with one
of the adjacent stations at station D. Terefore, search
for each of the four groups of adjacent stations, rein-
itialize n � 1, starting from (TO

1 , TD
1 ): search for line L1

where station TO
1 is located, search for line L2 where

station TD
1 is located, and then search for stations that

belong to both L1 and L2, i.e., interchange stations of
the two lines. If Tt exists, a valid path
O⟶ TO

1 ⟶ Tt⟶ TD
1 ⟶ D represented by in-

terchange stations can be determined, and the path is
stored in the set of valid paths W while n � n + 1; if it
does not exist, let n � n + 1. When n> 4, go to Step 5.
Step 5: Initialize m � 1, starting from the frst path in the
set of valid paths W and determine each station and in-
terval passed along the way. First, determine the specifc
route from the original point O to the adjacent interchange
stations in the valid path, which shall be marked by two
stations, determine the up and downdirection, and retrieve
the stations between the two stations together with the two
stations deposited in the station set S. Second, retrieve the
stations between the next two interchange stations by the
same method until the end point is reached, and store the
stations in the station set S. Tird, by the order of stations
in the station set S, according to the line interval set D,
retrieve the square and conforming interval numbers
between two stations in turn and deposit them in the
interval set B. Let m � m + 1, and when m> n, go to Step
6. Otherwise, repeat the above steps.
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Step 6: Tere are still many invalid paths obtained by
the above algorithm because they do not satisfy the
assumption (1) that a station or interval can be passed
only once. Terefore, initialize m � 1 again and de-
termine whether there are duplicate items in the set S of
stations and the set B of intervals. If there is, delete the i

th path in the set of valid paths W (where i � m). Let
m � m + 1; when m> n, go to Step 7. Otherwise, repeat
the above steps.
Step 7: Output the fnal set of valid paths W, and the
algorithm ends.

3.2.2. Path Selection Model and Path Efectiveness Function.
Te passenger fow assignment problem is also commonly
described as a path matching problem, where the probability
of a passenger choosing a particular path refects the degree
of matching between the passenger fow and the path and
can be expressed as the percentage of passengers choosing
this path among all passengers. On the other hand, in
transportation feld research, the efectiveness function
generally refers to the broad cost of a certain transportation
mode or a certain path, which represents the functional
relationship between the travel impedance perceived by the
traveler and the travel infuencing factors. Terefore, the
path selection model is constructed with the basic logit
formula as follows:

U
rs
k � V

rs
k + εrsk k ∈ Krs, (15)

V
rs
k � −θC

rs
k k ∈ Krs, (16)

p
rs
k � Pr U

rs
k ≥ U

rs
n , n≠ k( 􏼁 k ∈ Krs. (17)

Clearly, the selection probability has the following
properties:

0≤p
rs
k ≤ 1且 􏽘

k∈Krs

p
rs
k � 1, k ∈ Krs. (18)

Te probability prs
k of path selection is related to the

distribution of the random error term εrsk and the path cost
Crs

k . To reduce the irrationality of network trafc distribu-
tion, the relative cost can be used to calculate the selection
probability. Assuming that the εrsk are independent of each
other and obey the Gumbel distribution, the path selection
probability prs

k can be expressed in the following logit form
by substituting the above equation into equation (5) in
Section 3.1.2:

p
rs
k �

exp −θC
rs
k /C

rs
min( 􏼁

􏽐k exp −θC
rs
k /C

rs
min( 􏼁

k ∈ Krs. (19)

Based on the travel characteristics of urban rail transit,
the main infuencing factors considered by passengers in the
process of path perception and selection are travel time, ride
time, and the number of transfers. Since the current urban
rail transit control system basically achieves a certain control
accuracy and can ensure that the trains run according to the
interval running map and train schedule, the ride time is

regarded as a fxed constant that can be obtained from the
train running map or train schedule. Terefore, the fxed
term of random efectiveness in the path efectiveness
function can be measured by three indicators: travel time,
transfer time, and the number of transfers.

(1) Calculation of Travel Time. Trs. We estimate the pas-
senger fow distribution of multiple paths by determining
the single-path passenger fow distribution. We used the
travel time and number of passengers from 8:00 am to 10:00
am from April 10 to April 12 as the data samples for the
Chengdu subway station “Xipu” to “Chunxi Road” and
determined the travel time distribution function. Te pa-
rameters of the distribution function were defned. Te
length of the interval was set at 30 s, and the statistical results
are shown in Figure 5, using the “98th percentile” theory to
eliminate the extreme minima at both ends.

Using hypothesis testing and the great likelihood esti-
mation method, we determine that the travel time of the
single path OD obeys a log-normal distribution lnN(μ, σ)

within the interval [tmin, tmax] and has a parameter value
μ
∧

� 7.76617, σ
∧

� 0.03623. Tus, the mathematical expecta-
tion of the travel time from Xipu to Chunxi Road is E(X) �

eμ+σ2/2� 2361 s.
Te travel time probability distribution of multipath OD

is the accumulation of diferent parameters of the normal
distribution. Taking the OD from Xipu to South Railway
Station as an example, there are two valid paths between this
OD point pair. We establish a system of quadratic equations
by using the data between the extreme value points of the
frequency of Figure 6 (the red bar graph in the fgure) as the
data for the calculation of the system of equations, solving
for the parameters of the normal distribution of the two
paths, and solving for μ1

∧
� 7.90, σ1

∧
� 0.068, μ2

∧
� 7.95,

σ2
∧

� 0.046.Terefore, the travel time expectation of path 1 is
obtained: E(X1) � eμ1+σ12/2� 2839s; the travel time expec-
tation of path 2: E(X2) � eμ2+σ22/2� 2704 s.

(2) Calculation of Interchange Time. Ttra. Since the moment
that passenger arrival at the platform is totally random, it is
assumed that the arrival of passengers follows a uniform
distribution over the interval [0, fl]. Tus, the mathematical
expectation of the passenger transfer waiting time at the
platform is 0.5fl.

Ten, the interchange time calculation formula can be
expressed as follows:

Ttra � 􏽘
i�1

t
i
twa + t

i
tpl􏼐 􏼑 � 􏽘 tLl

+0.5fl􏼐 􏼑∀l, i. (20)

(3) Calculation of the Number of Interchanges. n.Te number
of interchanges n can be determined directly from the
calculation results of the efective path search algorithm, and
the algorithm is not described here. Note that if the path
contains a virtual interchange arc, the interchange station is
not counted in the number of interchanges.

In summary, the efectiveness function of path k for the
broad cost, measured in terms of travel time, transfer time,
and number of transfers, is as follows:
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C
rs
k � T

k
rs + α · nk( 􏼁

β
· T

k
tra. (21)

Equations (19) and (21) together form the route selection
model where α · (nk)β · Tk

tra is the interchange cost and α and β
are parameters to be determined. Since the negative perception
of passengers increases exponentially with each increase in the
number of interchanges, β is an exponential parameter.

When there are multiple paths between ODs, it is
necessary to study the selection behavior of passengers based
on the elements of the path set. When passengers choose
travel paths, they usually do not stand on the road network
to consider all paths but choose from a part of the paths.
Although we search the efective path set by a two-way
search algorithm, the path set still contains too many paths,
and in the actual passenger selection, one to three paths
usually reach the limit. To fnd a subset of the valid path set,
a stretch factor H is attached to all paths. Ten, the subset of
valid paths satisfes the following conditions [39, 40]:

C
rs
k ≤ (1 + H)C

rs
min k ∈ Krs. (22)

Terefore, after substituting the efectiveness function
into the path selection function, the path selectionmodel has
four pending parameters: H, θ, α, and β. Using Chengdu
City’s data for calibration, we obtain α� 1.2720, β� 1.8623,
H � 0.25, and θ � 1.840.

4. Results and Discussion

Since our model serves to judge the distribution of
commuter trafc within the rail network during the
commuter peak period, the data used in this section
should select a station with high commuter trafc and an
incoming passenger fow of ten minutes during the
commuter peak period. Terefore, we chose all incoming
swipe information from the Gaoxin station during 8:20
am–8:30 am on April 9, 2018, as the simulated real-time
AFC upload data. In addition, to facilitate the obser-
vation of the regularity of the data, we selected the frst
four types of stations with a high number of outgoing
stations in Table 2.

4.1. Outbound Station Prediction for Type I Passengers Based
onHistorical Travel Habits. During the period of 8:20 am–8:
30 am on April 9, 2018, there were 99 swipe card data points
entering the station at Gaoxin Station, distinguished by the
ID card number of the incoming swipe card, indicating that
99 passengers entered the station. After fltering out the
unrecorded card data and fltering out the passengers with
a travel factor greater than 4, the remaining records are 67.
Due to space limitations, we could not spread all ridership
information here, so we chose two of the ridership data, as
representatives to compare the results.

Passenger A and passenger B have historical AFC re-
cords, as shown in Table 8. Passenger A made 69 trips in
a month, including 29 trips at Gaoxin Station; Passenger B
made 49 trips in April, including 25 trips at Gaoxin Station.
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Figure 5: Histogram of “travel time-number of people” on Xipu-Chunxi road.
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Calculate εi for the two passengers at their respective
outbound stations in April, as shown in Table 8. For Pas-
senger A, since the only station with εi > 35% is People’s
Park, Passenger A is predicted to leave the station at People’s
Park. For passenger B, since εi >35% corresponds to the two
stations of Gaopeng Avenue and Hongxing Bridge, the time
in the historical AFC data should be subdivided again, and
all historical ridership data from 8:00 to 9:00 a.m. In the
entry time of this card number history should be fltered, as
shown in Table 8, and passenger B’s travel habit de-
termination value εi should be calculated again, and the one
that exceeds 35% is Gaopeng Avenue, so passenger B’s
predicted outbound station is Gaopeng Avenue.

Te real ridership records of passenger A and passenger
B on the day of April 9, 2018, are shown in. From the exit
information in Table 9, the outbound station that this
predicted passenger would choose is the same as the actual
outbound station.

Calculating the predicted results of passengers’ outbound
stations in that period corresponding to the above 67 data
points, there are only 4 data points whose predicted stations
do not match with the actual stations selected by passengers,
and the prediction accuracy rate λ� 94.03%. Tis mining
algorithm is more accurate and reliable in calculating pas-
senger outbound station selection for commuter fow.

4.2. Outbound Station Prediction for II Passengers Based on
a Spatiotemporal MNL Model. For passengers who have not
yet formed a travel habit, the examples are mainly passengers
with one-way tickets and passengers with Tianfutong stored
value tickets, Tianfutong cash cards, and Tianfutong regular
CPU cards with less than four total trips in the historical
AFC data.

Substituting the parameter values α, β, c into the efec-
tiveness function (6) of the spatiotemporal ML model is
expressed as:

Uij �
−0.421×Tij

3600
􏼠 􏼡 + 0.2132× Dj + 0.2217× Gij. (23)

According to the travel time from theGaoxin station to each
station in Figure 3, we can see from equation (26) that the
efectiveness function Uij has a negative relationship with the
travel time Tij of passengers, so when Tij is larger, the prob-
ability of passengers choosing the station is smaller, so the

stations with travel time Tij ≥ 30min are screened out frst
because their travel time is too long, so the probability of
passengers choosing the station will be greatly reduced. In
addition, when the travel time between two stations is too short,
the possibility of passengers choosing other travel modes, in-
cluding bus, walking, or bike-sharing, increases greatly, thus
fltering out stations with travel time Tij ≤ 10min.

Meanwhile, referring to Tables 2 and 6, the Gaoxin
station is an ofce-concentrated station, thus calculating the
Pn(i) and Uij of each outbound station corresponding to the
Gaoxin station, as shown in Figure 7:

From the Figure 7, we can see that if we use the Gaoxin
station as the inbound station for prediction, the vast ma-
jority of passengers will choose the station with a larger
probability value Pn(i) and efectiveness function Uij as the
outbound station, i.e., the station with the largest number of
outbound passengers in this example should be Chunxi
Road, Chengdu East Passenger Station, North Train Station,
Tird Tianfu Street, and Provincial Stadium.

Extract the real card entry information for the corre-
sponding date of Gaoxin station, screen out the stations with
fewer than 90 exiters, sort the outbound stations according to the
probability distribution, and obtain the following: Figure 8.
Figure 8 shows that Chunxi Road, Chengdu east passenger
station and north train station have the highest number of exits,
with third Tianfu street and the provincial stadium ranking
slightly diferently. However, the change in trafc between third
Tianfu street and the provincial stadium is not very diferent, so
overall, the forecast results are more in line with expectations.

From the statistics, we can see that after a certain period
of time, Chunxi Road, Chengdu east passenger station, and
north train station will usher in a small peak of passenger
fow, and the staf at these stations can deploy and plan the
route of passengers in advance and conduct passenger fow
diversion work at the right time to help the passenger fow
evacuate quickly and avoid the formation of congestion.

4.3. Passenger Final Route Prediction. Most of the OD points
in the preceding example are on the same urban rail line, and
the distance is relatively short, which is not enough to il-
lustrate the problem of multiple path selection. We reselect
the “Chadianzi” station of Line 7 as the O point and the
“Yinghui Road” station of Line 7 as the D point as the path
prediction example in this section, as shown in the black
inverted triangle in Figure 9.

Table 8: Record of the outbound records of a passenger after entering the Gaoxin station.

Passenger number Time D-point name Number of outbound
stops at D-point εi (%)

Passenger A April 2018
People’s park 19 65.52

Gaoxin 1 3.45
Dongmen bridge 9 31.03

Passenger B April 2018
Gaopeng avenue 13 52
Hongxing bridge 11 44
Chunxi road 1 4

Passenger B April 2018 8:00–9:00 am
Gaopeng avenue 12 80
Hongxing bridge 2 13.33
Chunxi road 1 6.67
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Table 9: Actual card swipe record of passengers.

Passenger number Card type Inbound station
name Inbound time Outbound station

name Outbound time

Passenger A Tianfutongstored-value tickets Gaoxin “08:24:37” People’s park “08:43:03”
Passenger B Tianfutongstored-value tickets Gaoxin “08:21:46” Gaopeng avenue “08:33:57”
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Figure 7: Outbound site probability and efectiveness function prediction results.
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Figure 9 shows the Chengdu subway network after our
numbering process, where the line numbers follow the
operating line numbers except for Line 7, and the black
circles represent interchange stations. Te numbering is
discontinuous because this example focuses on the lines
within the loop of Line 7 while omitting Line 10 and the
branch of Line 1 from Sihe to Wugensong, which have no
line crossings. In Figure 9, Line 7 is a loop and contains
several valid paths such as direct and detour in the path from
point O to point D. One of the bypass paths violates the
above valid path assumption (4), so we break the line
containing arcs or loops into several branches for path
passenger distribution at appropriate places. In Figure 9, the
interrupted stations are numbered 1, 3, 5, and 7, corre-
sponding to the operating stations of Yipin World, Yima
Bridge, Chengdu East Passenger Station, and Taiping Park,
forming lines 7A, 7B, 7C, and 7D, respectively.

Te following is the search process for the set of valid
paths based on our proposed “two-way search algorithm.”

Step 1: Determine the adjacent interchanges or terminal
stations at points O and D, respectively. Based on the
subordinate relationship between the line and the sta-
tion, i.e., Li � v1, v2, · · · , vk􏼈 􏼉 (Li for line, vk for station),
the adjacent interchange stations at the original point O
can be determined as ① and ②, and the adjacent in-
terchange stations at the ending point D as ④ and ⑤.

Step 2: Determine the lines where each adjacent in-
terchange is located separately. Interchange ① is
subordinate to Line 2, Line 7A, and Line 7D; In-
terchange ② is subordinate to Line 1 and Line 7A;
Interchange ④ is subordinate to Line 4 and Line 7B;
Interchange ⑤ is subordinate to Line 2, Line 7B and
Line 7C.
Step 3: Crossover determines whether each vector in-
terchange station is on the same line. Stations ① and
④, stations② and④, and stations② and⑤ are not on
the same line, so a further search for interchange
stations is needed. Both stations① and⑤ are located
online 2, so the route O⟶ ①⟶ ⑤⟶ D can
be determined.
Step 4: Search for a valid path containing three in-
terchanges. Te search process is described in
Table 10:
Step 5: According to steps three and four, remove the
paths containing duplicate segments to obtain the fnal
set of valid paths and complete the search. Te fnal set
of valid paths contains the following 7 entries, as shown
in. Paths 3, 5, and 7 contain virtual interchange arcs
(7D, 7B, etc.), thus reducing the number of in-
terchanges compared to the representation of paths.
Substituting the above metrics into the route selection
model, the broad cost values are obtained in Table 11:

Table 10: Efective path search process with three interchange stations.

Adjacent interchange stations Line transfer mode Tird interchange station Efective path

① to ④

Line 2 to line 7B ⑤ O⟶ ①⟶ ⑤⟶ ④⟶ D
Line 2 to line 4 ⑨ O⟶ ①⟶ ⑨⟶ ④⟶ D

Line 7A to line 7B ③ O⟶ ①⟶ ③⟶ ④⟶ D
Line 7A to line 4 None —
Line 7D to line 7B None —
Line 7D to line 4 ⑧ O⟶ ①⟶ ⑧⟶ ④⟶ D

② to ④

Line 1 to line 7B None —
Line 1 to line 4 ⑩ O⟶ ②⟶ ⑩⟶ ④⟶ D

Line 7A to line 7B ③ O⟶ ②⟶ ③⟶ ④⟶ D
Line 7A to line 4 None —

② to ⑤

Line 1 to line 2 ⑪ O⟶ ②⟶ ⑪⟶ ⑤⟶ D
Line 1 to line 7B None —
Line 1 to line 7C ⑥ O⟶ ②⟶ ⑥⟶ ⑤⟶ D
Line 7A to line 2 ① O⟶ ②⟶ ①⟶ ⑤⟶ D
Line 7A to line 7B ③ O⟶ ②⟶ ③⟶ ⑤⟶ D
Line 7A to line 7C None —

Table 11: Travel times, transfer times, number, and broad cost of transfers for the seven lines.

No Path Travel time
(s)

Transfer time
(s)

Number of
transfers (time) Broad cost

1 O⟶ ①⟶ ⑤⟶ D 2498 158 2 3228.7
2 O⟶ ①⟶ ⑨⟶ ④⟶ D 2574 324 3 5762.4
3 O⟶ ①⟶ ⑧⟶ ④⟶ D 2490 136 2 3119.0
4 O⟶ ②⟶ ⑩⟶ ④⟶ D 2519 355 3 6012.5
5 O⟶ ②⟶ ③⟶ ④⟶ D 1892 0 0 1892.0
6 O⟶ ②⟶ ⑪⟶ ⑤⟶ D 2841 321 3 5999.9
7 O⟶ ②⟶ ⑥⟶ ⑤⟶ D 2575 115 2 3106.9
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Since the efective paths searched by the above algorithm
are still relatively large and the paths considered by urban
rail passengers are often only 1∼3, the travel time, transfer
time, and number of transfers for each path are calculated by
further reducing the stretch factor H of the path. According
to the stretch factor H of the path, when the broad cost of
a path is greater than (1 + H) times the minimum broad
cost, the path will not be considered by the traveler and
should be removed from the set of valid paths.WhenH takes
the calibration result of 0.25, the path with the smallest broad
cost is valid path5, and all other paths are eliminated. After
substituting the path selection model, the passenger fow
matching probability of path
O⟶ ②⟶ ③⟶ ④⟶ D is 100%, i.e., according
to our algorithm, all passengers travelling between Cha Dian
Zi Station and Ying Hui Road Station will choose Line 7
directly as the only path.

Further analysis reveals that path 5 contains three virtual
transfer arcs (line 7A and switching line 7B) with the shortest
travel time, zero transfer time, and zero number of transfers,
thus meeting the actual path selection willingness of trav-
elers. In the other OD selection cases, there are multiple
efective paths with closer broad costs, and multiple path
selection results with less than 1 allocation ratio can be
obtained by our proposed method. In summary, our pas-
senger path assignment algorithm largely proves to be ac-
curate and efective.

5. Conclusions

Our research aims to predict urban rail trafc, specifcally in
terms of the destination stations and travel routes that
commuters will choose. To achieve this, we focused on
commuter trafc as our research object, as it has a high
proportion and strong travel regularity. We utilized pas-
senger entry information from rail transit stations with
a high proportion of commuter trafc, and our contribu-
tions are outlined below. First, we divided passenger fow
into two categories based on the formation of travel habits
and performed OD prediction using a combination of data
mining and logit modeling. As passenger fow can be un-
stable, we split the fow into passengers who have formed
travel habits and those who have not yet formed these habits.
For the frst group, we utilized a mining algorithm based on
historical travel habits to predict their travel destinations
using historical AFC data. For those who have not formed
travel habits, we mainly used a modifed ML model to
predict the most likely outbound station a passenger will
choose when entering a station, considering spatiotemporal
infuences such as travel time, regional attractiveness, and
OD size. Second, determining a passenger’s choice path
between two points based on OD is a key step that requires
designing efcient algorithms to fnd complete and efective
paths. To do this, we assumed that the number of in-
terchanges would not exceed that when passengers chose
a route and that there was an efective route. Using a “two-
way search algorithm,” we searched adjacent interchange
stations and line interchange stations from the origin and
destination of the OD pair at the same time, making full use

of interchange stations to implement network topology
modeling. Tis approach allowed us to quickly search for
a complete and efective route, which we verifed through
experiments. Last, our algorithm exhibits good generality
and can be applied to rail transportation networks in dif-
ferent cities. Te forecasting model that we developed is
a service for urban rail operators and passengers who use
urban rail to travel. Our model aims to provide a holistic
forecast of commuter fow in terms of travel stations and
tracking and analyzing the travel destinations of each pas-
senger. In addition, it provides detour information for trafc
participants to avoid congested stations and supports
decision-makers on current and next-period passenger fow
conditions to respond to unexpected situations. While our
research has made important contributions, some problems
can still not be solved due to limited capacity. For example,
in the fnal example analysis, we used a dummy variable to
mark the infuence factor of regional attractiveness. In future
studies, a distribution function could be introduced to
quantify regional attractiveness.
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