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Autonomous vehicles (AVs) have the potential to improve safety, traffic capacity, and energy efficiency, but these advantages can
only be realized when the AV market penetration is sufficiently high. To promote the adoption of AVs, it would be crucial for the
government to take policy measures. This paper develops a two-stage model to explore the effects of subsidy and AV lanes’ policies
on AV adoption. In the first stage, given the subsidy policy, the vehicle manufacturer sets AV price to pursue maximum profit
while anticipating the choice of consumers for AVs or conventional vehicles (CVs), from which the AV market penetration can be
accessed. Subsequently, based on the AV market penetration acquired from the first stage model, an optimization model in-
tegrating the mixed traffic assignment is developed in the second stage to determine the time-dependent progressive AV lanes’
deployment plan. The first and second stage models are solved using the simulation-optimization and genetic-algorithm-based
approaches, respectively. Due to the mutual influence of the two models, an iterative optimization approach is applied to solve the
whole model. Two numerical experiments are conducted, and the results demonstrate the positive effects of subsidy and AV lane
policies on increasing AV market penetration. The analysis provides significant managerial insights for policymakers to promote

the development of AVs.

1. Introduction

AVs offer a wide range of advantages in safety, traffic ca-
pacity, vehicular emission, and energy consumption.
However, these advantages can only be realized when the AV
market penetration is sufficiently high [1]. Frustratingly, it
will still be many years before AVs become widespread, and
heterogeneous traffic flows consisting of CVs and AVs will
be inevitability for a long time. To promote AV adoption,
a local government could deploy exclusive AV lanes and
implement subsidies so that the advantages of AV can be
fully exploited [2].

Subsidies are considered an important measure to
promote the adoption of emerging vehicles. For example, the
German government offers subsidies of up to 6,000 EUR to
electric vehicle buyers. And R&D offers subsidies for
manufacturers to encourage them to do more in terms of

electric vehicle technology innovation. Only with subsidy
support can the adoption rate of AV be increased and
market expansion accelerated. However, subsidies will in-
evitably increase financial burden of the government and
unreasonable subsidy policies could also lead to market
distortions. Therefore, it is necessary to consider the objects,
amount, and duration of subsidies in order to establish an
effective subsidy policy.

In addition to subsidy policies, road infrastructure
construction is another effective measure to promote the
adoption of AVs [3]. Deploying dedicated lanes for AVs is
a significant way to increase AV market penetration and
fully utilize the role of AVs in improving travel efficiency.
The aim of installing AV lanes is to separate AVs and CVs,
meaning that AVs have the right-of-way on both regular
lanes and AV lanes, while CVs can only travel on regular
lanes. On the one hand, AV lanes can fully exploit the


https://orcid.org/0009-0006-1424-1739
https://orcid.org/0000-0002-2250-1776
https://orcid.org/0000-0002-4866-6325
https://orcid.org/0000-0002-2545-3503
https://orcid.org/0000-0002-0533-1541
https://orcid.org/0000-0001-5298-5962
https://orcid.org/0000-0002-6546-4952
mailto:jiahf@jlu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5658495

benefits of AVs, thus improving the travel benefits of the
transportation system. On the other hand, converting reg-
ular lanes to AV lanes may result in increased travel time for
CVs because they lose the accessibility of these AV lanes,
which may damage social welfare. Consequently, it is critical
to optimize the location of AV lanes to minimize social costs
while considering the AV market penetration. Furthermore,
since the growth of AV market penetration is a gradual
process, AV lanes should also be deployed progressively [3].

There are three major players in the promotion and
adoption of AVs: the government, the vehicle manufacturer,
and consumers. The government sets the subsidy and AV
lanes’ policies to achieve the maximum social benefit or
minimum cost; the vehicle manufacturer sets AV price to
pursue maximum profit depending on the existing subsidy
policy; and consumers, with decisions made by the gov-
ernment and manufacturer, choose the vehicle type and
travel routes to maximize benefits. Considering the complex
interplay of these three in the AV diffusion process, we aim
to address the following questions:

(1) How to quantify the impact of subsidy and AV lanes’
policies on AV adoption?

(2) How to describe the decision-making behavior and
interactions of the government, the vehicle manu-
facturer, and consumers?

(3) How, when, and where should the AV lanes be
deployed?

2. Literature Review

2.1. AV Adoption. Recently, numerous studies have been
conducted on AV adoption, mainly involving three aspects:
first, obstacles in the way of AV adoption and concerns
about AV, including privacy issues [4, 5], security issues
[6-8], inadequate infrastructure [9, 10], lack of standards
[11, 12], and regulations [13, 14]; second, studies on the
influencing factors, such as the willingness to pay of con-
sumers [15, 16], peer effects [17-19], public perception
[20-22], affective motivations [23-25], and media com-
mentary [26, 27], of AV adoption; and third, the methods
and models for predicting AV market penetration with the
theory of planned behavior [28], innovation diffusion ap-
proach [29], the scenario analysis [30], and system
dynamics [31].

2.2. Subsidy Policy. Since the high price of AVs has hindered
their adoption, the subsidy policy also attracted many
scholars to study. By the method of a dynamic games ap-
proach, Luo et al. [32] considered the uncertainty and in-
formation asymmetry and examined an optimal subsidy
policy to accelerate the increase in AV market penetration.
Zhang et al. [33] discussed the effectiveness of subsidy
programs, investigating the effect of providing subsidies to
AV users or relevant stakeholders as compensation for their
costs or revenues to lead the system to an optimal long-term
equilibrium. Chen et al. [34] classified vehicles and used the
nested logit model to describe the vehicle selection behavior
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of users and developed a mixed integer nonlinear pro-
gramming model to solve the purchase subsidy design
problem.

2.3. Deployment of AV Lanes. The dedicated AV lane was
first proposed as a management strategy by Chen et al. [3],
who developed a time-dependent deployment model con-
sidering the AV market penetration. Ghiasi et al. [35]
constructed a compact lane management model based on
a Markov chain approach to efficiently determine the op-
timal number of AV lanes to maximize the mixed traffic
throughput of multilane highway segments. Liu and Song
[36] extended AVT lanes that allow free passage for AVs
while paid passage for CVs and investigated the optimal
deployment of AV and AVT lanes in a traffic network with
mixed AV and CV traffic based on this strategy. Tani et al.
[37] determined the pattern of dedicated lanes considering
the stochastic traffic demand and the stochastic traffic ca-
pacity. Lin et al. [38] considered travel time costs, AV lanes
construction costs and emission costs to investigate the
optimal deployment of AV lanes that simultaneously con-
sider economic and environmental sustainability.

In summary, most of the existing studies focus on
a single policy and pay little attention to its impact on AV
penetration. To address these research deficiencies, this
paper integrates AV lane and subsidy policies and analyses
the effects of single and combined policies on AV pene-
tration. The contributions of our study are threefold.

First, a two-stage model is developed to emulate the
effects of subsidy and AV lane policies on the evolution of
AV market penetration. This model can characterize the
behavior of the government, the vehicle manufacturer, and
consumers and capture the interdecision dynamics between
them. In addition, it investigates the time-dependent de-
ployment of the optimal AV lane solution based on the
predicted AV market penetration.

Second, we develop the simulation-optimization and
genetic-algorithm-based approach to solve the proposed
two-stage model efficiently. The first stage model is solved
using the simulation-optimization approach, and the genetic
and diagonalization algorithms solve the second stage
model. In addition, an iterative optimization approach is
applied to solve the whole model due to the mutual influence
of the two models.

Finally, numerical experiments are conducted in the
Nguyen-Dupuis network and the Sioux Falls network to
demonstrate the proposed model. The results show the
effects of the subsidy policy’s subsidy objects, subsidy
amount, subsidy duration, and AV lanes’ policy on AV
market penetration and social welfare, as well as the
comprehensive effects of the subsidy policy and the AV
lanes’ policy. Furthermore, numerical results demonstrate
how different deployments of AV lanes affect the system
performance.

The remainder of this paper is structured as follows: the
proposed two-stage model and its solution are described in
Sections 3 and 4, respectively. Section 5 gives numerical
experiments to verify the effectiveness of the proposed
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model and solution method. Finally, Section 6 presents
a conclusion of this paper and suggests possible future re-
search directions.

3. Two-Stage Model

In this section, we build a two-stage model: (1) the first stage
model explores the subsidy effect and characterizes the
change in AV market penetration and (2) the second stage
model produces the optimal AV lanes” deployment scheme
in a transportation network. On the one hand, the output of
the first stage model is the result of vehicle type selection for
consumers, from which the market penetration of AVs can
be obtained as the input of the second stage model. On the
other hand, the deployment of AV lanes in the second stage
model brings the benefits of AVs in terms of travel time
reduction, which will also affect the vehicle type choice of
consumers in the first stage model. Hence, these two sub-
models influence each other. The details of the two-stage
model are presented as follows.

3.1. The First Stage Model. Subsidy policies need to be in
place to promote the adoption of AVs. There are three main
stakeholders in formulating and implementing subsidy
policy: the government, the vehicle manufacturer, and
consumers. The government makes policy and has complete
information on the decision-making of the manufacturer
and the choices of consumers; given the subsidy policy, the
vehicle manufacturer sets AV price to pursue maximum
profit; consumers are the followers who maximize their
utility by choosing an AV or CV under the policies of the
government and the pricing of the manufacturer.

In our model, the subsidy policy comprises three ele-
ments: subsidy objects (vehicle manufacturer or consumers),
subsidy amount, and subsidy duration. Furthermore, con-
sidering that subsidy policies should not be changed fre-
quently and the government tends to set multiple candidate
subsidies, we treat subsidies as scenario variables and dis-
cretize them. We will explore how social welfare and AV
market penetration change as elements of subsidy policy
change, where social welfare is defined as the sum of
manufacturer benefits and consumer benefits.

The first stage model is built under a leader-follower game
structure, where the AV manufacturer is the leader and
consumers are followers. Considering the manufacturing cost
of AV and government subsidies, the AV manufacturer prices
AV to maximize profits while predicting the consequence of
vehicle-type choices for consumers. Consumers consider AV
price and other relevant factors for vehicle-type selection to
pursue maximum personal benefits. The framework of the
first stage model is shown in Figure 1. We will describe the
decisions of consumers and the manufacturer in more detail
in the following sections.

3.1.1. Agent-Based Vehicle-Type Choice Behavior of
Consumers. We employ an agent-based model to account
for the vehicle-type choice behavior and interactions of
heterogeneous consumers. Concretely speaking, consumers

are modeled as agents, and each agent faces a binary decision
to buy the AV or CV. Consumer agents differ regarding
income level, innovativeness, and commuting distance de-
termined by the home and work address, which may lead to
heterogeneous preferences when consumers make pur-
chasing decisions. Innovativeness is the degree to which an
individual is relatively earlier in adopting new ideas than the
average member of his or her social system [39]. Also, the
purchasing decisions of consumers are influenced by social
networks. Therefore, the weighted combined benefit of in-
dividual preference and social influence is used to assess the
final choice behavior of consumers. The relative utility (AU)
is defined as the benefit obtained by choosing AV over CV,
as summarized in the following equation:

AU, = a;P;; + B,S;;, VielteT, (1)

where AU , is the relative utility obtained by consumer agent
i from purchasing AV at year t, P;; is the preference utility
obtained by consumer agent i based on the personal attribute
selection at year t, and S;; is the social network utility of
consumer agent i at year t. I is the set of consumer agents,
and T is the set of planning years. «; and f3; are the weight
coeflicients of preference utility and social utility for con-
sumer agent i, respectively, representing the importance of
the two in purchasing decisions. «; and f3; can vary between
0 and 1, o;+f3; =1, and the values of &; and pf; vary
depending on the attributes of the consumer. Specifically,
when «; is high and f3; is low, agent i is highly innovative and
individualistic, that is, he pays more attention to the pref-
erence utility and is hardly influenced by his neighbors.
However, when «; is low and ; is high, agent i is very socially
susceptible, and a large part of his utility comes from the
influence of his neighbors.

When the relative utility of agent i at year t (AU,,)
reaches a given threshold, agent i will adopt AV, otherwise
adopt CV. Figure 2 displays a simplified schematic diagram
of consumer utility. The preference utility (P;;) and the
social network utility (S;,) are discussed as follows.

(1) The Preference Utility. According to the attribute char-
acteristics of consumers and AV, the preference utility P, is
modeled as a weighted sum of vehicle cost, safety utility,
energy utility, and travel time saving utility perceived by
consumer agent i over one year, as presented in the following
equation:

Py = G, + qiQ + ¢E;; + LLy;,

Ei Viel,teT, (2)
where G, is the annual average cost difference between AV
and CV at year ¢, Q, is the safety utility of choosing AV at
year t, E;, is the energy utility of agent i choosing AV at year
t, and L;, is the travel time saving utility of agent i choosing
AV atyear t. And g, g;, €;, and [; are the weight coeflicients
of vehicle cost, safety utility, energy utility, and travel time
saving utility of agent i. In this paper, it is assumed that the
personal attributes of agent i are fixed and time-invariant, so
the perceived weight coefficient of agent i to each utility only
depends on the personal attributes and does not change
during the diffusion process. However, due to technological
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FIGURE 1: The framework of the first stage model.

progress and changes in AV market penetration, the various
utilities of AVs, such as vehicle cost, safety utility, and energy
utility, will evolve over time. As a result, perceived prefer-
ence utility P;, of agent i fluctuates over time, causing its
purchase decision to change. The representation of these
utilities is discussed in detail below.

Over 90% of car crashes are caused by driver error [40],
so AVs have the potential to reduce crashes dramatically. In
order to simulate the safety utility of various market AV
penetrations under mixed traffic flows, according to [11], we
assume crash rates for CVs are constant and use the
Gaussian fitting method to obtain the relationship between
the safety utility and the AV market penetration, as shown in
the following equation:

Qt - )Le—(N[—b/c)z’ (3)

where A, b, and c are parameters of the Gaussian fitting curve
and N, is the AV market penetration at year ¢.

Under the same conditions, AV consumes less energy
than CV [41], so energy utility (E;,) is defined as the value of
energy savings from using AV compared to CV over one
year. The energy utility can be expressed in the following
equation:

E;, =ywlL;, (4)

where y is the energy consumption factor. w, is the energy
consumption reduction factor for AV at year t. L;; is the
total commuting mileage of agent i, which is obtained by
multiplying the distance of a single commute and the
number of commutes in one year. The distance of a single
commute is determined by the home and work address of
agent i.

We assume that the CV price is known and fixed. In
contrast, the AV price is influenced by the AV cost and

[ Consumer n
[ Consumer 2
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1
Time saving utility || —

Preference

FIGURE 2: A simplified schematic diagram of consumer utility.

government subsidies to the manufacturer and is obtained
by the AV manufacturer through pricing models. Vehicle
cost (G,) is represented by the annual average cost difference
between AV and CV obtained from the following equation:

(GCV -Gy + Htrc) x 9, . MAcy — MA,y

G =G, +G; = 5 5
2 3

(5)

where G! and G? are relative purchase cost and relative
maintenance cost, respectively. Gy represents the price of
the CV. G\ represents the price of the AV at year t. r_ is the
purchase subsidy given by the government to consumers. H*
is a binary variable with the value of 0 or 1, and H' = 1
represents that the government has implemented purchase
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subsidies in the ¢ year; otherwise, it means that no subsidies
have been implemented. 9, is the portion of the value lost in
the price of the vehicle due to depreciation at the end of the
vehicle’s lifetime. 9, is the lifespan of the vehicle. 9; is the
average vehicle occupancy rate. MA.y and MA,y are the
average annual maintenance costs of CV and AV.

Travel time saving utility (L;,) is the benefit of the time
saved by the consumers, which is obtained by multiplying
the time value of consumers and the travel time saved by
using AV in one year. Value of time (VOT) is calculated by
personal income. The adoption of AVs will lead to a decrease
in the value of VOT, such as 35% [42] and 50% [43]. Travel
time will be obtained through the mixed traffic assignment
in the second stage model.

(2) Social Network Utility. In this section, we first construct
a dynamically weighted small-world network of consumer
agents and then use this social network to analyze social
influence in AV-CV choices.

The social network is the substrate for AV market dif-
fusion. Several types of social networks have been proposed,
mainly regular networks, random networks, small-world
networks, scale-free networks, and empirical networks.
Empirical networks would be the most realistic social net-
work, but it needs data extracted from social networking
sites, which is usually tricky. In contrast, the small-world
network proposed by Watts and Strogatz [44] is convenient
to build and possible to connect any two nodes through just
a few links, which is in line with the characteristics of social
networks. For the abovementioned reasons, we employ the
small-world network as the base network for AV diffusion.

Despite these advantages, small-world networks are
weightless networks that only reflect whether there is an edge
between nodes but cannot describe the degree of the close
relationship between the nodes, which leads to the limita-
tions of the application of small-world networks. Therefore,
the weighted small-world network is chosen to analyze the
diffusion. Following the approach of Wolf et al. [45], we
form connections between consumer agents based on their
degree of similarity. As mentioned before, our model
considers the home address, work address, income level, and
innovation level of consumer agents. The similarity between
two agents is defined as Euclidean distance in 4 dimensions,
as seen in equation (6). Based on the similarity, the social
relationship weight can be specified as equation (7).

(6)

A..
'ra— — 1] 7
8.=1 X (7)

where A;; is the similarity between agents i and j. s is the
attribute of the agent, and S is the set of attribute categories,
including home address, work address, income level, and
innovation level of consumer agents. F; is the attribute value
of agent i on the s dimension. The similarity calculations are
normalized by the maximum distance d, along that

dimension within the agent population. §;; is the social
relationship weight between agents i and j.

Furthermore, the topology of social networks is often not
static, and people always form new social relationships in
interpersonal communication over time. However, tradi-
tional small-world networks struggle to describe this dy-
namic change. Therefore, it is necessary to consider the
dynamics in social networks to build dynamic social net-
works. In our model, the dynamics of the social network is
reflected in the internal growth of the network, that is, the
network evolution caused by the addition of edges to the
original nodes while the number of nodes is unchanged. The
dynamically weighted small-world network model is con-
structed as follows:

(1) Construct a nearest-neighbor coupled network of N
nodes, where each node is connected to its neighbor
K/2 nodes, and K is an even number.

(2) Each edge in the network is rewired randomly with
probability p.

(3) At each time ¢, a node is randomly selected, and the
weight value of this node and the remaining nodes is
calculated. The probability of connection between
the selected node and the remaining nodes is pre-
sented in the following equation:

S

=1 8
pl] ZreR(sir’ ( )

where p;; is the probability of connection between i and j. r
is one of the remaining nodes, and R is the set of remaining
nodes. Using the roulette method to randomly select
a number in the range of 0-1, the nodes are connected if the
number is within the node connection probability interval. A
group of nodes is newly connected at each time step until the
number of new edges reaches the number of nodes or the
longest time; the dynamic evolution of the network ends.

As mentioned before, social influence plays a vital role in
purchasing decisions of consumers, and we define it as the
social network utility (S;,). The social network utility of
consumers is determined by the relative utility and weights
of the nodes connected to them in the social network, as
indicated in the following equation:

_ 2 jew ;AU ;4
2 jewdij )

where W is the set of agents connected to agent i in the social
network.

S,y 9)

3.1.2. AV Manufacturer Pricing. This section explores the
issue of the vehicle manufacturer pricing. Under manu-
facturer subsidy policy of the government, the vehicle
manufacturer maximizes profit by choosing an AV price
while predicting the response of consumers. It is assumed
that the cost and price of CV in the market are known and
constant, while the manufacturing cost of AV will decrease
due to technological progress. The profit maximization
problem is formulated in the following equation:



max Z, = (wa ~Cly + Rtrm)()fw
subject to:

. =
G <G,y<G
Ty = JAV S YAy

R €{0,1},

(10)

where Z, is the profit of the vehicle manufacturer at year ¢.
Gy and C',y, are the price and the manufacturing cost of the
AV at year t. 0,y is the annual sales of AV at year ¢, de-
termined by the customer decision model in the previous
section. r,, is the single-vehicle AV subsidy given by the
government to the vehicle manufacturer. R’ is a binary
variable with the value of 0 or 1. R* = 1 represents that the
government has implemented manufacturer subsidies in the
t year; otherwise, it means that no subsidies have been
implemented. G and G,y are the lower and upper bounds
of AV price.

3.2. The Second-Stage Model. Compared to the less per-
ceptible safety and energy utility, travel time is often the
most critical factor influencing route choice of travelers.
Therefore, the second stage model takes the minimum travel
time as the optimization objective. Specifically, based on the
AV market penetration acquired from the first stage model,
we investigate how to optimize the location of AV lanes for
minimizing the total travel time. In response to this problem,
a leader-follower model is proposed. The government, as the
leader at the upper level, decides on the dedicated lane
option on the given set of candidate links to minimize the
total travel time; the travelers, as the followers at the lower
level, choose the travel routes to minimize their travel time
under decisions of the government. The lower level is
a mixed traffic assignment problem, while the upper level is
an optimization problem investigating when and where to
deploy AV lanes.

3.2.1. AV-CV Network Description. Let G(N,A) denote
a road network, where N and A are the sets of nodes and
links in the network, respectively. Let ACA represent the set
of candidate AV links. In order to maintain network con-
nectivity, candidate links must have more than two lanes and
at least one regular lane, that is, each candidate AV link is
paired with a regular link, which is defined as K. For ex-
ample, as shown in Figure 3, this is an AV-CV network,
where solid lines represent regular links and dashed lines
represent candidate AV links. Specifically, in Figure 3,
A= }1,2,2’,3,3’,4,5,6,7,7’,8, 8}, A={2,3,7.8}, and
K ={(22), (33", (7.7), (8,8)}.

w,m
Ax;
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—J» Regular Links

—Jp» AV Links
Ficure 3: AV-CV network.

We further define links which are represented by a € A
or node pairs (i, j) in the road network, where i, j € N. Let
M = {1,2} denote the set of travel modes, where mode 1
represents CV and mode 2 represents AV. w € W means OD
pair w, W is the set of OD pairs, and o(w) and d (w) define
the origin and destination of OD pair w. The travel time
(t,+(v,,)) of link a € A in planning year 7 € T is shown in
the following equation:

. y \Fe
ta,f(va,T)=tu[l+aa(A“’T) ] (11)
a,T

where v, . is the flow of link a at year 7, t© is the free-flow
travel time on link a, «, and f3, are two parameters, and A, ;
is the capacity of link a at year 7, which can be calculated by
the following equation :

3600L,

N,.=c,. L = ,
pa,ThAV +(1 _pa,'r)hCV

a,T a,7-a

(12)

where c,  is the per-lane capacity of link a, L, is the number
of lanes for the link, p, . is the proportion of AVs on link a at
year 7, and h,y and h¢y are headways of AVs and CVs to
a leading vehicle.

3.2.2. The Mixed Traffic Assignment. According to the user
equilibrium (UE) principle, the flow distribution of AVs and
CVs at year 7 € T can be described by the following network
equilibrium conditions:

=EY"dY", YweW,me M, (13)

x'>0, Vae A\AweW, (14)

a,T =
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xZ’TI =0, VacAweW, (15)
x¥2>0, YaeAweW, (16)
Va,r = Z Z XZ})’Tm, Va € A, (17)
meM weW

(ta,f(va,r) +pit — pi;j;l)x:’; =0, V(i,j)=acA\AweW, (18)
ta,T(VW) +pit —pl]f,’;l >0, V(i,j)=acA\AweW, (19)
(tu)r(vm) +pi? — pl]f,’f)xl;f =0, VG, j)=acAweW, (20)

w,2 w,2 PR
t{“(vm) +pis ~Pjx >0, V(,j)=acAweW, (21)

where A is the node-link incidence matrix associated with the
network, x** is the vector of { . x’;”Tm, .- ‘}, E%™ is a vector
that consists of two nonzero components: one with the value 1
corresponding to the origin o (w) and the other with the value
—1 corresponding to the destination d (w), d}"™ represents the
demand of travel mode m between OD pair w at year 7, x;7"
is the flow of travel mode m on link a between OD pair w at
year 7, and p;;" and p};" are auxiliary variables.

In the abovementioned, constraint (13) ensures flow
conservation between each O-D pair, constraints (14) and
(16) ensure nonnegativity of link flows, constraint (15)
represents that only AVs can use AV links, constraint (17)
defines the aggregated link flow as the sum of link flows
across all modes and OD pairs, and constraints (18)-(21)
ensure that the travel costs on all utilized paths between each
OD pair are the same and equal to p; 7 - = py(,, ,» While the
travel costs on those unutilized paths are more than or equal
t0 Py (w)r ~ Paw)r

In addition, it can be proved by the KKT conditions that
when the network reaches equilibrium, the solution to the
abovementioned problem is equivalent to the following
mathematical problem:

VII.,T
min Z J t, . (x)dx,
¥ VaeA
subject to:

Egs. (13) - (17).

(22)

3.2.3. Optimal AV Lanes’ Location. The goal of the location
problem is to investigate the optimal time-dependent de-
ployment plan of AV lanes to minimize the total travel time.
The deployment plan of AV lanes involves when and where
the AV lanes should be deployed. Therefore, based on the
mixed traffic assignment, we propose the following program
to model the AV lane location problem:

mlnz Z Z Zta,f(va,‘r)xz’:n’ (23)

Tel meM weW acA

T
k
Nor = ca’T<Lu + Z Pak Zyj>, VacAtel, (24)
j=1

keK
Yy e{0,1}, VkeK,7eT, (25)
Z Z nyku <BD, (26)
7€l keK

where y* represents whether an AV candidate link is
converted to AV link or not on the k-th pair of links at year 7,
L, is the lane length of the k-th pair of links, and u is the
construction cost per unit distance of AV lane; constraint
(26) guarantees that the cost cannot exceed the given budget.
BD represents the upper limit of the budget. ¢, is a pa-
rameter that denotes the pair-link incidence.

1, iflinkabelongs to the k th link pair and it is an AV link,

Pak = -1
0, else.

4. Solution Algorithm

The first stage model employs a simulation-optimization
solution approach, in which the manufacturer pricing
problem is optimized using the genetic algorithm, and the

if link a belongs to the k th link pair and it is a regular link, (27)

agent-based simulation solves the vehicle type choice
problem of consumers. In the second-stage model, a genetic-
algorithm-based approach is proposed, which mainly in-
cludes a genetic algorithm to solve the AV lanes’ location
problem and the mixed traffic assignment problem with



a diagonalized Frank-Wolfe algorithm. In addition, since
the two models affect each other, an iterative optimization
approach is required to solve the model to achieve equi-
librium for both stages simultaneously. The schematic di-
agram of the two-stage model solution is presented in
Figure 4.

4.1. The Diagonalized Frank-Wolfe Algorithm. The mixed
traffic problem proposed in this paper is a multiuser traffic
assignment problem. Specifically, since AV and CV users
compete for road space in their trips, there is asymmetric
interaction on the corresponding links of the network, thus
affecting travel time for each other. Therefore, the di-
agonalized algorithm is used to solve the traffic assignment
problem in our model. The diagonalized algorithm reduces
the original problem to a series of interacting subproblems,
that is, the multiuser equilibrium problem is converted into
several single-user equilibrium subproblems. The basic idea
of the solution using the diagonalized algorithm is first to fix
the CV traffic flow and use it as the background traffic flow
for the equalization of AV traffic flow; then, fix the equalized
AV traffic flow and solve for the equalization of CV traffic
flow. The two types of traffic flows are iterated repeatedly to
achieve equilibrium of them finally. The specific steps of the
diagonalized Frank-Wolfe algorithm are as follows:

Step 1. Initialization: Given the network, the de-
ployment plan of AV lanes and algorithm accuracy
parameters, set the number of iterations n = 0.

Step 2. Given the initial solution. Based on the given AV
lanes deployment plan, modify the properties of the
network and perform an all-or-nothing assignment to
obtain the initial traffic solution.

Step 3. Diagonalization: According to the feasible link-
flow vector V! , update the link travel time and convert
two types of traffic flows into subproblems.

Step 4. Solve subproblem. Fix the CV traffic flow and
solve the equilibrium flow of AV using the traffic as-
signment algorithm (Frank-Wolfe); then, fix the
equalized AV traffic flow and solve for the equalization
of CV traffic flow. Obtain the link-flow vector V7.

Step 5. Judgment of stop condition: If V? = V"™ the
algorithm stops; otherwise, let n = n+ 1 and return to
Step 3.

4.2. The Agent-Based Simulation Module. The agent-based
simulation module realizes the simulation of the vehicle-
type choices for travelers, and the specific steps are as
follows:

Step 1. Initialization: Set the number of agents, the basic
properties of each agent, environment properties, and
other basic parameters; construct the social network;
set the time step to 1year, and let the time ¢ = 0.

Step 2. Calculate the preference utility (P;;) of each
agent at the current time t.
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Step 3. Update the social network and calculate the
social network utility (S;,) of each agent at the current
time t.

Step 4. Calculate the relative utility (AU) of each agent
at the current time t. If AU > §, the agent chooses AV,
otherwise chooses CV.

Step 5. Judgment of stop condition: If time ¢ reaches the
maximum time t_,., the algorithm stops, otherwise let
t =t + 1 and return to Step 2.

4.3. Genetic Algorithm Module. Due to its strong global
search capability, robustness, and good parallelism, the
genetic algorithm (GA) has been widely used in road net-
work design and pricing problems. The basic idea of the
genetic algorithm is to encode decision variables as chro-
mosomes and obtain optimal individuals through opera-
tions such as inheritance, crossover, and mutation. The
specific process is as follows:

Step 1. Initialization: Set individual size, population
size, crossover and mutation probability, and maxi-
mum genetic algebra; encode decision variables; and
randomly generate the initial population. Set the
number of iterations n = 0.

Step 2. Fitness evaluation: Calculate the fitness value of
all chromosomes according to the diagonalized
Frank-Wolfe algorithm module and the agent-based
simulation module and perform the genetic operation
of the population based on the fitness.

Step 3. Perform the crossover and mutation operations.

Step 4. Judgment of stop condition: If the number of
iterations reaches the maximum number of iterations
or the optimal fitness of the population no longer
increases, the algorithm stops, otherwise let n =n+ 1
and return to Step 2.

5. Numerical Studies

In this section, numerical examples are performed based on
the Nguyen-Dupuis network and Sioux Falls network to
verify the proposed model and solution algorithm. Algo-
rithms and simulation modules are coded in MATLAB
R2020b and tested based on a personal computer with Intel
Core (TM) i5-10400F, 2.90 GHz CPU, 16 GB RAM.

5.1. The Nguyen-Dupuis Network. The Nguyen-Dupuis
network consists of 13 nodes, 19 links, and four OD pairs. In
addition, we set up seven links of candidate AV lanes. The
structure of the network and the locations of candidate links
are depicted in Figure 5. The detailed network properties and
demand for OD pairs are reported in Tables 1 and 2,
respectively.

The model parameters are set as below. The study period
is 30years, from 2025 to 2055, and the classification of
consumers follows the normal population distribution based
on the innovation of Valente and Rogers [46]: 2.5%
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TaBLE 1: Link characteristics of the Nguyen-Dupuis network.

model

The agent-based
simulation module

Genetic algorithm

Meet GA stop

module

Criterion?

The second stage
model

no

Meet GA stop
Criterion?

Genetic algorithm The diagonalized Frank-
module Wolfe algorithm module

FIGURE 4: The schematic diagram of the solution.

%%%%
N

— Regular Links

—> Candidate AV Links

O

FIGUre 5: The Nguyen-Dupuis network with candidate AV links.

Link t2 (min) Lanes Capacity (veh/h)
1 9 4 8000
2 7 3 6000
3 7 4 8000
4 14 2 4000
5 9 3 6000
6 12 2 4000
7 3 3 6000
8 9 3 6000
9 5 3 6000
10 13 4 8000
11 5 2 4000
12 9 3 6000
13 9 4 8000
14 10 4 8000
15 9 2 4000
16 6 4 8000
17 8 4 8000
18 7 3 6000
19 11 2 4000

TaBLE 2: Total OD demands of the Nguyen-Dupuis network
(veh/h).

O D Demand
1 12 12000
1 13 12000
3 12 9000
3 13 9000

innovators, 13.5% early adopters, 34% early majority, 34%
late majority, and 16% laggards. The attribute weight value of
each type of consumer when choosing a vehicle is fixed, and
the weight value changes with the change of the consumer
category. The value of N for the social network is considered
the same as the OD requirement for the Nguyen-Dupuis
network, which is 42,000 with a K of 200 and a reconnection
probability of 5%. In addition, we assume the average vehicle
lifespan to be ten years, and the cost and price of CV are,
respectively, $18,000 and $20,000, while the cost of AV is
$30,000 and decreases at a rate of 1.5% per year, and the price
ceiling and floor for AV are $40,000 and $22,000.
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Then, we will analyze from three aspects: subsidy policy,
AV lanes deployment, and comprehensive policy.

5.1.1. Subsidy Policy. As mentioned before, our subsidy
policy focuses on the impact of three dimensions: subsidy
objects (vehicle manufacturer or consumers), the amount of
subsidies, and the duration of subsidies.

(1) Subsidy Objects. In order to clearly and intuitively display
the differential impact of manufacturer subsidy and con-
sumer subsidy, we investigate the impact on AV market
penetration and social welfare when manufacturers and
consumers are subsidized $2,000, $3,000, and $4,000 per AV
per year, respectively. To prevent the interference of subsidy
amount, we further explore the situation of high subsidy
amount for $8,000. Figures 6(a)-6(d) visualize the effects of
the four scenarios.

It can be seen that, first, both manufacturer subsidies and
consumer subsidies positively affect the growth of AV
market penetration and social welfare. Second, consumer
subsidies outperform manufacturer subsidies at the same
subsidy amount due to the direct effect of the former on AV
purchases rather than the indirect effect of the latter.

Furthermore, Figures 7(a)-7(c) illustrate the impact of
subsidy objects on manufacturer benefits, consumer bene-
fits, and manufacturer AV pricing for a subsidy amount of
$2,000. Obviously, manufacturer subsidies have a superior
effect on manufacturer benefits, although the same amount
of consumer subsidies produces a more significant increase
in consumer benefits, which lead to the previously described
superior effect of consumer subsidies over manufacturer
subsidies in improving social welfare. In addition, from the
perspective of manufacturer AV pricing, whether it is
subsidized to manufacturers or consumers, the trend of AV
price changes is basically the same; only the prices differ,
which also indicates that consumers are more concerned
about the price difference between AV and CV than their
prices.

The eftect of the simultaneous implementation of
manufacturer and consumer subsidies is illustrated in Fig-
ure 8. Along the main diagonal direction of Figure 8, the
total amount of subsidies to manufacturers and consumers is
equal, such as $8,000 per vehicle in Figure 9. It can be seen
that the final AV market penetration tends to decrease as the
amount of manufacturer subsidy increases. This indicates
that under a fixed total subsidy, the effect of only consumer
subsidy is optimal, and both consumer and manufacturer
subsidies are the second, and only manufacturer subsidy is
the worst.

(2) Subsidy Amount. The subsidy amount is considered to be
a key factor affecting subsidy effectiveness. Therefore,
consumer subsidies of $2000, $4000, $6000, and $8000 are
set to explore the effect of the subsidy amount on AV market
penetration, and the results are illustrated in Figure 10. It can
be observed that AV market penetration increases with the
amount of subsidy, which is the same as our expectation.
However, the increase in subsidy effect seems to be gradually
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less obvious with augmentation of the amount of subsidy,
which may be related to the marginal benefit. To further
investigate whether there are marginal benefits in the sub-
sidy amount, we plot the AV market penetration and social
welfare in the 30th year for subsidy amounts ranging from
$1,000 to $8,000. It can be seen in Figure 11 that the subsidy
effect increases greatly when the subsidy amount is less than
$5,000, while it increases slightly when the subsidy amount is
more than $5,000. This verifies the existence of marginal
benefits and also shows that the $5,000 consumer subsidy
can be considered the optimal subsidy strategy combining
subsidy effects and costs.

(3) Subsidy Duration. This section discusses the impact of
subsidy duration. We set up four scenarios of consumer
subsidies: $2,000 per AV for 30years, $3,000 per AV for
20 years, $6,000 per AV for 10 years, and $8,000 per AV for
10years. Figure 12 describes the evolution of AV market
penetration in the four scenarios. Compared to $3,000 per
AV with a 20-year subsidy and $6,000 per AV with a 10-year
subsidy, $2,000 per AV with a 30-year subsidy works best.
This is due to the fact that when the subsidy years are short,
the AV market penetration is still at a low level after the
subsidy ends, which cannot attract more consumers to
choose AV. Only when the subsidy amount is high enough,
such as $8,000, the 10-year subsidy can make the AV market
penetration level higher at the end of the subsidy, thus
making the final AV market penetration level reach a better
result. In summary, long-term subsidies work better; if
short-term subsidies are implemented, the amount of
subsidy must be high enough so that the AV market pen-
etration reaches a relatively high level by the end of the
subsidy to achieve the desired effect.

5.1.2. AV Lanes’ Deployment. AV lanes are deployed in
a progressive fashion following changes in AV market
penetration. But the deployment of AV lanes is not supposed
to change too frequently, so we adjust the AV lanes’ de-
ployment scheme at five-year intervals. Specifically, the
deployment of AV lanes is carried out according to the AV
market penetration in the 1st, 6th, 11th, 16th, 21st, and 26th
years. The optimal deployment scheme obtained under
a subsidy policy of $4,000 per AV for 30years is listed in
Table 3. The analysis of the table shows that when the AV
market penetration is low, it is optimal without deploying
AV lanes. And as the AV market penetration gradually
increases, the number of candidate links for deploying AV
lanes increases until all candidate links are deployed with AV
lanes eventually.

To further investigate the effectiveness of the AV lanes’
deployment plan, we consider three different AV lanes’
deployment plans: (1) no AV lanes will be deployed, (2) AV
lanes will be deployed in a progressive fashion as shown in
Table 3, and (3) AV lanes will be deployed in all lanes in
Table 3 at once in the first year. The evolution of the total
travel time under the three plans can be observed in Fig-
ure 13: (1) as AV market penetration increases, the total
travel time under all three plans tends to decrease, which
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FIGURE 7: The impact of subsidy objects: (a) manufacturer benefits, (b) consumer benefits, and (c) AV price.
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TaBLE 3: Optimal deployment plan in the Nguyen-Dupuis network.
Year The AV The optimal deployment Total
market penetration (%) of AV lanes travel time (min)
1 0.04 No AV lanes 3,198,700
6 1.14 No AV lanes 2,608,133
11 6.30 4-8; 8-9 2,110,618
16 22.09 4-8; 8-9; 4-5; 5-6; 6-10; 9-10 1,518,002
21 44.84 4-8; 8-9; 4-5; 5-6; 6-10; 9-10; 5-9 1,268,821
26 61.23 4-8; 8-9; 4-5; 5-6; 6-10; 9-10; 5-9 1,153,878
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FiGURre 13: Total travel time under the three plans.

confirms the role of AV in reducing travel time; (2) in the
first decade, the total travel time of Plan 3 is much larger
than the other two plans; the reason behind is when AV
market penetration is low, the deployment of AV lanes will
occupy road resources making the travel time of CV users
much higher, so the deployment of AV lanes should be
implemented after the AV market penetration reached
a certain level; and (3) Plan 2, with its deployment in
a progressive fashion, performs excellently throughout the
program period, significantly reducing total travel time.

(1) Comprehensive Policy. In this section, we further explore
the impact of different combinations of subsidy and AV
lanes’ policies on the evolution of AV market penetration,
including (1) no subsidy policy and no AV lanes, (2) AV
lanes but no subsidy policy, (3) subsidy policy but no AV
lanes, and (4) AV lanes and subsidy policy. The subsidy
policy is $4,000 per AV for 30years, and AV lanes are
deployed progressively, as shown in Table 3. The evolution of
AV market penetration in the four scenarios is plotted in
Figure 14.
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It can be seen that both the subsidy policy and the
deployment of AV lanes have a positive impact on the in-
crease of AV market penetration, and the effect is optimal
when the two are implemented simultaneously. As far as
a single policy is concerned, the effect of the subsidy policy is
better than the deployment of AV lanes. When there is no
subsidy policy, AV market penetration grows slowly and AV
lanes are not deployed until year 21, while when there is
a subsidy policy, AV lanes start to be deployed in the 11th

year. Subsidy policy has a more noticeable effect on the early
adoption of AV, while the deployment of AV lanes will be
effective only after AV penetration reaches a certain level in
the middle and late stages. Therefore, the government should
determine the subsidy policy and AV lanes’ deployment as
a whole and implement the corresponding policy at the right
time, which can both increase the AV market penetration
and achieve a reasonable allocation of government
resources.
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TaBLE 4: Optimal deployment plan in the Sioux Falls network.
Year The AV The optimal deployment Total
market penetration (%) of AV lanes travel time (min)
1 0.04 No AV lanes 24,097,088
9-10; 10-11
6 114 10-9: 1110 19,648,109
9-10; 10-11; 8-9
11 6.92 10-9: 1110, 9.8 16,356,995
9-10; 10-11; 8-9; 4-5; 14-15; 6-8
16 2305 10-9; 11-10; 9-8; 5-4; 15-14; 8-6 13,406,660
9-10; 10-11; 8-9; 4-5; 14-15; 6-8; 5-9; 5-6
2 4670 10-9; 11-10; 9-8; 5-4; 15-14; 8-6; 9-5; 6-5 11,313,047
2% 67.09 9-10; 10-11; 8-9; 4-5; 14-15; 6-8; 5-9; 5-6 9,387,386

10-9; 11-10; 9-8; 5-4; 15-14; 8-6; 9-5; 6-5

5.2. Sioux Falls Network. To further test the proposed model
and solution algorithm, we implement the model in the
network of Sioux Falls—the biggest city in South Dakota.
The network consists of 24 nodes, 76 regular links, and 22
candidate AV links, as shown in Figure 15. Detailed data of
links and OD demands are shown in Tables 1 and 2 in the
Appendix. We set the N value of the social network to
196,000 and the K value to 200. Other parameters are the
same as were adopted in the Nguyen-Dupuis network.

Under the conditions of $4,000 per AV subsidy for
30years and the deployment of AV lanes in a progressive
fashion, the AV market penetration and social welfare over
time are revealed in Figure 16, and the optimal deployment
of AV lanes is given in Table 4.

6. Conclusions

In this paper, we propose a two-stage model to explore the
effects of subsidy and AV lanes’ policies on AV adoption.
The first stage model captures the pricing behavior of the
vehicle manufacturer and the vehicle-type choice behavior
of consumers, from which AV market penetration and the
effect of the subsidy policy on it can be accessed. Based on

the AV market penetration acquired from the first stage
model, the second stage model identifies the optimal time-
dependent progressive AV lanes deployment with the mixed
traffic assignment. The first and second stage models are
solved using the simulation-optimization and genetic-al-
gorithm-based approaches, respectively. An iterative opti-
mization approach is required to solve the whole model
because the two models affect each other. Finally, two nu-
merical experiments are presented to validate the proposed
model. The results show that (1) both subsidy and AV lanes’
policies play a positive role in AV adoption and work better
when implemented simultaneously; (2) in terms of subsidy
policy, first, there are differential effects between consumer
subsidies and manufacturer subsidies, with the former being
more effective in improving social welfare and AV market
penetration, while the latter is more beneficial to the
manufacturer; second, the effect of subsidy policy increases
with the amount of subsidy but there are marginal benefits;
third, the effect of the subsidy is closely related to the du-
ration of the subsidy and can only be exerted if the AV
market penetration reaches a certain level at the end of the
subsidy, which should be taken into account when the
subsidy duration is set. In conclusion, in the formulation of
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subsidy policy, the government should reasonably determine
the subsidy objects, subsidy amount, and subsidy duration
according to the requirements; (3) premature deployment of
AV lanes will not only fail to reduce travel time but will play
a negative role, so AV lanes should be deployed when the AV
market penetration reaches a certain level and should be
deployed in a progressive fashion.

In future research, the following three aspects can be
expanded. First, the correlation model of travel demand
variation can be developed by considering elastic or time-
varying travel demand. Second, considering the un-
certainties in the policy implementation and AV market, it is
also worthwhile to investigate the establishment of stochastic
programming models. Finally, a large-scale SP survey of
consumers to understand their preferences for AV is an
effective way to further improve the accuracy of the model.
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