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Shared bikes can help cities achieve carbon neutrality goals. Cleaning and disinfection are vital procedures of the maintenance of
shared bikes, especially during the COVID-19 pandemic because shared bikes could be a transmission intermediary of viruses.
This study proposes an optimization model of the cleaning and disinfection scheme of the dockless shared bikes. The
disinfection is assumed to be performed at night, when the usage is lowest. By regarding the disinfection staff as traveling
salesmen, the model is formulated as an extension of the Multidepot Multiple Traveling Salesman Problem (MDMTSP). The
objective function is to minimize the total cost; which consists of the cost associated with the working time and per-capita cost
of the disinfection staff. A heuristic algorithm combining k-means clustering and genetic algorithm (K-GA) is adopted to find
the lower bound solution. Then, the K-GA-adjustment algorithm has been adopted to find the solutions that satisfy the
constraints. To reduce the computing time needed, an approximate function for the lower bound of the optimal number of
disinfection staff is obtained by constructing a Continuous Approximation (CA) model. A case study based on real location
data of shared bikes in Chengdu, China, is performed to show how the maintenance department could adopt the optimization
framework to design an efficient scheme to clean and disinfect the shared bikes.

1. Introduction

In recent years, with the increase in motor vehicle owner-
ship, transportation has become a major source of carbon
emissions. To achieve the goal of carbon neutrality, it is par-
ticularly important to reduce carbon dioxide emissions from
the transportation field. There are many low-carbon trans-
portation options for cities, such as ride-sourcing [1, 2], e-
scooter sharing, and bike sharing. As a typical low-carbon
travel mode, bike sharing has been adopted by cities all over
the world. However, there are various challenges in the oper-
ation and maintenance of shared bikes. Without proper
maintenance, a large number of shared bikes could be
scrapped and become “zombie bikes” [3]. Cleaning and dis-
infection are essential procedures of the daily maintenance

of shared bikes [4]. Studies have shown that bike disinfection
can increase citizens’ willingness to use shared bikes [5].
This can reduce the usage of other transportation modes,
especially the ones with high carbon dioxide emission such
as private cars and taxis, and thus reduce the emissions [6].

With the outbreak of the COVID-19 pandemic, it
becomes more urgent to clean and disinfect shared bikes on
a regular basis. On the one hand, shared bikes have become
an alternative to public transportation because travellers try
to avoid contact with other people due to fear of disease
transmission [7]. On the other hand, bikes could be one of
the transmission methods of the virus [8], particularly via
the handlebars and seats [9]. Therefore, timely cleaning and
disinfecting of bikes is important to prevent the transmission
of disease and to increase the attractiveness of shared bikes.
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Many countries have developed standards for the clean-
ing and disinfection of shared bikes. For example, China’s
first group standards on bike sharing disinfection, “Internet
Rental Bike Hygiene Guarantee Operation Specification,”
was released in March 2020. The standards require that
when emergencies of public health happen, the handlebars,
baskets, locks, and other parts that are easily accessible to
cyclists must be cleaned and disinfected not less than once
a day [10].

However, to our best knowledge, there has been no
research performed on the cleaning and disinfection strategy
of shared bikes. In practice, the operators usually do not
have a well-designed plan to disinfect the bikes. Without
such a plan, some bikes may be left out of disinfection while
other bikes may be disinfected many times. The goal of this
study is to develop a model to optimize the scheme to disin-
fect the shared bikes. Since dockless bike sharing is much
more widely used than the docked bikes sharing and its bike
parking locations are unconstrained, the disinfection of
dockless shared bikes is more important and complicated
than that of the docked counterpart. Thus, we focus on the
disinfection of the dockless shared bikes in this study.

According to the standards of cleaning and disinfection,
the staff needs to clean all shared bikes through measures
such as spraying disinfectants [11]. Each of the disinfection
staff is assumed to go through all the bikes he or she is
responsible for. Thus, this problem is similar to the Multide-
pot Multiple Traveling Salesman Problem (MDMTSP).
Based on the setup of the MDMTSP, this research assumes
that the number of disinfection staff members is equal to
the number of depots. The optimization objective is to min-
imize the total cost, which consists of the cost related to the
working time of the staff and a per-capita cost of each
staff [12].

Because it is very time consuming to obtain the solution
to this problem, we divide the problem into two subprob-
lems. The first one is to determine lower bound of the num-
ber of disinfection staff needed by constructing a CA model.
The second one is to obtain the specific route for each disin-
fection staff by employing a hybrid algorithm.

The contributions of this study are as follows:

(i) This study proposes a routing-based model to
describe the disinfection process of shared bikes

(ii) We extend the MDMTSP by setting the number of
depots equal to the number of traveling salesmen
and considering not only the cost associated with
the working time of traveling salesmen but also
the fixed cost of hiring each salesman

(iii) The disinfection problem of shared bikes is repre-
sented by the Continuous Approximation (CA)
model, and the closed-form lower bound solution
for the number of disinfection staff is obtained. By
doing so, the time needed to obtain the final disin-
fection scheme can be greatly reduced

(iv) We adopt the K-GA-adjustment algorithm to find
the specific disinfection plan for shared bikes and

adjust the solution to satisfy the overloading
constraint

The structure of this study is as follows. The next section
reviews papers related to the operation and routing optimi-
zation of shared bikes. The third section introduces the spe-
cific cleaning and disinfection process of shared bikes and
the model framework. In the fourth section, algorithms
and experiment works are described. A case study of
Chengdu is presented, and the results are analysed in the
fifth section. The last section summarizes the conclusions
and recommendations for future works.

2. Literature Review

Since the disinfection of shared bikes is one part of the main-
tenance operation, we summarize the papers related to the
maintenance operation of shared bikes. Since the disinfec-
tion operation problem is close to MDMTSP, the studies
related to them are also reviewed.

2.1. Studies Related to the Maintenance Operation of Shared
Bikes. The research on the maintenance operation of shared
bikes has been extensively studied and is mainly divided into
two aspects: rebalancing and repair.

Rebalancing refers to the process of redistributing shared
bikes to meet the travel demand of cyclists. The rebalancing
problem is mainly divided into the static bike rebalancing
problem (SBRP) and dynamic bike rebalancing problem
(DBRP). In the SBRP, shared bikes are usually redistributed
when cyclists’ demand is low (e.g., during nighttime), while
in the DBRP, share bikes are redistributed throughout the
day. Another difference is that DBRP considers the temporal
variation of the demand throughout the day and adopts dif-
ferent rebalancing strategies based on usage forecasting [13,
14]. Rebalancing problems are variants of the classical vehi-
cle routing problem (VRP) and are NP-hard problems [15].
Since there are no exact algorithms for large-scale rebalan-
cing problems [16], researchers usually adopt heuristic algo-
rithms [17–19]. Several studies adopt the cluster-based
algorithm to solve the city-scale rebalancing problem. Lv
et al. [15] designed a clustering strategy to decompose the
original problem into TSP and multidepot VRP and used

Shared bikes
Starting points of disinfection staff

Figure 1: Disinfection strategy.
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the adaptive variable neighborhood search algorithm for
routing optimization. Lv et al. [20] proposed a fuzzy cluster-
ing strategy considering distance and inventory factors.
Although it is difficult for researchers to obtain the optimal
solution for the problem using cluster-based algorithms,
researchers can efficiently find a near-optimal solution. This
study also adopts this cluster-based method to search for a
solution for the city-scale shared bike disinfection problem.

Regarding bike repair, some scholars have constructed
models to address the problem of how to collect and deliver
damaged bikes to the warehouse with the lowest cost. Col-
lecting and delivering damaged bikes is usually combined
with the rebalancing process and considered in one optimi-
zation model [21–25].

2.2. Studies Related to MDMTSP. This study formulated the
cleaning and disinfection model based on the structure of
MDMTSP, which is a variant of TSP. TSP and its variants
have been widely studied by researchers in the field of oper-
ation research and transportation. The Multiple Traveling
Salesman Problem (MTSP) is an extension of the TSP and
is equivalent to the VRP problem without capacity con-
straints [26]. The recent studies of MTSP are reviewed by
Bektas [26] and Cheikhrouhou and Khoufi [27]. MDMTSP
is a branch of MTSP. It was first proposed by Kara and Bek-
tas [28] and has been applied in many areas. For example,
Gao et al. [29] formulated the unmanned aerial vehicle
scheduling problem as a MDMTSP and designed the group-
ing ant colony optimization algorithm to solve it. Chen et al.
[30] formulated the multirobot systems as a MDMTSP and

used an ant colony optimization-based memetic algorithm
to solve it. These researches mainly adopted heuristic algo-
rithms to solve these problems, and the problems are usually
of small scale. When dealing with large-scale problems that
are usually met in the real world, even these heuristic algo-
rithms could not find a satisfactory solution within reason-
able time. Thus, the CA methods have been adopted by

Table 1: Notation and base values.

Symbol Notation declaration Units Base value

Decision variables

m The number of disinfection staff — —

xkij Whether the route from i to j is chosen by the staff member k (0: no, 1: yes) — —

Parameters

cij Travel distance between points i and j km —

i Index of shared bikes — —

j Index of shared bikes — —

k Index of disinfection staff — —

n The number of shared bikes that need to be disinfected — —

p1 Cost coefficient for hiring disinfection staff $/member/day 3

p2 Cost coefficient related to working time $/h 6

Qk Subset of Nk, the auxiliary variable for eliminating the subtour — —

tl Allowed maximum working time h 8

tx Average time for cleaning and disinfecting of each bike and its surrounding bikes h 0.01

v Traveling speed of disinfection staff member km/h 3

z Total cost $/day —

K The set of disinfection staff: K ≔ 1, 2,⋯,mf g — —

N The set of shared bikes: N ≔ 1, 2,⋯,nf g — —

Nk The set of bikes visited by the staff member k — —

Clusters
Shared bikes
Starting points of disinfection staff

Figure 2: Clusters of shared bikes.

3Journal of Advanced Transportation



researchers to deal with these problems and to obtain an
empirical solution that can be easily used to deal with related
problems.

The routing optimization problem is usually NP-hard; it
is difficult to develop an algorithm to obtain the optimal
solution for large-scale problems. Thus, many studies use
CA models to obtain a near-optimal solution for the routing
problem. Daganzo [31] provided an comprehensive view of
CA functions of TSP and VRP. Garn [32] used a machine
learning approach to derive a CA model for the balanced-
dynamic MTSP. Several scholars adopted the CA to solve
the large-scale routing problem, such as disaster relief [33],
school bus routing [34], and drone routing [35]. Interested
readers could refer to Langevin et al. [36] and Ansari et al.
[37] for review of studies on CA models in the field of rout-
ing optimization.

In summary, the previous studies on the operation of
shared bikes mainly focused on rebalancing and repair. Shui
and Szeto [38] have performed a comprehensive review of
these studies. However, to our best knowledge, the optimal
cleaning and disinfection scheme of shared bikes has not
been investigated before. As a result, this study tries to inves-
tigate this topic. Since the problem could be regarded as an
extension of the MDMTSP, a NP-hard problem, a combina-
tion of the CA method and a heuristic algorithm has been
used to solve this problem.

3. Problem Description and Model

This section describes the bike cleaning and disinfection
process and assumptions of the model.

3.1. Cleaning and Disinfection Process. Cleaning and disin-
fection are performed during the night. The disinfection staff
need to go to the location of bikes that are designated by the
platform and disinfect this bike and other bikes perched in a
small area around that location. The bell on the lock can
help disinfection staff differentiate the responsible bikes.

Disinfection staff is assumed to start from one bike, visit
the locations of the bikes that need to be disinfected one by
one, and return to the first bike. Each bike needs to be disin-
fected at least once. Therefore, the problem to be solved in
this study could be regarded as a MDMTSP. The number
of the traveling salesmen (disinfection staff) is equal to the
number of depots. The starting point is one of the depots.
An example is shown in Figure 1. The cleaning and disinfec-
tion tasks of the entire area are assigned to m disinfection
staff members.

3.2. Model Assumptions. The assumptions of the model are
listed as follows:

(i) Each staff starts from one bike and returns to the
bike to form a closed loop. The returning to the
starting point could be justified by that the staff usu-
ally starts from the bike that is closest to his/her
home (or other locations), and after finishing the
disinfection task, he/she needs to return home,

which could be regarded as returning to the first
bike

(ii) The locations of the bikes do not change during the
disinfection process. This is close to the actual situ-
ation because the cleaning and disinfection is per-
formed during the night

(iii) The distance between shared bikes is measured by
Euclidean distance, which is a justifiable simplifica-
tion of the real road network, especially in urban
areas where the density of intersections is high
[39–42].

3.3. Notations

3.4. Model Framework.We formulate this model on the basis
of MDMTSP. The difference is that the objective function is
composed of the employment cost per capita of the disinfec-
tion staff [12] and the cost related to the working time of the
disinfection staff, as shown in function (1). As for the work-
ing time cost, the reason for choosing the average value is
that the disinfection of bikes needs to be as fast as possible,
and the average working time represents the average effi-
ciency of disinfection work.

It should be noted that the disinfectors usually disinfect
all the shared bikes in one area regardless of the platforms
that the shared bikes belong to. As the number of bikes that
can be disinfected is positively correlated with the working
time of a disinfector and that the time spent on the way to
the next bike location should also be counted as working
time, we regard it as reasonable to calculate the employment
cost of the disinfectors based on a basic salary and the work-
ing time.

Since each bike needs to be disinfected, the cost related
to the consumption of disinfection supplies and total clean-
ing and disinfecting time is fixed. Therefore, this cost does
not need to be considered in the objective function. Decision
variables include m and xkij. The explanation of each variable
in the model is shown in Table 1.

min z = p1m +
p2
mv

〠
k∈K

〠
i∈Nk

〠
j≠i,j∈Nk

cijx
k
ij: ð1Þ

Subject to

Nkj j ≥ 2 ∀k ∈ K , ð2Þ

〠
i∈Nk

xkij = 1 ∀k ∈ K ,∀j ∈Nk, i ≠ j, ð3Þ

〠
j∈Nk

xkij = 1 ∀k ∈ K ,∀i ∈Nk, i ≠ j, ð4Þ

[m
k=1

Nk =N ,
\m
k=1

Nk =∅, ð5Þ

〠
i∈Qk

〠
j≠i,j∈Qk

xkij ≤ Qkj j − 1 ∀k ∈ K ,∀Qk ⊂Nk, 2 ≤ Qkj j ≤ Nkj j − 1, ð6Þ
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xkij ∈ 0, 1f g ∀i, j ∈Nk,∀k ∈ K , ð7Þ

∑iϵNk
∑j≠i,jϵNk

cijx
k
ij

v
+ tx 〠

iϵNk

〠
j≠i,jϵNk

xkij ≤ tl ∀k ∈ K: ð8Þ

Constraint (2) indicates that each disinfection staff
member is responsible for at least 2 shared bikes, which
ensures that the path can form a loop. Constraints (3) and

(4) indicate that each bike needs to be visited once, and there
are two edges connecting to each point. Constraint (5) shows
that there is no intersection between the sets of shared bikes
disinfected by different staffmembers and that all the shared
bikes need to be cleaned. Based on Dantzig et al. [43], con-
straint (6) is used to eliminate the subtour. In function
(7), xkij equals 1 if the staff member k goes from point i to
point j, and 0 otherwise. Constraint (8) ensures that disin-
fection staff does not work overtime: the first term is the
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travel time of each staff and the second term is the bike
cleaning and disinfecting time of each staff.

4. Approximate Function and
Heuristic Algorithm

Since the number of shared bikes that need to be cleaned and
disinfected in one city is very large, it is challenging to design
an algorithm to solve the large-scale NP-hard problem and
obtain the global optimal solution within reasonable time.
Even the classical heuristic algorithm needs much computing
time to generate a satisfactory solution. Hence, we propose a
CA method to find a lower bound solution of the number of
disinfection staff relaxing the overtime working constraint. In
contrast, if we use the one-dimensional search algorithm [44]
to search for the solution of the number of disinfection staff,
the total computation time equals the number of searches
times the computation time of the CA method. The CA
method can derive an approximate function that can directly
calculate the lower bound solution of the number of disinfec-
tion staff. Based on the results of CA, we design a heuristic
algorithm to find the near-optimal solution. The solution
includes the number of disinfection staff needed and their
travel route for bike disinfection.

We first introduce the CA method. Previous studies have
used the CA method to obtain the functions to express the
average length of the shortest path of TSP kTSP

ffiffiffiffiffiffi
nA

p
[45,

46] and VRP 2rðv/VÞn + kVRP

ffiffiffiffiffiffi
nA

p
[31]. The design of the

CA model is as follows: n customers are randomly distrib-
uted in a region A. Each customer has a random quantity
of demand with the expected value of v. Each vehicle can

serve V unit demand. r is the distance between the depot
and the center of the area A. kTSP and kVRP are the constants.
Since the average length of the shortest path of the
MDMTSP has not been studied, based on previous studies,
we believe that the average length can also be approximated
by a function via employing the CA method. By setting πð
x,mÞ =∑kϵK∑iϵNk

∑j≠i,jϵNk
cijx

k
ij, function (1) can be con-

verted to min p1m + p2πðx,mÞ/ðmvÞ. If there is a function
to express the average length of the shortest path of the
MDMSTP, the term πðx,mÞ could be replaced by that func-
tion. To find the lower bound solution of m, we relax the
constraint (8) into the constraint (9) to ensure that the aver-
age working time of staff does not exceed the maximum.

∑kϵK∑iϵNk
∑j≠i,jϵNk

cijx
k
ij

mv
+
txn
m

≤ tl: ð9Þ

Then, the problem can be converted to a simpler optimi-
zation problem with one decision variable m.

In order to obtain the function, which is usually a regres-
sion model, according to the CA method, we need to develop
a series of problems with different settings and use an algo-
rithm to solve those problems. The data of the solution and
the settings of the problems would be used to train the
regression model.

We first assume that m is a fixed parameter and πðx,mÞ
is converted to πðxÞ, which can be regarded as a MDMTSP.
Many researchers have adopted the heuristic algorithms to
solve MDMTSP [29, 30]. This research adopts the Genetic
Algorithm (GA) which is also one of the excellent heuristic
algorithms to solve the MDMTSP by firstly assigning all
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points (bikes) to the disinfection staffmember randomly and
performs crossover and mutation to find the solution [47,
48]. On the other hand, K-GA is a combination of the K
-means algorithm and GA, which is designed to reduce the
computation through clustering so as to obtain a better fea-
sible solution within shorter time. An example of the cluster-
ing of the bikes is shown in Figure 2.

We have carried out experiments that randomly generate
a thousand points in a square area of 400 km2. Both GA and
K-GA are used to solve the problem. MATLAB 2019a soft-
ware is used for coding. The operating parameters of the
computer system are Intel(R) Core (TM) i7-4720HQ
CPU@2.60GHz and 16G operating memory. The initial
parameters of GA are as follows: the population size is 80
and the number of iterations is 100 times the number of
shared bikes that need to be disinfected.

The solutions obtained by GA and K-GA are shown in
Figure 3. As can be seen, when the number of disinfection
staff increases, the shortest path obtained by the GA
becomes longer while the shortest path obtained by K-GA
fluctuates around 520 km. This indicates the solution

obtained by K-GA is better than that by GA. Figure 4 com-
pares the computing time of the two algorithms. For the GA,
as the number of disinfection staff increases, the computing
time gradually increases. But for the K-GA, the computing
time decreases. This is because when solving the problem,
the time-consuming part is the search for the shortest path.
As the number of staff increases, there are more clusters and
probably less points in each cluster, which reduces the time
needed to search for the shortest path. In summary, the K-
GA could generate a better solution within shorter time than
the GA. Hence, the K-GA is used to generate the shortest
path in the following work.

Following the methodology of previous studies [45, 46,
49], we perform the following steps to construct the CA
model and obtain the approximate function: design different
experiment scenarios, generate random problems under
each experiment scenario, solve the problem to obtain the
solution, and train the approximate function based on the
settings of the experiment and the solution.

In this study, the experiment scenarios are designed by
combining different service areas, number of bikes, and

(1) Input: lower bound solution m by function (11), the initial value of parameters in Table 1, and the position of shared bikes that
needed to be disinfected.
(2) Employ the k-means algorithm to determine the clusters and their center position under the condition of m staff.
(3) First loop: Line 3 − 7 (calculate the adjustment volume.)
(4) for each k ∈ K
(5) Calculate the travel route length and the working time by GA.
(6) Compute the adjustment volume of each staff by

Adjustmentk = d∑iϵNk
∑j≠i,jϵNk

xkij − tl∑iϵNk
∑j≠i,jϵNk

xkij/ð∑iϵNk
∑j≠i,jϵNk

cijx
k
ij/v + tx∑iϵNk

∑j≠i,jϵNk
xkijÞe ∀k ∈ K:

(7) end for
(8) if sumðAdjustmentkÞ > 0
(9) m =m + 1 and goto line 2
(10) end if
(11) Second loop: Line 11 − 33 (allocate some bikes from overloaded staff to staff not overloaded.)
(12) while max (Adjustmentk)>0 do
(13) for each k ∈ K and Adjustmentk ≥ 0
(14) Calculate the distance from each point to the center of the k-th cluster and sort it in descending order.
(15) Take the top Adjustmentk in the distance order.
(16) Set i = 1 and kk = Adjustmentk.
(17) whilei < Adjustmentkdo
(18) for each j ∈ K and Adjustmentj < 0
(19) Compute the distance from j-th center to i-th point in k-th cluster and find the minimum.
(20) end for
(21) if distance from j-th center to i-th point < distance from j-th center to k-th center
(22) kk = kk + 1:
(23) Replace the i-th point with the kk-th point in the k-th cluster.
(24) else
(25) i = i + 1:
(26) Adjustmentj = Adjustmentj + 1:
(27) Transfer point i from cluster k to cluster j.
(28) end if
(29) end while
(30) Update the position of the center of each cluster.
(31) end for
(32) Recompute the adjustment volume of each staff.
(33) end while
(34) Output: the travel route, travel distance, and working time of each staff.

Algorithm 1: K-GA-adjustment algorithm.
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number of staff. The service area is assumed to be square, and
the side length is set as 5, 10, 15, and 20. The number of bikes
that need to be cleaned is set as 200, 400, 600, 800, and 1000.

The number of disinfection staff is set as ranging from 1 to
30 with an interval of 1. Combining four service areas, five
levels of bike numbers, and 30 levels of staff numbers, there
are 600 experiment scenarios generated. Assuming bikes are
uniformly distributed, the locations of bikes are randomly
generated for 50 times for each experiment scenario. The
shortest path for each experiment is obtained using the K-
GA. The average length of the shortest paths of each experi-
ment scenario is calculated. The results are shown in Figure 5.

As can be seen from Figure 5,m has little effect on πðx,mÞ.
Thus, the approximate function of the average length of the
shortest path does not need to include m. This study adopts
the widely used function form for the expected length of the
shortest path of TSP, which is μ

ffiffiffiffiffiffi
nA

p
, proposed by Beardwood

et al. [46]. When the side length and the number of bikes are
fixed, differentnumbers of disinfection staff lead to little change
of the shortest path.Therefore,we select all the samples tofit the
model. Results show that the value of μ is 0.826, the R2 reaches
0.997, RMSE equals to 4.931, and the model is significant.
Hence, πðx,mÞ can be approximated by 0.826

ffiffiffiffiffiffi
nA

p
.

After πðx,mÞ is represented by the CA function, the deci-
sion variable of function (1) is onlym, and the function is obvi-
ously a unimodal convex function. The large-scale search for
theoptimal valueofm∗ canbeavoided.By taking thederivative,
the near-minimum lower bound point can be approximated as
m = ½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2π/ðp1vÞ
p �. Since thevaluemaynotbean integer, calcu-

lation and comparison need to be performed to determine
whether the number should be rounded up or down, which
could be represented by ½∙�. When constraint (9) can be satis-
fied, the near-minimum lower bound point can be regarded
as the global minimum lower bound point. In this case, con-
straint (9) can be approximately converted to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πp1/ðp2vÞ

p
+

txn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p1v/ðp2πÞ

p
≤ tl. Otherwise, the lower bound solution m
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By substituting π by the CA function, we can obtain the
closed-form lower bound solution:
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Therefore, in practice, the lower bound solution m can be

determined through function (10). The K-GA algorithm could
be used to obtain the cluster of bikes that each staffmember is
responsible for and the specific working time for cleaning and
disinfection. For staffwhose working time exceeds the working
time constraints, we design the K-GA-adjustment algorithm to

Table 2: The solution of the case study.

Disinfection
staff number

Initial solution Adjustment solution
Length of
routes
(km)

Working
time
(hour)

Length of
routes
(km)

Working
time
(hour)

1 15.76 7.28 15.89 7.35

2 14.43 6.89 14.88 7.04

3 18.68 8.82 16.96 7.98

4 16.21 7.57 16.46 7.76

5 16.03 7.54 15.58 7.41

6 16.40 7.64 17.17 7.95

7 16.29 7.35 17.52 7.87

8 17.43 7.98 16.74 7.70

9 17.80 7.98 17.48 7.90

10 17.97 8.30 16.68 7.79

11 12.76 6.03 13.04 6.22

12 18.65 8.69 16.50 7.74

13 18.21 8.15 17.40 7.86

14 16.49 7.84 16.56 7.86

15 16.02 7.35 17.44 7.93

16 14.97 7.02 15.86 7.40

17 16.30 7.35 17.28 7.71

Total 280.39 129.78 279.42 129.46

Mean 16.49 7.63 16.44 7.62

Total distance = 279.42 (km) cost = 83.84 ($/day)

Figure 6: The specific disinfection routes in the case study.
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allocate some of the bikes they are responsible for to other
employees who are not overloaded. At the same time, this pro-
cess can enhance the balance of the work load of each staff. The
specific K-GA-adjustment algorithm is shown in Algorithm 1.

5. Case Study

In this case study, we use the bike sharing trip data of one of
the most popular bike sharing companies in Chengdu to
demonstrate the application of our proposed method. The
trips within the First Ring Road on March 1, 2018, are used
to develop the static cleaning and disinfection scheme. There
were 3,632 shared bikes that needed be disinfected on March
1, 2018. We collect the final positions of these shared bikes.
According to China’s first shared bike disinfection group
standard, they all need to be disinfected and cleaned. The
area within the First Ring Road is 27.85 km2. If we do not
consider the working time constraint, the first function of
equation (9) could be used to calculate the number of staff,

which is 13. However, in this case, the working time con-
straint is violated. Thus, the second function of equation
(9) is used to calculate the number of staff. CA results indi-
cate that 16 disinfection staff are required, and the total cost
(objective function) is 80.39 ($/day).

We apply the K-GA to solve the specific disinfection
plan to get the initial solution and then apply the K-GA-
adjustment algorithm to adjust each staff to avoid being
overworked. The results are shown in Table 2. It can be seen
that the K-GA-adjustment algorithm not only avoids over-
work but also reduces the total working time. The specific
disinfection routes are shown in Figure 6. The lines of differ-
ent colors represent different disinfection staff members.
The details of the designated path can be shown on the staff’s
mobile phone. The total cost is 83.84 ($/day), which is
slightly higher than the results obtained by the approximate
function, with an error of 4.11%. The reason may be that the
spatial distribution of bikes does not follow the uniform dis-
tribution. The computation time for this example is equal to
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1.52 hours. Without the approximate function, the com-
monly used method is to apply the one-dimensional search
algorithm [44] to find the optimal number of disinfection
staff. It takes at least three times the computing time as the
CA method. This illustrates that by using the approximate
function, the computing time could be largely reduced,
which makes the method applicable to large-scale problems.

To investigate the impact of the cost coefficient (p1 and
p2) on the results, we perform the sensitivity analysis by
the CA model. Figures 7 and 8 show the value of the disin-
fection staff and the total cost change with the p1 and p2,
which range from 0.1 to 100 ($). It can be seen that if the
constraint (9) is satisfied, the increase in cost coefficient for
hiring disinfection staff (p1) leads to a decrease in the num-
ber of the disinfection staff. The increase in cost coefficient
related to working time (p2) leads to an increase in the num-
ber of the disinfection staff. When the constraint (9) is not
satisfied, the number of the disinfection staff will remain at
the value of 16. Obviously, the increase of both cost coeffi-
cients p1 and p2 causes the increase in the total cost.

6. Conclusions

The cleaning and disinfection of shared bikes are essential
parts of the operation and maintenance work. According
to the cleaning standards, each bike needs to be cleaned at
least once a day. During the COVID-19 pandemic, it has
become more important to clean and disinfect the shared
bikes as they could be a way to transmit the disease. Since
this topic has not been explored before, in this study, we
investigate this topic by proposing a method to design the
optimal disinfection scheme. As the problem could be
regarded as a variant of the MDMTSP, this study proposes
an optimization model to describe the disinfection process
of shared bikes and an effective method to obtain the disin-
fection scheme, which allows the operation and maintenance
staff to disinfect all the shared bikes as required. The objec-
tive function is composed of the employment cost per capita
of the disinfection staff and the cost related to the working
time of the disinfection staff. The decision variables are the
number of disinfection staff and their route. As the problem
solving process requires a large amount of computation, a
CA model is designed to obtain an approximate function
for the lower bound of the optimal number of staff. Based
on determining the lower bound of the optimal number of
disinfection staff by using the approximate function, the K-
GA could be applied to obtain the initial solution, and the
K-GA-adjustment algorithm can help to get the specific dis-
infection scheme. The process could largely reduce the com-
puting time. A case study based on the real world bike
location data of Chengdu has been presented. Results show
that the proposed method could be used for large-scale dis-
infection problems. The results indicate that the CA method
can obtain the near-optimal number of staff with relatively
short computing time. The proposed method can also be
used in other scenarios, such as the cleaning and disinfection
of shared e-scooters [50, 51], shared cars, shared power
banks, and shared basketballs.

This research still has some limitations that may be
addressed in the future. Firstly, due to the assumption of
uniform distribution, satisfactory results can be obtained
by using the K-GA-adjustment algorithm. If the distribution
of shared bikes is not uniform, the approximate function
may not accurately estimate the lower bound of the number
of disinfection staff, and it may take a longer time for the K-
GA-adjustment algorithm to find a solution. Therefore, the
disinfection scheme under different bike-sharing distribu-
tions can be explored in the future. Secondly, although this
study chooses the period with the lowest ridership for disin-
fection, a small amount of bike sharing usage may still inter-
fere with the disinfection process. Thirdly, the focus of this
study is to propose a problem solving framework. When
the method is applied to the real world problem, it is neces-
sary to consider the actual road network, heuristic algo-
rithms that are more efficient than GA, and high-level
programming languages such as Java and C++.
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