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To facilitate the intelligent and automated provision of mobility services by autonomous transportation systems, bike-sharing can
be a supplement to public transport for addressing their point-to-point issue, namely, “last mile” service. However, according to
the diferent nature of land use, the uneven spatio-temporal distribution of travel demand can directly lead to difcult access to
bikes with high travel costs for users and operating costs for operators. Based on this, this paper analyzes the user behavior patterns
within diferent areas by using GeoHash encoding and proposes a hierarchical autonomous vehicle scheduling model based on
tide bicycle-sharing trafc, namely, HATB. It minimizes operating costs and maximizes user satisfaction to dynamically optimize
scheduling routes and required vehicles within each layered zone. As for extracting historical orders of Mobike in Beijing, an
example analysis through the genetic algorithm of HATB is conducted to support efective and efcient scheduling. Compared to
existing scheduling methods, HATB has faster convergence and lower time complexity, which improves bike turnaround ef-
fciency and practical application ability, thus making it more convenient for the public to travel during peak hours.

1. Introduction

Nowadays, as the modern transportation systems (TSs)
develop, problems among mobility services (MSs), e.g.,
congestion, route adjustment, user dispersion, and peak-
time conficts have become commonplace [1–3] in terms of
the adjustment of urban planning and the year-on-year
increase in car ownership. Since the MS are fundamental in
propelling current intelligent TS (ITS) evolving towards
autonomous TS (ATS), they are also being renovated to
assist the public on a daily basis and explore the advance-
ment of ATS. Some theoretical development has revealed
that the creation of shared transport, called bicycle-sharing,
has efectively alleviated the “last mile” service (LMS), which
is the most predominant pain point in the current MS [4] in
terms of the most immediate interaction with users, and
some emerging companies, e.g., Mobike have also taken this
trend to a new level. However, bikes must be parked in GPS-
identifed areas to address ill-posed problems in the case of
illegal parking, vandalism, or theft. Since then, to avoid

constant billing, users never consider the capacity of the
parking area, resulting in an uneven spatial distribution of
bikes, namely, some areas sufer a severe accumulation of
bikes while others are “one bike is hard to fnd” [5].
Terefore, scientifc and reasonable scheduling strategies are
required to overcome the imbalance between the supply and
demand of bikes and improve resource utilization.

Rebalancing and optimizing bicycle-sharing distribution
constitutes the vehicle routing problem (VRP), and most
current research is based on this theory. For instance,
Caggiani et al. [6] proposed a decision support system for the
reallocation problem by forecasting the demand for spatio-
temporal bikes. Similar research can, accordingly, be divided
into static and dynamic scheduling to optimize VRP models
with diferent objectives. Specifcally, in static scheduling,
Kadri et al. [7] and Dell’Amico et al. [8] developed opti-
mization models for user satisfaction and operating cost,
respectively. Yan et al. [9] investigated the deterministic and
stochastic demand for bicycle-sharing in dynamic sched-
uling. In general, these methods assume that the overall
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supply and demand within a scheduling station are in
equilibrium without supporting the mobility of bikes be-
tween zones. Moreover, limited open literature has reported
that current research focuses too much on mathematical
modeling, neglecting the analysis of actual demands.
Terefore, these methods have encountered three challenges
in practice, namely, slow convergence, high time complexity,
and problematic application, from perspectives of fulflling
the actual demands in real-time and adjusting scheduling as
needed.

As current diversifed mobility demands tend to be
managed and fulflled by more intelligent and automated
systems with fewer human intervention [10], it is an urgent
need to collaborate corresponding functions to renovate the
conventional MS of ITS in the context of ATS [11], i.e.,
update the ability to sense user demands and rearrange
system supplies [12, 13]. Hence, to promote theMS provided
by ATS, this paper proposes a hierarchical autonomous
vehicle scheduling model based on tide bicycle-sharing
trafc, namely, HATB. Tis model uses GeoHash coding
to divide the scheduling into three layers, i.e., top, middle,
and bottom, corresponding to the scheduling terminus, area,
and point. Based on the genetic algorithm (GA), the model
can achieve hierarchical and dynamic scheduling of vehicles
and routes to maximize user satisfaction, while minimizing
operating costs.

Furthermore, in contrast to current studies on sched-
uling bikes in ITS, the HATB makes three main contribu-
tions to optimizing convergence speed, time complexity, and
application difculties of actual scheduling. Te scheduling
results based on actual orders ultimately demonstrateHATB
can provide a rational reference for LMS in ATS and guide
the development of bicycle-sharing regulation and
operation.

Te overall structure of this paper is divided into fve
sections. Section 2 introduces related solutions and
emerging challenges. Te methodology relevant to HATB is
described in Section 3. Section 4 elaborates on the sched-
uling results and superiority of the model. Finally, Section 5
summarizes this study and sketches future research
directions.

1.1. Related Works. In the transport domain, LMS refers to
the direct interaction between the end of public transport
and users, which often sufers from scattered users, peak-
time conficts, and uneven distribution. As an efective way
to cope with the LMS problems, bicycle-sharing has become
a non-negligible component of urban transport. For ex-
ample, Cheng et al. [14] have demonstrated that bicycle-
sharing increases the proportion of green transport in cities
and solves the low efciency at the end of the travel chain.

In general, current research on bike-sharing mainly
focuses on its development status and travel characteristics,
but few on its scheduling. Researchers like Soriguera and
Jiménez-Meroño [15], Gimon [16], and Lu et al. [17] concur
that even while bicycle-sharing has considerable quantities,
the spatio-temporal diferences in user demands, no fxed
parking area, and fewer available bikes may lead to a more

signifcant overall imbalance. Terefore, it is vital to take
efective scheduling strategies to rebalance and optimize the
distribution of bikes, thereby addressing difculties in
management and operation. In this context, scheduling
bicycle-sharing can be regarded as a heuristic algorithm-
based, e.g., GA, ant colony algorithm (ACO), and vehicle
routing problem (VRP) [18–20], which can be classifed as
static or dynamic scheduling according to diferent strategies
and objectives.

Dynamic scheduling mainly focuses on peak time and
relies on user demands. For instance, a mathematical model
for dynamic scheduling is created by Zhang et al. [21] based
on the parking area’s actual capacity and users’ predicted
arrival times. Shui and Szeto [22] partition peak time to
optimize scheduling routes by regarding scheduling in each
time interval as static scheduling. Chiariotti et al. [23]
propose that scheduling bikes can dynamically determine
the scheduling time through historical orders. In general,
dynamic scheduling lessens operating costs’ impact on
operators by prescheduling bikes to avoid a shortage occurs.
However, based on the uncertain use of bikes, frequent
scheduling with complex constraints is necessary, which
may lead to higher operating costs and slower convergence,
thus making it challenging to fulfll user demands in real-
time.

Another more common scheduling strategy is static
scheduling during of-peak time. For example, Lang [24]
provides a multiwarehouse model based on the Tabu search
algorithm to minimize scheduling distance and improve
scheduling efciency and robustness. Bae andMoon [25] use
a dual time window with customer service levels to reduce
total transport and labor costs. Since static scheduling only
considers the predicted demands of stations, increasing
more bikes for stations to guarantee user demands means
that the time complexity of the heuristic algorithm grows
exponentially. Moreover, to fulfll the actual demands, the
allocated bikes by these studies may exceed the station’s
capacity.

Besides, such above-given studies are mainly applied to
typical scenarios, as presented in Figure 1, where a single
scheduling station serves one zone and only the routes
within the scheduling zone are considered. It is often limited
in actual scheduling by the service range of the station, which
needs to frequently adjust the boundaries of this scheduling
zone, thus leading to some research on hierarchical
scheduling strategies. By defning scheduling priorities based
on demand intensity, Sakakibara et al. [26] and Ni et al. [27]
highlight the feasibility and reliability of hierarchical
scheduling. In order to illustrate the fexibility, Zhang [28]
and Ma et al. [29] set stations with similar demands in the
same layer in accordance with the spatio-temporal char-
acteristics of bikes. However, the defnition of hierarchies in
these methods is too subjective and not clear, making it
difcult to implement in practice.

In summary, whilst a considerable body of research has
been carried out on VRP, much less fts the spatial-temporal
and cross-regional mobility characteristics of bicycle-
sharing. In addition, it seems to be a common problem
that existing studies focus more on mathematical modeling
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but neglect the analysis of actual demands. When scheduling
according to the above-given methods, three challenges in
terms of the problematic application in practice, namely, the
high time complexity of models and slow convergence for
algorithms, are increasingly apparent.

Particularly driven by diverse and emerging technologies
and demands, ITS is evolving into ATS, which illustrates that
MS should be autonomously fulflled and managed by more
intelligent systems with fewer human intervention [30].
Terefore, it is an urgent need to study and improve the
monolithic strategies and rationalize the actual demands to
achieve hierarchical and autonomous scheduling of bicycle-
sharing, thus rationally guiding the provision of the LMS
by ATS.

2. The HATB Methodology

Tis section uses three subsections to present the framework,
hypotheses, and construction of the proposed HATB.

2.1. Model Framework. As existing scheduling methods, in
general, require frequently adjusting boundaries and in-
creasing vehicles to alleviate the diference between bikes’
supply and demand, whichmay inevitably increase transport
time and costs; the scheduling framework can be set up as
a hierarchical scheduling structure, i.e., a top-middle-
bottom hierarchy of scheduling terminus-area-point.

However, since current hierarchical methods have
a subjective defnition of their hierarchies, geocode can
ensure the objective; e.g., what3words [31] uses fxed 3m ×

3m squares to divide the earth, and pluscode [32] represents
each latitude and longitude level by 2-bit code, whose length
range in levels 1 to 3 jumps from 110km and 5.5km to 275m.

Tese geocodes, accordingly, have good accuracy but loss
fexibility; they may not meet the actual scheduling
requirements.

Terefore, GeoHash encoding, proposed by Morton
[33], can be used to better support efective and efcient
scheduling. Its maximum length of 12 bits can represent
a geographic location with arbitrary precision. For example,
the GeoHash strings WX4ER and WX4G2 represent two
regions of Beijing (China), where each character is a certain
rectangular area. Moreover, the order information (Data
Sources: https://biendata.xyz/competition/mobike/) on
bicycle-sharing, as extracted in Table 1, also indicates the
feasibility of dividing the scheduling layer via GeoHash.

Te coding defnition, as described in Table 1, illustrates
that the 7-bit string matches the characteristics of actual bike
stops, namely, area size, and the 5-bit string suits for vehicles
to dispatch bikes in light of their loading capacity, i.e., 400
bikes. Terefore, the overall framework of the proposed
hierarchical scheduling model, called HATB, can be ob-
tained as presented in Figure 2. In general, this framework is
characterized by a number of scheduling areas in each of the
three layers, namely, bike stops consist of the bottom layer of
scheduling, while the top and middle layers likewise have
demands and capacity restrictions for bikes, and hence, the
scheduling within the same layers is regional scheduling for
seeking optimization.

2.2.ModelHypotheses. Considering the complexity of actual
scheduling, the proposed HATB in this paper defnes the
following hypotheses and the frequency of scheduling as
once in the morning peak and once in the evening peak,
respectively.

(1) All scheduling vehicles own the same attributes
(2) In each scheduling route, the vehicle departs from

one scheduling terminus (area) and returns to this
place after deploying bikes to corresponding areas
(points) contained

(3) Fuel consumption and vehicle loss should be
considered

(4) Each scheduling area can only be served once
(5) Te actual orders determine the scheduling demand
(6) All scheduling tasks are required to be completed

within the specifed scheduling cycle
(7) Te scheduling areas and points have sufcient space

to accommodate the bikes deployed in or out during
a scheduling cycle

2.3. Model Construction. Based on the above-given hy-
potheses and the actual operations of bike-sharing, con-
sidering only the operating costs will gradually lose
customers, and weighing only user satisfaction runs counter
to the essence of business proftability. Hence combining
these two factors, this paper constructs a regional scheduling
model for bikes to minimize operating costs (F1) and
maximize user satisfaction (F2).

Point ID | Num. of Bikes

Data Collection Map Data

Parking Point

Deploy to

Redundancy ScarcityRoute Optimization

Scheduling Route

Figure 1: Te schema of existing scheduling (map data (part of
Beijing): https://www.beijing.gov.cn).
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min: zF1 + μF2,

s.t. z + μ � 1 z, μ> 0.
(1)

Te parameters z and μ indicate that bike-sharing op-
erators need to adjust the weight coefcients of operating
and penalty costs according to their own emphasis.

2.3.1. F1: Te Objective of Minimizing Operating Costs.

Te actual operation costs need to consider both fxed and
fexible costs, as summarized in equation (2), which is de-
termined jointly by the value of scheduling vehicles [34], the
unit transport cost (i.e., vehicle loss: 1 CNY/km, fuel con-
sumption: 1 CNY/km, and labor cost: 100CNY/person), and
the scheduling distance.
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Figure 2: Te framework of HATB.

Table 1: Te order information of corresponding GeoHash string length.

GeoHash string length 5-bit 6-bit 7-bit
Average orders 436.994788 28.214119 3.689289
Area width 4.89 km 1.22 km 153m
Area height 4.89 km 0.61 km 153m
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Equation (3) indicates that this scheduling vehicle starts and
ends at the terminus; equation (4) suggests that each area can
only be served once; equation (5) shows that the transport

distance must not exceed the maximum scheduling distance;
equation (6) points that the number of bikes loaded by the
vehicle must not exceed its maximum capacity, namely, 400;
equation (7) means xt

ij as 0-1 variable; equation (8) proves that
the number of bikes deployed by the vehicle is a non-negative
integer.

2.3.2. F2: Te Objective of Maximizing User Satisfaction.
User satisfaction can be improved by adding time window
constraints, as described in equation (9), which means maxi-
mizing user satisfaction can equivalently transfer into mini-
mizing the penalty cost of scheduling timeout.

maxF2 � min􏽘
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Equation (10) indicates that the vehicle departs from
the terminus at time zero; equation (11) means that the
time calculation for a vehicle to arrive in an area;
equation (12) demonstrates that the scheduling cannot
arrive in area j from area i before TMi + TMj + S · GAPi −

K(1 − xt
ij); equation (13) represents that vehicle needs to

arrive in an area within the time window.

Te meaning of the parameters in the above-given
equationsare shown in Table 2.

3. Case Study

Te highlights of HATB solving are illustrated in terms of al-
gorithm settings, scheduling results, andmodel evaluation in this
section.

Table 2: Te meaning of parameters for formulations 1–14.

Parameter Meaning
I Scheduling area
T Scheduling vehicles
W Scheduling terminus
R Vehicle pools for scheduling terminus and areas
at Maximum capacity of vehicle t

at
ij Loading bikes of vehicle t from area i to area j

Lt Maximum operation distance
Ct Fixed cost per vehicle
Mt Flexible cost per vehicle
V Average speed
dij Transport distance by vehicle from area i to area j

GAPi Number of vehicles to be deployed in/out of area i

ωi Importance of area i

TMi Time for vehicle to arrive in area i

S Time cost for loading/unloading bikes
TMt

w Time for vehicle to depart from terminus
[FQi, FRi] Penalty time window

Table 3: Examples of user travel characteristics.

Travel information Time Orders

Average distance: 815m
7 a.m 189578
18 p.m 173654
8 a.m 171011

Median distance: 660m
17 p.m 164126
19 p.m 125383
12 p.m 119883

Journal of Advanced Transportation 5



3.1.AlgorithmSettings. Te experiment data comes from the
2017 Mobike cup algorithm challenge, which involves
3,214,096 orders and 485,465 bikes (10th May 2017–23rd May
2017). Te characterized user travel, as presented in Table 3,
refects that the data are consistent with the “last mile”
defnition [16], and hence, shows its reasonable usability
according to prominent tidal characteristics.

Tis paper proposes a GA with natural number encoding
(NGA), as defned in Algorithm 1, to optimize the sched-
uling. In general, the frst and the last 0 s represent the
scheduling terminus or area, [1, N] represents the zones that
need to be scheduled, and other 0 s separate the routes of

diferent vehicles, e.g., a chromosome example might be 0-3-
0-1-2-5-7-0-4-8-6-0, namely, three vehicles serving
eight zones.

Since the crossover and mutated sub chromosomes may
lead to transport overload and overtime and the time
window is more likely to be violated, the penalty factors for
the two constraints are set to 10 and 500, respectively.

3.2. SchedulingResults. A total of 220 scheduling areas in the
morning peak are used as HATB test cases to obtain the
optimal hierarchical scheduling routes, as shown in Figure 3
and Tables 4 and 5.

Input: SchedulingArea SA, DistanceMatrix DM
Output: SchedulingRoute SR, SchedulingVehicle SV, DeployedBikes DR
Initialization: Generation Gen� 100, CrossoverRate CR� 0.8, MutationRate MR� 0.2, Population Pop←∅, Chromosome
CH←∅, Fitness Fit�Null,

(1) For all the SA do
(2) Pop←CH.generate (SA.Encoding)//Randomly Generation for Population (100)
(3) End for
(4) Fit← Fit.Calculation//Calculate the Fitness
(5) if Fit.change or Gen< 100 then
(6) For all the CH do
(7) CH.select//Chromosome Selection
(8) CH.crossover//Chromosome Crossover
(9) CH.mutate//Chromosome Mutation
(10) Pop←CH.NewGenerate//New Population
(11) Fit← Fit.NewCalculation
(12) End for
(13) End if
(14) SR←CH.Decoding
(15) Return SR, SV, DR

ALGORITHM 1: NGA for scheduling optimisation.

Scheduling Terminus

Scheduling Areas Scheduling Points

Region-by-Region
Scheduling

Route of Areas

Route Optimization
for Points

ScarcityRedundancy

Deploy to

Data Collection
Route Optimization

for Areas

Routes of Points
Parking Point

Area ID | Area Bikes

Figure 3: Te schema of HATB.
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As described in the previous section, regional scheduling is
applied for each layer. Note that, each scheduling area has
a positive or negative raw demand that refects the redundancy
or scarcity of bikes. Furthermore, scheduling prioritizes self-
satisfaction in the route, namely, redundancy supports scarcity,
and hence, route demand indicates the self-satisfaction gap for
corresponding regional scheduling.

Terefore, the experimental results can be summarized as
the total scheduling distance for optimal routes in the entire
Beijing is around 719.5 km. As for satisfying the demands, 17
vehicles are required to participate in the scheduling to deploy
bikes. Moreover, using route one in Table 4 as an example, the
scheduling can be summarized as a vehicle departing from the

scheduling terminus and returning to the terminus after
completing regional scheduling sequentially and autonomously
in accordancewith the area-point (middle-bottom) hierarchy. In
addition, the routes’ information in reality for Table 5 is mapped
to Table 6 via GeoHash.

3.3.Model Evaluation. To further verify the reliability of this
model, Figure 4 shows the comparison for iteration between
the HATB and other models proposed in the literature with
similar objectives. Specifcally, based on the GA, Gao et al.
[35] provided a promising perspective on improving op-
eration efciency by reducing operating costs and service
quality during peak times to minimize the total operating

Table 4: Te optimal routes for scheduling areas in the morning peak.

Routes
for scheduling area Demand Number of vehicles Total distance (km)

0-135-29-113-112-150-205-20-44-170-130-146-0 143 1

719.542007

0-40-88-138-104-65-12-191-115-52-162-83-157-0 142 1
0-7-45-93-61-129-188-199-158-217-87-53-165-85-119-36-34-210-0 140 1
0-5-6-50-47-41-75-63-86-27-101-125-200-178-81-78-89-122-187-195-203-207-0 140 1
0-18-21-95-132-148-91-71-161-192-117-0 139 1
0-181-106-102-145-135-29-113-112-150-205-20-0 138 1
0-51-177-92-79-84-26-38-214-215-166-168-183-0 133 1
0-31-143-114-37-118-99-156-163-137-149-194-0 114 1
0-54-66-74-128-94-136-201-179-190-152-35-30-33-204-218-0 114 1
0-90-78-89-97-64-105-185-131-127-189-140-100-8-82-22-25-98-24-144-124-197-0 113 1
0-3-70-55-169-172-182-109-208-0 113 1
0-62-103-202-43-11-16-57-23-108-153-211-0 111 1
0-4-1-2-14-17-67-48-15-42-56-72-68-99-156-219-0 110 1
0-44-170-30-146-
159-173-174-69-9-46-49-19-141-186-175-171-39-213-154-51-60-0 110 1

0-180-139-142-198-147-116-212-134-167-184-126-216-0 110 1
0-76-164-10-77-73-60-111-120-196-209-0 80 1
0-28-133-110-193-123-154-32-13-107-121-155-206-0 79 1

Table 5: Examples of hierarchical autonomous scheduling results for route one.

Routes
for scheduling point Scheduling area Total distance (km)

a0-a11-a4-a18-a17-a9-a1-a12-a15-a19-a5-a0 170 (a0) 1.443
b0-b1-b3-b11-b4-b48-b39-b18-b42-b38-b7-b19-b54-b2-b28-b25-b26-b27-b43-
b31-b12-b21-b45- b52-b30-b20-b46-b47-b6-b29-b40-b37-b14-b33-b9-b34-b51-
b24-b32-b15-b55-b10-b44-b22-b16-b41-b17-b5-b13-b23-b53-b8-b50-b49-b36-
b35-b0

130 (b0) 3.905

c0-c17-c23-c13-c15-c29-c32-c10-c35-c31-c2-c34-c5-c4-c14-c33-c22-c11-c9-c3-c6-
c21-c20-c25-c30-c28-c24-c16-c27-c19-c8-c12-c26-c1-c18-c7-c0 146 (c0) 2.951

Table 6: Te mapped scheduling results with examples of route one (Table 5).

Scheduling area (5-bit) Routes for scheduling
point (7-bit)

WX54C (no. 170) WX54C with 0W, 20, E4, 06, 0C, J8, JB, LJ, NC, BW, BX, 0W

WX4GW (no. 130)
WX4GW with 00, 02, 08, PL, 06, 77, 7K, P4, NF, 7M, ZH, YY, N8, P0, PF, PY, PV,
PS, ND, JL, P3, PB, N9, 03, JH, PZ, 7B, 78, 7F, 7E, KH, 7U, 7Q, EQ, ZN, EN, 09,
Q8,G7, ZQ, GJ, ZK, NB, P8, P9, P5, 01, 04, 2N, U4, FZ, ZV, 0D, 3K, 86, DK, 00

WX5H2 (no. 146) WX5H2 with 5X, 7C, QX, DM, GL, 6M, Y6, F9, 4N, 4J, DS, DT, VC, TY, DC, D3,
TZ, ER, G0, G8, 74, UE, UK, GE, 1E, 12, QK, 7D, 75, 77, W2, EP, G9, ZG, 79, 48, 5X
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costs. Angeloudis et al. [36] achieved user appeal increase by
ofering a new method of planning bike routes and distri-
butions. Moreover, Zhao et al. [37] optimized the total
scheduling distance to accommodate large-scale scheduling
via an ACO.

Te proposed HATB converged at the 64th generation, and
the total time cost is 148.9 s, with an average running time of 15 s
per generation. Due to the diferent objectives, only the con-
vergence speed of the above models is compared. It can be seen
from Figure 4 that the HATB signifcantly outperforms the
model proposed in the existing literature. Such a result indicates
that this model is more proper for practical scheduling appli-
cations since it optimizes with higher convergence speed and
lower time complexity.

4. Conclusion and Future Works

Even though the emerging and diversifed technologies and
demands are driving TS to renovate conventional MS to be self-
actuating, the current bicycle-sharing scheduling and mainte-
nance rely onmanual experience, which lacks scientifc guidance
and efciency. Terefore, to achieve sustainable development,
operators urgently need to develop a rational scheduling strategy
to balance the distribution conficts and supply user demands
in time.

Terefore, this paper proposes a hierarchical scheduling
model, called HATB, to address the unsolved issues by
current studies in terms of slow convergence, high time
complexity, and problematic application, and hence, to
support the rational and autonomous provision of LMS. In
summary, according to bicycle-sharing properties, namely,
spatio-temporal characteristics, cross-regional mobilities,
and actual demands,HATB takes 220-morning peak areas as
tests to validate its improved validity, feasibility, and ef-
ciency for practical application.

As compared to the similarly used methods, HATB can,
accordingly, obtain the following improvements. A hierar-
chical framework is frst designed through GeoHash
encoding to solve the cross-regional mobility of bikes and

reduce the time complexity of global optimization. Next,
a GA for regional scheduling is built by combining the tidal
characteristics of bicycle-sharing to minimize operating
costs and maximize user satisfaction, which signifcantly
accelerates the algorithm’s convergence. Last, the use of
actual orders considerably enhances the ability in the
practical application of instant response to any regional
scheduling demand.

Tis work was carried out as a preliminary to obtain the
present results. However, there are still problems such as the
inability to adapt scheduling throughout 24 hours or the lack
of comprehensive constraints. As the closure of this study,
one recommendation for further research is to use a form of
“GA+Tabu” algorithm to exploit its global search capability
and thus improve the big data processing capability. Another
research direction is adding weather and road characteristics
to optimize the model reliability further.
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