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Te traditional freeway safety studies with “poststatic” thinking basically use cross-sectional data or panel data, which fnd it
difcult to fgure out real-time trafc crash risk factors. With the development of information collection technology, it is possible
to obtain high-resolution trafc fow data currently, which provide a data basis for the dynamic trafc safety research towards
freeways. Tis research aims at accurately identifying the real-time trafc crash precursors on freeways and addressing the
shortcomings of conventional dynamic trafc safety research with the thinking of limited factor dimensions. In this research,
dimensional data were applied as input model variables, the input dataset includes trafc crash data and the matched dynamic
trafc fow data, and weather information and road characteristics were also considered to fgure out the interaction efects
between these dimensional factors. Te XGBoost (eXtreme Gradient Boosting) was carried out to identify the dynamic crash-
prone variables and the SHAP (SHapley Additive exPlanations) interpreter was introduced to interpret the XGBoost model, as
well as the visualization of the infuence of each eigenvalue on the trafc crash was realized.Te results indicate that, in addition to
trafc fow variables, road, weather, and temporal characteristics also have an impact on the trafc crash risk, and there is an
interaction between each feature. Te results of this research can provide the theoretical basis for freeway real-time trafc crash
prediction and safety control.

1. Introduction

Over the past decades, road trafc safety has always been
a hot topic in the feld of trafc engineering. Due to the
special driving characteristics of freeways, the quantity and
severity of trafc crashes on freeways are often higher than
those on ordinary roads [1], and about 1.25 million people
die from trafc crashes every year worldwide, which is the
most important cause of death among youths aged 15–29
[2]; the safety of freeways has attracted many scholars’ at-
tention. Nowadays, the collection of real-time trafc fow
data becomes possible [3]; we can realize the dynamic

control for road trafc safety through predicting the real-
time freeway safety status, quantifying the temporal-spatial
impact of the crash, and issuing early warning or alert in-
formation to drivers or managers via crash data and real-
time trafc fow data, thus reducing the incidence and se-
verity of freeway crashes, safeguarding people’s lives, and
reducing property losses.

Traditional freeway crash risk feature identifcation
basically uses cross-sectional static data collected after
a trafc crash, such as the variables including driver age,
gender, whether to use a seat belt or if drink alcohol ap-
plicable, road characteristics, and weather characteristics, to
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analyze its correlation with crash severity or frequency of
occurrence, with the view to fnd ways to mitigate crash
severity. Carson and Mannering [4] investigated the efec-
tiveness of icing warning signs in reducing the crash fre-
quency and crash severity in Washington State using
statistical analysis. Kassu and Hasan [5] analyzed the key
factors afecting fatal, nonfatal injury, and property damage
crashes on four-lane and six-lane interstate freeway seg-
ments using a negative binomial regression approach for the
three types of crashes and provided a meaningful statistical
interpretation of the developed model estimates based on
crash rate ratios. Yang et al. [1, 6] developed a novel data
mining algorithm to explore the trafc crash occurrence
mechanism for cross-area freeways using cross-section data,
and the results show that there are signifcant diferences in
the causal factors of freeway crashes by regional type. Zhang
et al. [7] proposed a spatial multinomial logit (SMNL) model
for possible spatial correlations in freeway trafc crash injury
data, considered spatial efects in the multinomial logit
(MNL) model framework, and used a Gaussian conditional
autoregressive prior to capture spatial correlations. Zeng
et al. [8] developed a Bayesian spatial generalized ordered
logit model based on 1424 crash records of a Chinese
freeway in 2014 and 2015 to simulate the severity of crashes
using hourly wind speed, temperature, precipitation, visi-
bility, and humidity and other observations, and the severity
was classifed into three categories: mild, moderate, and
severe. Wen et al. [9] studied the efect of road conditions
and weather conditions and their interaction on crash in-
cidence. A Bayesian spatiotemporal model is proposed to
measure the relationship between the frequency of trafc
crashes and possible risk factors, including trafc compo-
sition, the presence of curves and slopes, weather conditions,
and their interactions. Malin et al. [10] analyzed the risk of
crash under diferent road and weather conditions. Te
results showed that, for precipitation types, the highest
relative crash risk was for snowfall; for road and weather
conditions, the highest relative crash risk was for muddy
road conditions; for road types, the relative crash risk was
generally higher for highways compared to two-lane and
multilane roads; for crash types, the relative crash risk
corresponding to single-vehicle crash was generally higher
than that of multivehicle crash.

However, these studies are mainly applying static data
and do not consider the impact of dynamic trafc fow
characteristics on crash risk. With the improvement of real-
time information collection technology, research on iden-
tifying freeway trafc crash risk characteristics from
a mesoscopic perspective based on real-time trafc fow data
is gradually becoming popular. Golob and Recker [11] used
a combination of nonlinear correlation and cluster analysis
to identify trafc fow states under diferent crash types, and
the case study used data from over 1000 crashes in Southern
California to identify 21 trafc fow states under three dif-
ferent environmental conditions: dry roads during the day
(8), dry roads at night (6), and wet (7), with each crash type
corresponding to a diferent trafc fow characteristic. Zheng
et al. [12] studied the efect of trafc oscillations (repeated
deceleration followed by acceleration and stop-and-go

driving) on freeway trafc safety. A conditional logistic
regression model was developed using a case-control paired
design with the trafc fow data before the crash as the case
sample and the trafc fow data of the same period in the
date without the crash as the control. Xu et al. [13] used
trafc fow data and crash data from the northbound section
of I-880 freeway in California, USA, performed K-means
cluster analysis to classify the trafc fow into fve diferent
states, then used a conditional logistic regression model to
study the relationship between trafc crash risk and trafc
state, and compared the trafc fow characteristics under
diferent trafc states to establish a model of trafc crash risk
under diferent trafc states. Yu et al. [14] explored the
efects of weather and trafc conditions on crash frequency
under diferent scenarios based on crash data, trafc fow
data, and real-time weather for the Colorado I-70 mountain
freeway from August 2010–August 2011. Tis research uses
a Poisson model and two random efects’ models with
a Bayesian inference approach for comparison, using the
deviance information criterion (DIC) as a comparison
factor. Later, Yu and Abdel-Aty [15] also studied moun-
tainous freeway sections and classifed trafc crashes on
mountainous freeways according to their severity into se-
rious (injury and fatal) and nonserious (property damage
only) crashes and established a trafc crash injury severity
analysis model. Sun et al. [16] proposed a new crash risk
assessment method based on trafc safety state classifcation
to explore the freeway crash risk under diferent trafc
conditions. Yang et al. [17] considered the diferences in
trafc fow states to identify the dynamic crash risk for cross-
area freeways. Table 1 summarizes the real-time dynamic
factors afecting the crash risk obtained in these studies.

Te identifcation for freeway trafc crash risk factors is
an important premise for freeway safety improvement, as
well as the theoretical basis for predicting the frequency and
severity of trafc crashes. In particular, the recognition of
crash precursors based on dynamic trafc fow is the main
work of freeway real-time safety operation management.
However, few studies have included weather, road, and time
characteristics variables simultaneously among the explan-
atory variables and considered the interaction between
trafc fow, weather, road, and time characteristics in the
identifcation of real-time trafc crash risk on freeways.
Based on crash data, matched trafc sensor data, weather
data, and road characteristics, this research analyzes the
relationship between the infuence of each factor on freeway
trafc crash, adds weather, road, and time characteristics to
the explanatory variables for real-time freeway crash risk
prediction, and analyzes the infuence of each variable on
crash risk and the interaction between them using the SHAP
(SHapley Additive exPlanations) interpreter.

2. Data Process

Real-time trafc crash-prone identifcation research based
on high-resolution trafc fow basically requires a huge
number of trafc crash data and the matched trafc fow
data. Te accuracy of trafc fow data in this kind of research
is usually 5minutes in the temporal dimension [17], and the
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step size of trafc fow which is larger than 5minutes may
afect the accuracy of the model negatively.

2.1. Data Description. Freeway trafc crash is the result of
multiple factors, which needs to consider trafc fow,
weather, environment, and other factors at the same time. In
this research, the Beijing section of the Beijing-Harbin
freeway was selected as the research object, and the crash
data, trafc fow data, weather and road characteristics of the
study section, and period were collected, and these data were
preprocessed and matched, after which suitable alternative
feature parameters were selected to establish the data base
for the analysis of the impact factors of freeway trafc crash.

In this research, the section of Beijing-Harbin freeway
with milepost number k0-k39 of total length about 39 km is
taken as the specifc research section: trafc crash data
(including crash type, severity, time, and location), trafc
fow data (including massive high-precision trafc fow,
speed, occupancy, and 85% speed in 1-minute sets), weather
data (including visibility, rainfall, dew point, temperature,
and wind speed), and roadway characteristics data (in-
cluding upstream and downstream detector spacing, road-
way width, shoulder width, and number of ramps). Te
characteristics of each data source are described.

2.1.1. Trafc Crash Data. A total of 198 trafc crash data
were collected from January 2013 to September 2014 for the
inner section of the study road, with data felds including
crash time, stake number, direction, crash type, and crash
description. Trafc crashes caused by vehicle fre and
damage were deleted, and the crash data were numbered and
operated in the order of occurrence to facilitate the next step.
After data preprocessing, a total of 164 trafc crashes were
extracted from the studied road sections and time periods.

2.1.2. Trafc Flow Data. Trafc fow data can usually be
acquired using induction loops, microwave, or video de-
tection. Te trafc fow data used in this research were

collected by microwave radar trafc information detectors.
Microwave radar trafc information detectors are usually
placed at the side of a freeway or above a lane and are capable
of detecting trafc fow parameters in multiple lanes si-
multaneously. Te microwave radar detector used for trafc
fow data collection in this research allows simultaneous
detection of trafc fow parameters for one cross section, i.e.,
six lanes in both directions.

A total of 20 sets of microwave radar trafc information
detectors are deployed in the upstream and downstream
directions of the road section to be studied, and the collected
raw trafc information data mainly include speed, volume,
and lane occupancy. Te distance between the upstream and
downstream microwave detectors varies widely, with the
farthest distance reaching 6.18 km, the shortest distance
0.8 km, and the average distance about 1.9 km. Te data are
saved as a “csv” fle. Te main data collected by the mi-
crowave detector include direction, volume of each lane,
occupancy, and speed. Te collection time interval is
1minute, and some of the data are shown in Table 2. Taking
the data in the frst row of Table 2 as an example, it means
that, during the period 2013/04/29 19:29:00-2013/04/29 19:
29:59, in direction 2 (outbound direction to Beijing), the
detector number 523050003 detected a trafc fow of 22 in
lane 1 with a speed of 59 and an occupancy rate of 16%.

2.1.3. Weather Data. Te road section to be studied passes
through Chaoyang District and TongzhouDistrict of Beijing,
China, and meteorological data for these two districts are
available for 2013-2014, with the data in 1-hour sets. Te
felds mainly include time, rainfall, visibility, wind speed,
temperature, and dew point. Tese weather features were
clustered and the clustering results are shown in Table 3.

2.1.4. Road Features. Te road feature data used in this
research include information on the number of lanes, road
width, shoulder width, the number of on-ramps and of-
ramps between the upstream and downstream detectors, and
whether they are curves, as shown in Table 4.

Table 1: Real-time trafc crash precursors obtained from some research results.

Number Author (year)
Factors afecting the

risk of the
crash

1 Golob and Recker [11] (2004) Environmental conditions and trafc fow status
2 Lee et al. [18] (2009) Average volume, fow variance coefcient, and fow ratio
3 Xu et al. [13] (2010) Speed standard deviation

4 Christoforou et al. [19] (2011) Average fow, lane to lane speed variance, average speed, lane-to-lane fow variance,
and average density

6 Yu and Abdel-Aty [15] (2014) Snow season indicators, slope indicators, speed standard deviation, and
temperature

7 Wang et al. [20] (2015) Mainline speed at the beginning of the interweaving section, speed diference at the
beginning and end of the interweaving section, and logarithm of the trafc volume

8 Yang et al. [21] (2018) Upstream average fow, crash section average fow, crash section average speed, and
crash section speed standard deviation

9 Yin [22] (2021)
Downstream speed, upstream occupancy, downstream speed coefcient of
variation, upstream speed standard deviation, trafc fow status, and time

conditions
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2.2. Sample Structure Design

2.2.1. Unpaired Case-Control Sample Structure Design.
Te modeling work of highway trafc crash risk infuence
factor analysis and highway crash risk real-time prediction
requires not only the trafc fow data before the crash but
also the inclusion of trafc fow data in noncrash conditions,
which is clearly a nonequilibrium binary classifcation
problem. Tis type of problem can be solved by under-
sampling, where a small number of samples are extracted
from the trafc fow data samples in the noncrash state
according to a certain extraction method, and the extracted
samples can represent the trafc fow features in the

noncrash state. Commonly used methods are paired case-
control and unpaired case-control methods [23].

Te paired case-control method is typically used to
control for confounding factors such as weather, season, and
road features and to study the efect of trafc fow variables
on trafc crash risk by selecting trafc fow data in the
noncrash conditions with crash time and location as paired
variables. Terefore, the data samples constructed using the
paired case-control method do not contain types of data
such as weather, road, and time features [17] and are not
suitable for studying the interaction between weather, road,
time, and trafc fow features. Te unpaired case-control
method, on the other hand, is a random sampling of

Table 2: Examples of partial trafc fow data.

Detection time Detector number Lane number Direction Volume Speed Occupancy rate
04/11/2013 19:29 523050003 1 2 22 59 16
04/11/2013 19:29 523050003 2 2 35 66 24
04/11/2013 19:29 523050003 3 2 30 70 23
04/11/2013 19:29 523050003 4 1 19 72 10
04/11/2013 19:29 523050003 5 1 27 70 19
04/11/2013 19:29 523050003 6 1 17 58 15
04/11/2013 19:30 523050003 1 2 18 62 14
04/11/2013 19:30 523050003 2 2 14 71 9

Table 3: Weather features and their values.

Weather features Scope Variable values

Rainfall (mm)
0–5 1
5∼10 2
>10 3

Visibility (km)

<1 1
1–5 2
5–10 3
>10 4

Dew point (°C)

<10 1
10–15 2
15–20 3
>20 4

Temperature (°C)

<10 1
10–20 2
20–30 3
>30 4

Wind speed (km/h)

0–9 1
9–18 2
18–27 3
>27 4

Table 4: Examples of road features and their values.

Number of
on-ramps

Number of
of-ramps Curve

Upstream and
downstream distance

(m)

Number of
lanes

Road width
(m)

2 1 0 1067 3 19
0 1 1 6180 3 11
1 1 0 2733 3 11
1 0 0 1020 3 11
0 0 1 3933 3 11
2 0 0 1200 3 11
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noncrash data, which can include variables such as weather,
road, and time of day, and is more appropriate for this
research, so the unpaired case-control method was used in
this research.

It has been shown that the larger the ratio of the number
of control samples to the number of case samples, the more
accurate the results obtained, but this ratio exceeds 4 :1 will
have minimal improvement in the accuracy of the pre-
dictions [24]. Terefore, in this research, the ratio of crash
sample and noncrash sample is set to 1 : 4 to construct the
data sample:

(1) Selection of sample data for cases (crash).
Microwave detector selection: Existing study shows
that both upstream and downstream trafc fow
features may have an impact on freeway trafc
crashes [25], and in this research, the two upstream
and downstream microwave detectors closest to the
crash site were selected as the collectors of trafc fow
data, and the locations of the microwave detectors
are shown in Figure 1.

Selection of temporal period: Since the intention of
the research is to provide trafc management with
early warning before trafc crashes and then take
active measures to avoid or mitigate the risk of
crashes, it is necessary to set aside a certain amount
of time for prejudgment and processing. In this
research, the trafc fow data from 10minutes to
5minutes before the occurrence of a freeway trafc
crash are used as the case sample data. For example,
if a freeway trafc crash occurs at 15:35, then the
trafc fow data in the period of 15:25−15:30 will be
screened to characterize the trafc fow before
this crash.

(2) Selection of control (noncrash) sample data: In this
research, noncrash data are extracted according to
the ratio of 1:4, and the crash data used in this re-
search are 164, then it is necessary to make a random
sampling method to extract 656 noncrash data, and
the extraction steps are divided into the following
three steps:

(i) First, we use the pandas and datetime toolkit in
Python to generate 183745 time series with
“2013-01-01 00:00:00” as the time starting point
and “2014-10-01 00:00:00” as the time check
extracted time series, delete the data that are too
close to the crash data, and then conduct ran-
dom sampling until 656 time series of noncrash
data are generated to meet the requirements,
and number them 1–656.

(ii) Te ratio of direction 1 (entering Beijing) and
direction 2 (leaving Beijing) in the crash data is
1:1, and the direction of travel in the noncrash
data is generated according to the same ratio.
From the 656 noncrash data, 328 data were
randomly selected and the direction of travel
was set to 1, and the direction of travel of the rest
noncrash data was set to 2.

(iii) For each noncrash data, two adjacent detectors
are randomly selected from 20 microwave de-
tectors as the upstream and downstream de-
tectors of the noncrash data, and the numbers of
the upstream and downstream detectors are
determined according to the direction of travel
of the noncrash data.

2.2.2. Data Match. Various types of datasets are used in this
research, including crash data, noncrash data, trafc fow,
roads, and weather, which need to be matched according to
certain felds to generate the datasets needed for the research.
Te data-matching work is divided into matching of trafc
fow data, matching of road features, and matching of
weather features.

(1) Trafc fow data match.
Matching of crash data and trafc fow data: First,
locate the nearest upstream and downstream de-
tector numbers according to the mile post and travel
direction of the crash data; then fnd the corre-
sponding trafc fow data of 10−5minutes before the
crash according to the actual time of the crash and
the upstream and downstream detector numbers.
Te matching process is shown in Figure 2.
Matching of noncrash data and trafc fow data:
Since noncrash data have already completed the
matching work with upstream and downstream
detector numbers and time in the process of data
sampling, it is straightforward to search in the trafc
fow data collected by detectors based on noncrash
data times.
As an example, the trafc fow data matching process
is specifed for crash No. 5:

(i) Te crash location of crash No. 5 is found from
the crash data as milepost K25, the direction of
trafc corresponding to the crash is out of
Beijing, and the time of the crash is 2013/1/10 20:
58. According to the location data of each de-
tector can be matched to the No. 5, the crash
location is located between No. 16 detector
(K24 + 680) and No. 17 detector (K25 + 700), and

Microwave detector
Microwave detector set

(cross-section)

Upstream Downstream

Travel direction

Location of the crash

Figure 1: Location of trafc information detectors in relation to the
location of trafc crash.
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then according to the direction of travel corre-
sponding to the crash we can determine the
upstream detector is No. 16 detector and the
downstream detector is No. 17 detector.

(ii) According to the crash time: 2013/1/10 20:58, the
trafc fow data including fow, occupancy, and
speed in the period of 2013/1/10 20:48–20:53 can
be fltered for 10−5minutes before the crash.
Using the collection time within the period of
2013/1/10 20:48–20:53 as the fltering condition,
the eligible trafc fow data were fltered out from
the trafc fow data collected by detectors No. 16
and No. 17 as the trafc fow data corresponding
to crash No. 5.

(2) Weather and road feature match.
Te nearest weather station can be matched
according to the location of the crash, and then the
weather data corresponding to the time of the crash
can be found before the crash, including tempera-
ture, dew point, wind speed, rainfall, and visibility.
Since the meteorological data are counted in 1-hour
sets, the meteorological data matched to the crash
data are the meteorological data for the nearest
1 hour to the time of the crash.Tematching method
for noncrash and meteorological data is the same.

In the matching of crash data and trafc fow data,
each crash data has been matched to the corre-
sponding upstream and downstream detector
number, and the corresponding road information
can be matched according to the location of up-
stream and downstream detectors and the direction
of crash trafc, including the number of lanes, road
width, road shoulder width, distance between up-
stream and downstream detectors, the number of on
and of ramps between upstream and downstream
detectors, and whether it is a curve. Te matching
method for noncrash data and road information is
the same.

2.3. Selection of Candidate Feature Variables

2.3.1. Trafc Flow Parameters’ Selection. Te raw trafc fow
data collected by the microwave detector are a 1-minute set
meter, whichmay have a large noise level and the results may
be biased. Most existing studies use trafc fow data from 5-
minute set meters, which are less noisy and can characterize
the trafc fow more accurately [26]. Terefore, in this re-
search, the original 1-minute set count trafc fow data were
processed into 5-minute set count trafc fow data. In ad-
dition, due to the strong correlation of trafc fow data
between lanes, it is also necessary to set and count trafc fow

Start

Step1: detection coil number identification

Mile post 
corresponding to 

the crash

The direction of 
travel corresponding 

to the crash

Search for coil information data files

Positioning to get the upstream and downstream
coil numbers

Step2: Search traffic flow data

Time of crash
Upstream and 

downstream coil 
number

Crash traffic flow data from 10-5 
minutes before the crash

Data collation pool

End

Figure 2: Matching fowchart of the crash data and trafc fow data.
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data in one cross section in spatial dimension. Tis results in
six basic variables of trafc fow: upstream detector average
fow, speed, and occupancy and downstream detector av-
erage fow, speed, and occupancy. Tese six basic trafc fow
variables can roughly refect the operation status of trafc
fow, and these six variables are used as alternative trafc
fow parameters. In addition, the diference in fow, occu-
pancy, and speed between adjacent lanes can characterize to
some extent the lane changing behavior of vehicles in the
trafc fow [17], and frequent lane-changing behavior is an
important cause of freeway trafc crashes. Terefore, the
diferences in fow, occupancy, and speed between adjacent
lanes are considered as alternative trafc fow parameters.
Te diference between upstream and downstream fows,
occupancy, and speed can refect the features of trafc fow
changes between the upstream and downstream, refecting
the change of trafc fow status from upstream to down-
stream. In general, a change in trafc fow state from
congestion to trafc fow or from trafc fow to congestion
can signifcantly increase the risk of crashes [27, 28].
Terefore, the diference between upstream and downstream
fows, occupancy, and speed are also included in the trafc
fow alternative parameters.

In summary, in this research, the diference in volume,
speed, and occupancy between adjacent lanes of upstream
and downstream detectors, as well as the diference in
volume, speed, and occupancy of upstream and downstream
detectors were calculated and used as candidate parameters
for trafc fow [17]. Te variable names and variable de-
scriptions are shown in Table 5.

2.3.2. Parameters’ Selection of Weather, Road, and Time
Feature. Many studies have indicated that weather features
signifcantly afect the risk of freeway crashes [10, 18, 29, 30].
For example, rainfall may make the road slippery, vehicle
braking performance would be reduced because of the road
friction coefcient and become worse, the vehicle is easy to
skid. For other examples, the low visibility of the outside
environment will make it more difcult for drivers to drive
and increase the risk of crash. Terefore, it is necessary to
include weather features in the analysis of trafc crash risk.

Te percentages of each weather feature in the crash and
noncrash data are shown in Table 6. As can be seen from
Table 6, there are signifcant diferences in the percentages of
crashe and noncrash for the three weather features of rainfall,
visibility, and dew point. For example, the ratio of rainfall
between 5 and 10mm and the ratio of rainfall greater than
10mm in the noncrash group were 5.95% and 2.44%, re-
spectively, while the ratio of rainfall between 5 and 10mmand
the ratio of rainfall greater than 10mm in the crash group
were 12.20% and 7.93%, which were signifcantly higher than
those in the noncrash group. However, in the two weather
features of temperature and wind speed, the diference be-
tween the proportion of crash and noncrash is so small that it
is almost negligible. Terefore, air temperature, dew point
temperature, and visibility are included in the candidate
feature parameters to be considered, and the two weather
features, air temperature and wind speed, are not considered.

Because the research sections are all two-way 6 lanes and
their shoulder widths do not vary much, these two road
feature factors are not considered. Roadway features were
selected as alternative feature variables, such as roadway
width, distance between upstream and downstream coils,
number of up-ramps and number of down-ramps between
upstream and downstream coils, and whether they are
curves.

Yin’s research has shown that the crash trafc fow
features on weekdays and weekends are signifcantly dif-
ferent, with weekend crashes and weekday crashes occurring
under diferent trafc conditions [22], and in addition,
diferent time periods are often seen as infuencing factors in
freeway crashes. Terefore, in this research, whether it is
a working day and the period in which the crash data and
noncrash data are located are included as temporal feature
parameters for consideration.

In summary, the input variables considered for modeling
in this research include four dimensions including trafc
fow, weather, road, and time feature variables, as shown in
Table 7.

3. Modeling

Te XGBoost model requires little input feature variables
and no feature fltering, and it can also solve the feature
covariance problem well. Te SHAP interpreter can be used
to obtain the importance ranking of each feature and to
determine whether each feature has a positive or negative
efect on the occurrence of trafc crash, in addition to vi-
sualizing the interaction between each feature [30]. To an-
alyze the infuence of features such as weather, road, and
time on trafc crash risk, as well as the interaction between
each feature, this research introduces the SHAP interpreter
to explain the freeway trafc crash risk prediction model
built based on XGBoost.

3.1. Principle of XGBoost Model. Boosting algorithm is
a supervised machine learning algorithm that focuses on
reducing bias. Each base evaluator in the Boosting algorithm
is not independent of each other but related; it is built in
a certain order. Te principle of the Boosting algorithm is
shown in Figure 3. Te working mechanism is to frst
construct a base evaluator based on the initial weights of the
initial training set and update the weights of each sample in
the training set based on the performance of this base
evaluator to increase the weights of error-correcting samples
so that they receive more attention in the next training.
Afterwards, the training set with updated sample weights is
used to construct the next base evaluator, which is repeated
several times, where it is set in advance to obtain a base
evaluator, and then, these base evaluators are integrated
according to certain weights to form the fnal integrated
evaluator. AdaBoost and gradient boost decision tree
(GBDT) are both relatively typical Boosting algorithms.
XGBoost is an improvement on GBDT, which is also
a Boosting algorithm [31].
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XGBoost is the abbreviation for eXtreme gradient
boosting, which is a new gradient boosting algorithm
proposed in 2015 [32]. Because of its high computational

speed as well as prediction accuracy, XGBoost is highly
preferred in machine learning competitions and is widely
used in various felds.

Table 5: Candidate variables of trafc fow.

Variable name Variable description
up_q Average upstream detector volume 10−5minutes before the crash
up_v Average upstream detector speed 10−5minutes before the crash
up_o Average upstream detector occupancy 10−5minutes before the crash

up_dif_q Te average of the absolute value of the diference in trafc fow in the adjacent lane
of the upstream detector 10−5minutes before the crash

up_dif_v Average of the absolute value of the speed diference between adjacent lanes of the
upstream detector 10−5minutes before the crash

up_dif_o Average of the absolute value of the diference in adjacent lane occupancy of
upstream detectors 10−5minutes before the crash

down_q Average downstream detector volume 10−5minutes before the crash
down_v Average downstream detector speed 10−5minutes before the crash
down_o Average downstream detector occupancy 10−5minutes before the crash

down_dif_q Te average of the absolute value of the diference in the volume of the adjacent
lanes of the downstream detector 10−5minutes before the crash

down_dif_v Average of the absolute value of the speed diference between adjacent lanes of the
downstream detector 10−5minutes before the crash

down_dif_o Average of the absolute value of the diference in adjacent lane occupancy of
downstream detectors 10−5minutes before the crash

dif_q Absolute value of the diference in volume between the upstream and downstream
detectors 10−5minutes before the crash

dif_v Absolute value of the speed diference between upstream and downstream detectors
10−5minutes before the crash

dif_o Absolute value of the diference between upstream and downstream detector
occupancy 10−5minutes before the crash

Table 6: Distribution of weather features in crash and noncrash data.

Weather features Crash Noncrash
Quantity Percentage (%) Quantity Percentage (%)

Rainfall

0–4 131 79.88 601 91.62
4–10 20 12.20 39 5.95
>10 13 7.93 16 2.44
Sum 164 100 656 100

Visibility

<1 1 0.61 2 0.30
1–5 67 40.85 188 28.66
5–10 83 50.61 377 57.47
>10 13 7.93 89 13.57
Sum 164 100 656 100

Dew point

<10 18 11.69 36 5.49
10–15 130 84.42 573 87.35
15–20 15 9.74 45 6.86
>20 1 0.65 2 0.30
Sum 164 100 656 100

Temperature

<10 63 38.41 254 38.72
10–20 36 21.95 141 21.49
20–30 64 39.02 257 39.18
>30 1 0.61 4 0.61
Sum 164 100 656 100

Wind speed

0–9 79 48.17 319 48.63
9–18 74 45.12 295 44.97
18–27 9 5.49 35 5.34
>27 2 1.22 7 1.07
Sum 164 100 656 100
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Te objective function of XGboost consists of two
components, the loss function and the regularization term,
with the following equation:

Obj � 
n

i�1
l yi, yi(  + 

t

j�1
Ω fj , (1)

where l(yi, yi) denotes the loss function of XGboost, yi is the
actual value of the ith sample, and yi denotes the predicted
value of the XGboost model for the i th sample. Te loss
function is chosen according to the actual situation and is
used to measure the diference between the actual and
predicted values.Ω(fj) is the complexity of a single tree and


t
j�1Ω(fj) is the overall complexity of the model, i.e., the

sum of the complexity of all t trees, which is used as the
canonical term of the objective function.

In constructing the tth tree, the parameters of the frst t − 1
trees can be considered as constant terms, and thus, the ob-
jective function can be transformed into the following form:

Obj(t)
� 

n

i�1
l yi, yi

(t)
  + 

t

j�1
Ω fj 

� 
n

i�1
l yi, yi

(t− 1)
+ ft xi(   + 

t

j�1
Ω fj 

� 
n

i�1
l yi, yi

(t− 1)
+ ft xi(   +Ω ft(  + constant.

(2)

According to the Taylor expansion,

f(x + ∆x)≃f(x) + f
′
(x)∆x +

1
2
f
″
(x)∆x

2
. (3)

Te approximation of the objective function (equations
(2) and (3)) can be obtained as follows:

Obj(t)≃
n

i�1
l yi, y

⌢

i

(t− 1)
  + gift xi(  +

1
2
hif

2
t xi(  

+Ω ft(  + constant,

(4)

where gi is the frst-order partial derivative of the loss
function and hi is its second-order partial derivative; gi and
hi can be written as follows:

gi � zy(t−1)l yi, y
t− 1

 ,

hi � z
2
y(t−1)l yi, y

t− 1
 .

(5)

Since l(yi, y(t− 1)) and the constant term constant will
not have an efect on the training of the tth tree, the objective
function can be written as follows:

Obj(t)≃
n

i�1
gift xi(  +

1
2
hif

2
t xi(   +Ω ft( . (6)

Te next further refnement ft can be expressed as
follows:

ft(x) � wq(x), (7)

where w is the weight occupied by the leaf node and q

represents the mapping relationship from the sample to the
leaf node. According to the above equation, the canonical
term of the objective function, which is the complexity of the
model Ω(ft), can be further refned as follows:

Ω ft(  � cT +
1
2
λ

T

i�1
w

2
j , (8)

where T is the number of leaf nodes of the tth tree.
Combining equations (7) and (8), we can obtain

Obj(t)≃
n

i�1
gift xi(  +

1
2
hif

2
t xi(   +Ω ft( 

� 
n

i�1
giwq xi(  +

1
2
hiw

2
q xi(   + cT +

1
2
λ

T

i�1
w

2
j

� 
T

j�1

i∈Ij

gi
⎛⎜⎝ ⎞⎟⎠wj +

1
2


i∈Ij

hi + λ⎛⎜⎝ ⎞⎟⎠w
2
j

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ + cT.

(9)

We defne the following equation:
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Figure 3: Schematic diagram of boosting.
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Gj � 
i∈Ij

gi,

Hj � 
i∈Ij

hi.
(10)

Ten, the objective function can be reduced to the
following equation:

Obj(t)
� Gjwj +

1
2

Hj + λ w
2
j  + cT. (11)

Tis is the fnal objective function of XGBoost.
XGBoost applies a second-order Taylor expansion to the

deformation of the objective function, and the frst-order
partial derivatives and second-order partial derivatives of the
loss function are also used in this process, which makes the
gradient descent faster and more accurate. At the same time,
this feature also allows XGBoost to optimize the model and
select parameters based only on the values of the input
samples without specifying the loss function in advance,
which greatly improves the applicability of the model. In
addition, the inclusion of the regular term in the objective
function can control the complexity of the model, which can
efectively model to prevent overftting and reduce the
variance of the model.

3.2. SHAP-Based Model Interpretation Method. Except for
linear models and some simple models, such as decision
trees and plainly Bayes, most machine learning models are
black-box models and cannot be interpreted. Explainable
models usually have insufcient accuracy, while some black-
box models tend to have high predictive accuracy [33].
Scholars have explored how to improve the prediction ac-
curacy of models while making them interpretable. Lund-
berg and Lee proposed the SHAP method in their paper “a
unifed approach to interpreting model predictions” pub-
lished in 2017, which allows the interpretation of model
predictions [34]. Te SHAP method mainly relies on the
Shapley value, which was proposed by Shapley in 1953, and
the core idea is cooperative game theory. Later, Lundberg
et al. proposed TreeSHAP in 2018 in the paper “consistent
individualized feature attribution for tree ensembles” [35].
TreeSHAP is a variation of the SHAP method, and the
application objects are mainly tree models, such as random
forests and XGboost. TreeSHAP is much faster and can
handle the correlation of features well [35–38].

Te model makes predictions based on the features of
each sample, and each sample corresponds to a prediction
result, and the value assigned to each feature that contributes
to the prediction result is called the Shapley value. Te
Shapley value has additivity, i.e.,

yi � y + 
k

j�1
f xi, j( , (12)

where xi is the ith data sample, each data sample has k

features, yi is the prediction value corresponding to xi, y is
the baseline of the model, and f(xi, j) is the Shapley value of
the jth feature of xi. It is possible to determine whether the

feature has a positive or negative efect on the prediction
result based on the positivity or negativity of f(xi, j). Taking
the binary classifcation problem as an example, if f(xi, j) is
positive, it means that this feature will increase the likelihood
of positive classes appearing, and if f(xi, j) is negative, it
means that this feature will have a reverse efect on the
model, increasing the likelihood of negative classes
appearing.

Te SHAP interpreter can evaluate the importance of
features, unlike feature importance in models such as
XGboost, which is mainly based on the degradation of model
performance, while the SHAP interpreter is based on the
magnitude of feature attribution. Te SHAP interpreter
ranks the importance of a feature based on the mean of the
absolute value of the degree of infuence of this feature on the
prediction result, i.e., the mean of the Shapley absolute
values, as in equations (3–13). Te larger the mean value is,
the higher the importance of the feature and the greater the
impact on the prediction result are:

Ij �
1
n



n

i�1
ϕ(i)

j



, (13)

where Ij is the feature importance of the jth feature and ϕ(i)
j

is the Shapley value of the j th feature of the ith sample.
Te SHAP interpreter can also calculate the interactions

between features. Te interaction is an additional combined
feature efect after considering the individual feature efects.
Te Shapley interaction index is defned in the following
form:

ϕi,j � 

S⊆ i,j{ }

|S|!(M � |S| − 2)!

2(M − 1)!
δij(S). (14)

When i≠ j,

δij(S) � fx(S∪ i, j ) − fx(S∪ i{ }) − fx(S∪ j ) + fx(S).

(15)

Te above equation yields the pure interaction efect
after removing the main efect of the features and then
averaging the values of all possible feature coalitions S. In
calculating the SHAP interaction values for all features,
a matrix of dimension M × M is obtained for each sample,
where M is the number of features.

3.3. XGBoost Parameter Selection. In this research, the value
of area under curve (AUC) was used as the model evaluation
index. Accuracy (the ratio of predicted samples to all
samples) is the most commonly usedmodel evaluation index
in classifcation algorithms, but this index is not applicable to
nonequilibrium data sets. For example, in this research, the
crash data used the following: noncrash data� 1:4 in the data
set; if the model judges all labels as 0, that is, noncrash, the
accuracy rate of the model can reach 80%, which can neither
identify the crash data nor refect the prediction efect of the
model, and is obviously meaningless. Terefore, for non-
equilibrium data sets, it is necessary not only to ensure a high
accuracy of the model, but also to ensure that the model has
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a good performance in the prediction of the majority and
minority classes. Based on the above considerations and
existing studies, this research takes the area under the curve
(AUC) of receiver operating characteristic (ROC) as the
evaluation index of model prediction performance.

As shown in Figure 4, the closer the ROC curve is to the
upper left corner, the better the predictive performance of
the classifer is. Sometimes the ROC curves of two models
may cross, at which time the AUC value of the area under the
ROC curve is needed to evaluate which is better. Te closer
the AUC is to 1, the better the predictive performance of the
model is.

Te parameters “n_estimatores,” “subsample,” “max_-
depth,” and “learning_rate” are selected as the parameters
that have a great impact on the classifcation performance of
the model, where n_estimatores is the number of weak
classifers; if this value is too large, the model will be over-
ftted, but if it is too small, it may be under-ftted, and its
general value is 100–300; subsample is the ratio of the data
used in training to the total training set and generally takes
the value of 0.5–1; learning_rate is the learning rate; when
updating the feature weights, the learning rate shrinkage can
prevent overftting when updating the feature weights and
make the boosting process more conservative; its general
value is 0.01–0.2; max_depth is the maximum depth of the
tree, increasing max_depth will increase the complexity of
the tree model andmake themodel fall into overftting, but if
the tree depth is not enough, it will also appear underftting,
its general value is 1–11; scale_pos_weight is the weight of
positive samples, and when the sample dataset is a non-
equilibrium dataset, increasing the weight of positive
samples will improve the recall of the model, i.e., the ability
to capture the incident data, so it is possible to improve the
overall prediction performance of the model. Since this
dataset is an unbalanced dataset and the ratio of noncrash
samples: incident samples is 4:1, the value of scale_pos_-
weight is set to 1–10.

Te explanatory variables of the model are as shown in
Table 7; the category label is whether a crash occurred, the
sample label for a crash occurred is noted as 1, and the sample
label for no crash occurred is noted as 0. Te XGBClassifer is
used to build the initial XGboost classifcation model, and
then, the GridSearchCV of the sklearn machine learning
package in Python is used to implement the grid search, and
n_estimatores are searched in the range of 100–300 in steps of
10; the search range of learning_rate is 0.01–0.2, using the
linspace function in numpy to generate 50 random data in the
range of 0.01–0.2 as the actual search range; the search range
of max_depth is 1–11, with 1 as the step; the search range of
subsample is 0.5–1 in steps of 0.1; the search range of sca-
le_pos_weight is 1–10 in steps of 1. Te optimal combination
of parameters obtained from the grid search is
n_estimatores� 200, max_depth� 9, learning_rate� 0.02,
subsample� 0.7, and scale_pos_weight� 1.

Using the optimal combination of parameters, 70% of
the data samples are used as the training set in the model, the
remaining 30% of the data samples are used as the test set,
and the XGBoost classifcation model is rebuilt; then, the

SHAP interpreter is built based on this model to interpret
the model and visualize the interpretation results.

4. Results and Discussion

4.1. Extraction andAnalysis ofMajor TrafcCrash Precursors.
Te SHAP interpreter ranks the importance of each feature
based on the mean value of the absolute value of each
feature’s infuence on a crash occurrence, with the greater
the mean value, the higher the importance of the feature, i.e.,
the greater the infuence on whether a crash will occur.
Figure 5 shows the ranking of the importance of each feature
based on the SHAP interpreter, and it can be found that the
feature distance between upstream and downstream de-
tectors (length) has the highest importance, which means
that this feature contributes the most to whether a crash
occurs or not, and far exceeds the other variables. In ad-
dition, the absolute value of the diference in speed between
upstream and downstream detectors (dif_v), the average
speed of downstream detectors (down_v), the average speed
of upstream detectors (up_v), and the average value of the
absolute value of the diference in fow between adjacent
lanes of upstream detectors (up_dif_q) in the trafc fow
variables contribute signifcantly to whether a crash occurs.
Among the weather characteristics, rain (rain) has the
highest contribution to whether a crash occurs or not. In
addition, the hour (hour) corresponding to the trafc fow
data are also an important factor infuencing the occurrence
of crashes.

Te SHAP summary plot (Figure 6) combines feature
importance with feature efects. Each point on the summary
plot corresponds to the Shapley value of a feature of
a sample. Te position on the y-axis is determined by the
importance of the features, which is ordered according to
their importance, consistent with Figure 4, and the position
on the x-axis is determined by the Shapley value, with the
Shapley value equal to 0 as the central axis, and the Shapley
value to the right of the central axis is greater than 0; at the
left of the central axis, the Shapley value is less than 0. Te
color represents the size of the feature value; the redder the
color, the larger the corresponding feature value, and the
bluer the color, the smaller the corresponding feature value.
Te overlap point is jittered upwards on the y-axis.
Terefore, the SHAP summary plot gives an idea of the
distribution of the Shapley values for each feature. Te
following conclusions can be drawn from Figure 5:

TPR

1

0
0

FPR 1

ROC Curve

AUC

Figure 4: ROC curve.
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(1) It is obvious that the red points of the feature of the
distance between upstream and downstream de-
tectors (length) are basically located on the right side
of the Shapley value equal to 0, and the blue points
are basically located on the left side of the Shapley
value equal to 0. Tis means that the smaller the
distance between upstream and downstream de-
tectors, the lower the risk of trafc crash, and the
larger the distance between upstream and down-
stream detectors, the higher the risk of trafc crash.
Te reason for this situation may be because the
greater the distance between the upstream and
downstream detectors, the longer the length of the
section between them and the greater the likelihood
that the crash point will fall on this section of the
freeway, in which trafc crash is more likely to occur.

(2) For the absolute value of the upstream and down-
stream detector velocity diference (dif_v), the red
points are mostly located to the right of the Shapley
value equal to 0, and the blue points are basically
located to the left of the Shapley value equal to 0.Tis
indicates that the absolute value of the speed dif-
ference between the upstream and downstream
detectors is positively correlated with the crash risk,
and the larger it is, the larger the corresponding
Shapley value is and then the greater the likelihood of
a crash is.Tis may occur because the sudden change
in speed increases the probability of trafc crash
when the freeway goes from congested to free fow or
from free to congested fow.

(3) For the downstream detector average velocity
(down_v) and the downstream detector fow average
(down_q), the red points are mainly concentrated to
the left of the Shapley value equal to 0, and the blue
points are concentrated to the right of the Shapley
value equal to 0.Tis indicates that the average speed
downstream is negatively related to the crash risk
and has a negative efect on the occurrence of crash;
the smaller it is, the higher the trafc crash risk is.

(4) Te average upstream detector velocity (up_v) has no
signifcant positive or negative correlation with the
occurrence of crashes, but its high values, i.e., the red
points are mostly distributed to the left of the Shapley
value equal to 0, indicating that crashes are more
likely to occur when the average upstream velocity is
lower. Te low values, i.e., the blue points, are more
scattered, and the corresponding Shapley values are
both greater than 0 and less than 0. Tere is no
obvious linear relationship with the occurrence of
crashes.

(5) For the average value of the absolute value of the
diference in fow between adjacent lanes of up-
stream detectors (up_dif_q), most of the red points
are distributed to the right of the Shapley value equal
to 0; that is, the larger the absolute value of the
diference in fow between adjacent lanes of up-
stream detectors, the more likely it is that a trafc
crash will occur. Tis may be due to the fact that
vehicle lane changing behavior is more likely to
occur when there is a large diference in trafc fow
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Figure 5: Ranking chart of variables’ importance.
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between adjacent lanes upstream, and frequent lane
changing behavior can lead to an increased risk
of crash.

(6) Among the weather features, rainfall (rain) has
a greater infuence on the occurrence of trafc
crashes, while visibility (vis) and dew point (dewp)
have less infuence on the occurrence of trafc
crashes. Te amount of rainfall is positively corre-
lated with the risk of trafc crash, and the increase of
rainfall will increase the risk of trafc crashes. Vis-
ibility is negatively correlated with trafc crash risk;
the lower the visibility, the higher the risk of
a trafc crash.

(7) Average value of the upstream detector fow (up_q),
absolute value of the upstream and downstream
detector fow diference (dif_q), absolute value of the
upstream detector adjacent lane occupancy difer-
ence (up_dif_o), absolute value of downstream de-
tector adjacent lane speed diference (down_dif_v),

and absolute value of downstream detector adjacent
lane fow diference (down_dif_q), most of the high
values of these features are distributed to the right of
the Shapley value equal to 0, and the low values are to
the left of the Shapley value equal to 0. All of them are
positively correlated with trafc crash risk. As the
values of these features increases, the likelihood of
trafc crash increases.

(8) Tere is no obvious positive or negative re-
lationship between the absolute value of the up-
stream detector adjacent lane speed diference
(up_dif_v) and the time corresponding to the
trafc fow data (hour) and the trafc crash risk,
but its low value is mostly near the left side of the
Shapley value equal to 0, indicating that the trafc
crash risk is lower when the absolute value of the
upstream adjacent lane speed diference is smaller
or the time corresponding to the trafc fow is in
the early morning.
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Figure 6: SHAP summary plot.
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4.2. Analysis of the Impact of Eigenvalues on Trafc Crash.
To understand the exact form of the impact of each ei-
genvalue on the trafc crash risk, it is necessary to see the
SHAP dependence plot. Te x-axis of the SHAP dependence
plot corresponds to the feature values and the y-axis to the
corresponding Shapley values. Te SHAP dependence plot
can also represent the interaction efect between features.

Te SHAP dependence plots of the distance between the
upstream and downstream detectors, the absolute value of
the speed diference between the upstream and downstream
detectors, the downstream speed, the upstream speed, vis-
ibility, and the absolute value of the fow diference between
the adjacent lanes of the upstream detectors, as shown in
Figure 7, are used as examples to analyze the relationship
between these features and the trafc crash risk and the
interaction that exists among each feature.

As can be seen from Figure 7(a), the greater the distance
between the upstream and downstream detectors, the higher
the Shapley value, and the higher the likelihood of a crash.
With 2 km as the dividing point, when the distance between
upstream and downstream detectors is greater than 2 km,
the Shapley value is basically positive and has a positive
driving efect on the occurrence of a crash; when the distance
between upstream and downstream detectors is less than
2 km, the Shapley value is basically negative and has
a negative driving efect on the occurrence of a crash. Te
dispersion in the vertical direction on the right side of
Figure 7(a) shows that the distance between the upstream
and downstream detectors interacts most strongly with the
mean downstream velocity. For the distance between up-
stream and downstream detectors less than 2 km, a higher
downstream velocity increases the risk of crash, but for the
distance between upstream and downstream detectors
greater than 2 km, a higher downstream velocity decreases
the risk of crash.

From Figure 7(b), it can be seen that the absolute value of
upstream and downstream detector speed diference and
crash risk generally show the relationship that the greater the
value, the greater the risk of trafc crash, but when the
absolute value of upstream and downstream detector speed
diference is greater than 20 and less than 40, the distribution
of Shapley value spans a larger range, and when the absolute
value of upstream and downstream detector speed diference
is greater than 40, the Shapley value shows a decreasing
trend and the risk of trafc crash decreases.Te dispersion in
the vertical direction on the right side of Figure 7(b) shows
the strongest interaction between the absolute value of
upstream and downstream detector velocity diference and
the distance between upstream and downstream detectors.
When the absolute value of upstream and downstream
detector velocity diference is less than 20, a larger upstream
and downstream spacing will have a positive driving efect
on the occurrence of crash, but when the absolute value of
upstream and downstream detector velocity diference is
greater than 20, a smaller upstream and downstream dis-
tance will increase the risk of crash.

Te overall trend in Figure 7(c) is decreasing, indicating
that the higher the downstream velocity, the higher the
possibility of a crash.With 90 as the dividing point, when the

downstream velocity is greater than 90, the Shapley value is
basically negative, which has a negative impact on the oc-
currence of crashes; when the downstream velocity is less
than 90, the Shapley value is basically positive, which has
a positive impact on the occurrence of crash. Te dispersion
in the vertical direction on the right side of Figure 7(c) shows
that the downstream velocity interacts most strongly with
whether or not it is a curve, with a curve decreasing the
likelihood of a crash at downstream velocities greater than
90 and increasing the likelihood of a crash at downstream
velocities less than 90.

From Figure 7(d), it can be seen that the trafc crash risk
increases with the increase of upstream speed when the
upstream speed is less than 85, while it decreases with the
increase of upstream speed when the upstream speed is
greater than 85. Te dispersion in the vertical direction on
the right side of Figure 7(d) shows the strongest interaction
between the upstream speed and the distance between the
upstream and downstream detectors. At upstream speeds
less than 85, a larger upstream and downstream detector
spacing increases the likelihood of a trafc crash, while at
upstream speeds greater than 85, a larger upstream and
downstream detector spacing decreases the likelihood of
a trafc crash.

As can be seen from Figure 7(e), the Shapley values are
mostly positive at low visibility, indicating that the low
visibility increases the crash risk; at higher visibility, the
Shapley values are mostly negative, indicating that the crash
risk decreases when the visibility is better. Te dispersion in
the vertical direction on the right side of Figure 7(e) shows
the strongest interaction between visibility and curves,
where curves increase the likelihood of trafc crash when
visibility is low but decrease the likelihood of crash when
visibility is high instead.

From Figure 7(f ), it can be seen that, as the absolute
value of the upstream detector adjacent lane fow dif-
ference increases, the corresponding Shapley value de-
creases, then increases, then decreases, and then
increases again, resembling a “W” shape, indicating that
the upstream adjacent lane fow diference and trafc
crash risk are not simply positively or negatively cor-
related. Te dispersion in the vertical direction on the
right side of Figure 7(f ) shows the strongest interaction
between the diference in upstream adjacent lane fow
and the number of on-ramps, where a low number of on-
ramps reduces the risk of trafc crash when the diference
in upstream adjacent lane fow is small, and the presence
of on-ramps increases the risk of trafc crash when the
diference in upstream adjacent lane fow is large, in-
dicating that the lane changing behavior is more likely to
cause trafc crash near the merging area.

Based on the above analysis, it can be found that not only
trafc fow variables but also the features of road, weather,
and time all have an impact on trafc crash risk, and there is
an interaction between each feature. Since SHAP-based
model interpretation can only visualize second-order fea-
ture interactions, higher-order feature interactions cannot
be demonstrated, but the existence of higher-order feature
interactions is possible.
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Figure 7: SHAP dependence plot.
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5. Conclusions

In this research, based on the dataset of the Beijing section of
the Beijing-Harbin freeway in China, XGboost was applied
to model, and the model was interpreted via the SHAP
interpreter to obtain the ranking of the importance of each
feature on the impact of crash risk, analyze the specifc
relationship between each feature and the trafc crash risk,
and further explore and visualize the two-dimensional in-
teraction efect between each feature. Te main research
fndings are as follows:

(1) Te distance between upstream and downstream
detectors in road features is the most important for
crash risk, which is far more than other variables.Te
absolute values of upstream and downstream speed
diference, downstream average speed, upstream
average speed, and upstream adjacent lane fow
diference in the trafc fow variables also contribute
much to the trafc crash occurrence. Among the
weather features, rainfall has the highest contribu-
tion to the trafc crash occurrence. Among the time
features, the time corresponding to the trafc fow
data is also an important factor infuencing the
occurrence of crashes.

(2) Te variables of distance between the upstream and
downstream detectors, absolute value of upstream
and downstream speed diference, absolute value of
upstream adjacent lane fow diference, rainfall,
upstream fow average, absolute value of upstream
and downstream fow diference, absolute value of
upstream adjacent lane occupancy diference, and
absolute value of downstream adjacent lane speed
diference are positively correlated with trafc crash
risk; the variables of downstream average speed,
downstream fow average, and visibility are nega-
tively correlated with trafc crash risk.

(3) Te efects of trafc fow variables, road character-
istics, weather, and temporal features on trafc crash
are not independent of each other, but there is
a relatively complex interaction efect. Second, the
order characteristic interactions between these fac-
tors exist, and there’s a possibility that higher-order
characteristic interactions also exist.

(4) Te approach proposed in this research can deeply
excavate the mechanism of dynamic trafc crash
occurrence on freeways, and the research results can
be applied to real-time trafc risk monitoring on
freeways, so as to provide the theoretical basis for the
trafc crash prediction work and warning technol-
ogy. Simultaneously, it is possible to develop targeted
road management measures based on indicators
such as real-time road trafc fow operating condi-
tions, weather, and road features, to identify the risk
of crashes in a timely manner, and to improve the
safety and operational efciency of freeways.

(5) Te dynamic trafc fow data applied in this research
are based on the microwave radar trafc information

detector collection, and the obtained trafc fow
features are not comprehensive. Subsequently, we
may obtain the indicator parameters such as lane
changing behavior and following behavior of vehi-
cles through video detectors or collect parameters
such as acceleration and headway time distance of
vehicles based on real driving data to improve the
required trafc fow information for modeling.
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