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With governments worldwide emphasizing environmental protection and the global focus on carbon reduction, the battery electric vehicle
(BEV) industry has developed rapidly. An urban transportation network with BEVs as the main form of transportation will soon become
mainstream.Motivated by the abovementioned background, a BEV transportation network design problem is investigated, and a network
design model is established. Te model aims to minimize the system travel time of BEV transportation networks and optimize the
government’s lane expansion scheme (the location and number of lanes) under a limited budget. To consider the travel characteristics of
BEV drivers, the charging time, range anxiety, and bounded rationality factors are simultaneously incorporated into the model. A heuristic
algorithm is designed based on the active set algorithm to obtain the local optimal solution to the actual-scale problem.Moreover, a cutting-
plane method is used to convert the original problem into a diferent form, and a column generation technique is embedded in the
abovementioned algorithm to avoid the enumeration of paths. Sensitivity analyses of diferent levels of rationality of BEV drivers and
government investment scales are performed.Te experimental results demonstrate that the model and algorithm can efectively solve the
problem and provide decision support for the government in formulating transportation infrastructure construction policies.

1. Introduction

As reported by the World Meteorological Organization
(WMO), in the past 50 years, more than 11,000 disasters
caused by weather and climate have caused 2 million deaths
and 3.6 trillion US dollars in economic losses, and nearly 22
million people have become climate refugees [1]. Carbon
emissions are becoming a major practical issue afecting
human survival and development [2, 3]. Social and eco-
nomic development processes have simultaneously put
considerable pressure on the natural environment. Global
carbon dioxide (CO2) emissions will continue to grow with
the future growth of the economy, population, and re-
source demand. Terefore, mitigating greenhouse gas
emissions is among the most urgent and far-reaching issues
in the international political economy. Te transportation

sector is an indispensable and key industry in the process of
social production and economic development. Moreover, it
is one of the largest contributors to CO2 emissions. In
China, the transportation sector produces a quarter of the
total CO2 emissions [4, 5]. Terefore, this sector has been
hindering the achievement of low-carbon goals due to high
carbon emissions in energy consumption and trans-
portation infrastructure construction [6]. Determining
how to promote carbon emission reductions in high-car-
bon-emission industries such as the transportation sector
has become an important issue of concern to the gov-
ernment and industry.

In recent years, with the strict management and control
of carbon emissions by the governments of various coun-
tries, the battery electric vehicle (BEV) manufacturing in-
dustry has attracted considerable research attention [7].
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Substituting BEVs for traditional gasoline vehicles (GVs) is
an efective way to reduce greenhouse gas emissions and the
dependence of the automobile industry on petroleum [8, 9].
Tis substitution has two advantages. First, BEVs no longer
use fossil fuels and provide more efcient energy use during
driving, which can reduce energy consumption in the
transportation sector and would be an efective means of
curbing fuel depletion and air pollution [10]. Second, when
BEVs are powered by renewable methods such as solar and
wind energy, CO2 emissions can be almost completely
avoided. According to [11], partial replacement of GVs with
BEVs can reduce carbon emissions in the transportation
sector by more than 60%. Terefore, various governments
have introduced policies to promote the BEV industry to
achieve carbon neutrality by the middle of the 21st century;
consequently, the production of BEVs has increased rapidly.
Te number of newly registered BEVs nationwide increased
from 25,163 in 2014 to 69,010 in 2018, a growth rate of 174%
[12]. In China, the number of BEV and plug-in hybrid
vehicle (HEV) registrations increased from 1,430 in 2010 to
579,000 in 2017 [5]. Predictably, BEVs will be a major part of
future urban transportation networks, and BEV trans-
portation network design will become the focus of both the
government and academia because it promotes green
transportation [13, 14].

In a BEV transportation network, the behavior of
travelers is often diferent from that in a traditional GV
transportation network. On the one hand, range anxiety
makes the feasible travel path of BEV drivers signifcantly
diferent from that of GV drivers. Range anxiety refects
travelers’ fear of running out of battery energy before
reaching their destination (or the charging station) [15, 16].
Since range anxiety is too subjective to measure directly,
scholars tend to approximate range anxiety based on the
ratio of remaining battery power to maximum battery ca-
pacity (i.e., the state of charge, SOC) [17]. In this context,
travelers are concerned about their battery SOC, and they
will make prudent charging decisions [5, 18]. Tis is
manifested in the fact that travelers often do not allow the
SOC of BEVs to be lower than a certain threshold during
travel [19] and will choose the most secure travel route that
ensures an available power supply [20, 21]. Te above
phenomenon requires us to establish a diferent defnition
for feasible paths in the design of BEV transportation
networks.

On the other hand, traveler behaviors are often char-
acterized by bounded rationality. In the traditional trans-
portation network design problem (NDP), it is assumed that
travelers choose transportation routes based on the principle
of maximum utility; i.e., the trafc fow distribution in the
transportation network obeys the perfect rational user
equilibrium (PRUE) principle. However, this assumption
has been challenged by numerous scholars [22, 23]. Re-
searchers have found that when choosing a departure time
[24, 25] or a transportation route [26], travelers’ choices are
often associated with bounded rationality. In studies of the
choice of transportation routes by travelers in diferent cities,
scholars have found that the proportion of those who choose
the route with the shortest travel time tends to be between

25% and 75% [27, 28]. Tis phenomenon is considered to be
the result of multiple factors, such as the number of in-
tersections, route complexity, road organization, road style,
and the cognitive limitations and psychological biases
(people’s habits, inertia [29, 30], and myopia [31]) of the
traveler [32]. Especially with the popularization of BEVs and
the development of trafc technology, road trafc conditions
and trafc information will become more complex. Under
the infuence of the above phenomena, the trafc fow
distribution in a BEV transportation network then forms
a bounded rational user equilibrium (BRUE) state [33, 34].
Tis is obviously more complicated than the PRUE state of
the previous GV transportation network and is worth
studying.

Motivated by the two abovementioned behavioral fac-
tors, we conduct in-depth research on the design of BEV
transportation networks. Our article aims to investigate
a BEV transportation NDP considering two types of human
choice behaviors (i.e., range anxiety and bounded ratio-
nality) (BNDP) to help governments better develop lane
expansion schemes for specifc regions. Te research ob-
jective of this article is to answer the following three research
questions:

(1) How can the BEV charging time, the range anxiety of
BEV drivers, and bounded rationality be modeled?

(2) Considering the abovementioned factors, how can
we construct a model for solving the BNDP?

(3) How can an algorithm be designed to efciently solve
the abovementioned model?

To this end, several equilibrium conditions of the trans-
portation network are frst developed to describe the BRUE state
of the BEV transportation network. Ten, a robust network
design model is constructed to optimize the government’s
optimal lane expansion scheme with the goal of minimizing the
system travel time. Te model optimizes the locations of ex-
pansion and the number of lanes. Finally, to solve the above-
mentionedmodel, an active set algorithm (ASA)-based heuristic
algorithm is designed to identify the local optimal solution.
Moreover, a cutting-plane method is used to transform the
original problem, and a column generation algorithm (CGA) is
embedded in the abovementioned ASA-based heuristic to avoid
the enumeration of paths. Overall, the contributions of this
article are threefold.

(1) We defne a BEV transportation NDP. Compared to
traditional studies that consider BEV transportation
network design (e.g., He et al. [35] and Cheng et al.
[5]), we further introduce the BRUE theory into the
model framework. To the best of our knowledge, our
article is the frst to introduce bounded rational
behavior into the BEV transportation NDP.

(2) We establish the relevant equilibrium conditions for
the BRUE-based transportation network and extend
the theory of bounded rationality in economics to the
feld of BEV transportation network design. Te
above conditions can accurately describe the travel
behavior of users in the BEV transportation network.
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(3) We design an ASA-based heuristic algorithm that
explores the local optimal solution of the problem.
Several acceleration algorithms are introduced to
accelerate the solution efciency. Te above-
mentioned algorithm can provide an efcient solution
for problems at practical scales and provide efective
decision-making support for the government to
formulate infrastructure construction policies.

Te remainder of this article is organized as follows: In
Section 2, the literature related to BEV transportation network
equilibrium and NDP is reviewed to identify the current re-
search gaps. Section 3 presents the assumptions, notations,
problem descriptions, and mathematical expressions associ-
ated with the BRUE state of the BEV transportation network.
In Section 4, the BEV transportation NDP (BNDP) is modeled
considering the charging time, range anxiety, and BRUE
factors. Te algorithm for solving the model is presented in
Section 5. In Section 6, several numerical experiments are
performed to verify the efectiveness of the model and algo-
rithm. Finally, Section 7 concludes the article, and several
potential research directions are proposed.

2. Literature Review

Research on the design of BEV transportation networks is
inseparable from the discussion of the equilibrium state of the
networks. Tis is because the calculation of the equilibrium
state of a transportation network is the basis for evaluating the
design scheme of the network. Te concept of transportation
network equilibrium was frst defned by Wardrop in 1952
[36]. Wardrop and Whitehead [36] assumed that all drivers
choose their travel route based on the principle of the shortest
travel time. Based on the hypothesis of rational man in the
economic theory, Wardrop’s frst principle was proposed and
has become the criterion of trafc fow assignment in aca-
demia. Early research on the NDP was based on GVs and
Wardrop’s frst principle. Representative research topics in-
clude the continuous urban transportation NDP [37, 38],
discrete NDP [39, 40], mixed NDP [41], transit NDP [42–44],
and toll problem [45, 46]. Representative review articles in
diferent time periods can be found in [46–48]. In recent
years, with the growth of BEV ownership, research on the
equilibrium state of BEV transportation networks has ex-
panded. In the early stage, He et al. [35] frst proposed a BEV
transportation network equilibrium model considering
charging time and range anxiety. Tis was the frst article to
summarize and distinguish the characteristics of BEVs and
GVs. Te authors noted that the diference between the
equilibrium state of a BEV transportation network and that of
a GV network is associated with the charging time and
phenomenon of range anxiety, and the latter seems unrealistic
to eliminate. Consequently, the authors constructed two
network equilibriummodels, one of which further considered
fow-dependent energy consumption.

2.1. Modeling Approach. Considering the characteristics of
wireless charging lanes, Chen et al. [49] established a com-
paratively complicated BEV transportation network

equilibrium model. Tey assumed that BEV drivers could
choose to charge wirelessly in a charging lane. To ensure that
a BEV has sufcient battery power, the driver can adjust the
charge received by changing the travel speed of the BEV. Xu
et al. [21] suggested that the conditions proposed by He et al.
[35] were incomplete, and they constructed a set of network
equilibrium conditions.Tese conditions allowed both BEVs
and GVs to exist in the transportation network. To refect
real-world conditions in the model, the authors further
introduced the road grade efect. When a BEV is driving on
roads of diferent grades, the dwell time and swapping cost
will vary. However, the authors assumed that only swapping
stations existed in the studied transportation network. Tis
assumption limited the impact of dwell time on network
equilibrium during the modeling process. Liu and Song [50]
developed a BEV transportation network equilibriummodel
considering fow-dependent electricity consumption. Unlike
Xu et al. [21], the authors proposed a solvable mathematical
model rather than several equilibrium conditions. Tus, the
equilibrium state of the transportation network could be
obtained by solving the model directly. Recently, Chen et al.
[51] introduced the queuing theory in conjunction with a set
of network equilibrium conditions and constructed a BEV
transportation network equilibrium model considering the
BEV queuing time at charging stations. To solve the pro-
posed mathematical program with complementarity con-
straints (MPCC), the authors converted the original model
into a sequence of relaxed nonlinear programming prob-
lems. Generally, when scholars have constructed sets of
equilibrium conditions for BEV transportation networks,
they have tried to accurately model the relationships among
vehicle fows, energy consumption, and queuing behaviors at
transportation nodes. However, in characterizing the travel
route choice behaviors of travelers, scholars often simply
assume that each traveler is perfect rational. However, in
practice, bounded rationality is an important characteristic
related to travelers in a transportation network, and BEV
transportation networks are not exceptions.

According to diferent defnitions of the equilibrium state
of BEV transportation networks, scholars have conducted
extensive research on NDPs. A typical representative trans-
portation NDP involves the layout of charging facilities (or
other infrastructure). For example, Qiu et al. [52] addressed
an optimization problem for the layout design of an electrifed
road for EVs. Based on the classic UE theory proposed by
Wardrop [36], the authors established the equilibrium con-
ditions of the transportation network and constructed
a network design model. To solve the problem at the actual
network scale, the authors designed a modifed ASA. Cheng
et al. [5] considered the charging time of BEVs and range
anxiety factors and constructed a network designmodel based
on the equilibrium conditions proposed by He et al. [35]. Te
authors aimed to minimize the system travel time and op-
timize the government’s lane expansion scheme to limit trafc
congestion. Furthermore, a robust optimization model was
constructed considering the uncertainty of the transportation
demand. Chen et al. [49] assumed that BEV drivers can adjust
their driving speeds on electrifed roads to increase the charge
they receive. Based on the equilibrium conditions proposed,
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the authors discussed the government’s optimal link re-
construction scheme (in which links are converted to elec-
trifed roads) under a limited budget. Liu and Song [50]
further considered the abovementioned factors and con-
structed a congestion toll model. Te authors verifed the
nonuniqueness of the vehicle fow distribution, and the robust
optimization theory was introduced into the research
framework to improve the worst-case scenario for the trafc
fow distribution. Unfortunately, the authors assumed that
travelers’ choices of transportation routes obey the PRUE
principle, which is equivalent to ignoring the impact of the
irrational behavior of travelers on travel time in the trans-
portation network.

2.2. Solution Approach. Since the introduction of bounded
rationality into the transportation feld, scholars have ex-
tended its application to transportation NDPs, trans-
portation network equilibrium problems, trafc assignment
problems, and transportation planning problems [53].
Various algorithms have been gradually developed and
refned to obtain locally (or globally) optimal solutions to
these problems [54, 55].

For example, Di et al. [56] characterized the topological
structure of the BRUE set, decomposing the transportation
network pricing problem into multiple subproblems. A
heuristic algorithm called ASA was developed to achieve
a suboptimal toll scheme for transportation networks
considering bounded rationality and risk aversion. However,
the limitation of the algorithm is that it is not applicable to
large networks. Eikenbroek et al. [34] considered the best-/
worst-case BRUE relative to the total travel time and solved
the problem using a branch-and-price approach and a two-
layer programming model to explore the difculties of the
application of the algorithm in BRUE. Te results showed
that both of these algorithms can only obtain local optimal
solutions and that global solutions are difcult to achieve.
Wang et al. [57] developed a tolerance-based column
generation algorithm (TBCG) for the bounded rational
dynamic user equilibrium (BR-DUE) model of trans-
portation networks, which extends the traditional CGA by
adopting four strategies in the spatial and temporal di-
mensions to take advantage of circumventing path enu-
meration without causing degradation in solution quality.
Batista and Leclercq [58] extended the transportation NDP
to regional transportation networks considering the boun-
ded rationality of drivers and developed an integrated trafc
model. Monte Carlo simulations and the method of suc-
cessive averages (MSA) were applied simultaneously to solve
the network equilibrium, and the impact of drivers’ pref-
erences for reliable travel times on the regional trafc
network was discussed. Very recently, Jiang and Ceder [59]
considered the efect of bounded rational factors on the
continuity of the mapping function based on the traditional
trafc assignment model. A heuristic decision
algorithm based on the MSA method was designed to
obtain approximate fxed-point expressions in the discon-
tinuous case to model public transportation route choice
behavior.

2.3. ResearchGaps. Based on the abovementioned literature,
two research gaps can be identifed. First, the existing re-
search has not broadly focused on network equilibrium or
BEV transportation network design considering the boun-
ded rationality of travelers. In almost all previous studies, it
was assumed that drivers are completely rational when
discussing network fow equilibrium. However, with the
development of transportation technology and information
technology in recent years, the uncertainty and complexity
of the transportation environment have increased. Travelers
often do not have access to all the information they need,
making it difcult for them to be completely rational when
making decisions. Tus, studies of BRUE in BEV trans-
portation networks make more sense in the context of our
article. Second, algorithm development for network design
models with bounded rationality has been limited, especially
for BEV transportation networks. Existing studies have
proposed several local or global optimal algorithms for
solving perfect rational NDPs. However, the objective
function of robust optimization involved in our article is
diferent from that in existing research. Currently, research
on methods for solving robust optimization models in the
context of bounded rationality is still insufcient. Tus,
determining how to solve robust optimization models with
network equilibrium conditions remains a challenge. To fll
these two research gaps, we frst defne the bounded ra-
tionality of travelers in a BEV transportation network and
then provide a mathematical expression of the BRUE state in
the network. Next, a model is constructed to solve the
transportation NDP. Finally, considering the characteristics
of the model, a heuristic algorithm based on the framework
of ASA is designed to obtain a local optimal solution.
Overall, the above model and algorithm can provide the
necessary decision support for the government to rationally
construct the transportation infrastructure and achieve
sustainable urban transportation development.

3. Problem Description

3.1. Assumptions and Notations. To facilitate modeling, we
introduce several assumptions for the BNDP. Most of these
assumptions are drawn from the established literature to
ensure that we do not oversimplify the problem.

(1) Behavior of BEV drivers: When a BEV driver
chooses a transportation path, it is assumed that he
or she will follow the bounded rationality principle.
Under the infuence of this principle, when the
diference between the travel times along diferent
paths is below a given threshold (e.g., 10minutes or
20minutes), all these paths are considered feasible
paths (see Section 4.1 for the defnition) for BEV
drivers [55]. Te BEV transportation network
equilibrium state based on this principle is further
called the BRUE state. Due to the nonuniqueness of
feasible paths, the vehicle fow distribution in the
BRUE state also becomes nonunique.

(2) Charging time of BEVs: Unlike traditional GVs,
BEVs require charging times that generally take
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several hours [5]. Terefore, if a BEV needs to be
charged during travel, the charging time cannot be
ignored and needs to be added to the travel time. We
assume that BEV drivers can charge their BEV only
at a charging station in the BEV transportation
network. Te charging time is proportional to the
amount of battery that needs to be charged, as noted
by He et al. [35]. It is assumed that each charging
station has only one type of charging pile and that the
number of charging piles at a charging station is
sufcient. In other words, we do not consider the
case of BEV queuing at charging stations (following
Chen et al. [49]). Some might argue that queuing is
a factor to consider. If we add a virtual link before the
charging station, then a BEV can drive on the virtual
link before arriving at the charging station. After we
reasonably adjust the performance function of this
virtual link, we can consider the queuing of BEVs at
the charging station. Tis modifcation does not
afect the solution difculty of the model.

(3) BEV energy consumption and the range anxiety of
travelers: Each BEV has a fxed battery storage ca-
pacity; thus, we assume that each BEV has the same
initial battery power (i.e., the SOC of the battery
before the trip). Note that this assumption can be
relaxed by introducing diferent types of BEVs, and
diferent types of BEVs have diferent battery ca-
pacities and SOCs (same as Chen et al. [49]). Te
battery power decreases linearly as the transportation
distance increases. Due to the existence of range
anxiety, BEV drivers will not allow the SOC of the
battery to fall below a predetermined value at any time
(e.g., 5 kWh or 10 kWh, following He et al. [35]).

(4) Link performance function: Te relationship be-
tween the trafc fow volume and the travel time
along each link can be abstracted as a function called
the performance function [5]. We assume that in
a BEV transportation network, the performance
function for each link follows the form of the Bureau
of Public Roads (BPR) function (following He et al.
[35]). Moreover, the travel times on diferent links
are assumed to be additive.Tis means that the travel
time along a path is equal to the sum of the travel
times on all links it contains (following Cheng
et al. [5]).

(5) Te government’s decision: Te government aims to
establish a reasonable network design scheme
(specifcally, a lane expansion scheme) with the goal
of minimizing the system travel time under a limited
budget. We assume that the government will not
construct additional links and will only expand lanes
based on existing links. In addition, for modeling
convenience, we assume that the government can
expand each link by 3 lanes at most and that a new
lane associated with the same link has the same
capacity as old lanes.Te above assumptions can also
be relaxed by introducing additional binary variables
(same as Cheng et al. [5]).

For convenience, the notations frequently used in this
article are given as follows:

Sets:

N1: set of nodes with charging stations
N2: set of nodes without charging stations
N: set of nodes, where N � N1 ∪N2
A: set of links
W: set of O-D (origin-destination) pairs
Pw: set of usable paths for O-D pair w

P+
w: set of usable paths with trafc fows greater than 0,

where P+
w: � p: fw

p > 0, p ∈ Pw􏽮 􏽯

A(p): set of links along path p

Parameters:

a or (i, j): link a � (i, j)

w or (r, s): O-D pair w � (r, s)

p: path p

o(w): origin of O–D pair w

δw
ap: the path-link incidence, which equals 1 if path

p ∈ Pw includes link a and 0 otherwise

Decision variables:

xa: vehicle fow on link a

fw
p : vehicle fow on usable path p for O–D pair w

u(a,k): a binary variable; 1 when expanding link a by k
lanes and 0 otherwise

3.2. BEV Transportation Network Formulation. A typical
BEV transportation network can be abstracted as
G: � (N, A). Here, G is defned to consist of a node set N

and a link set A. Diferent from a traditional urban trans-
portation network, there are charging stations at some nodes
in the BEV transportation network. To describe the
abovementioned situation, we let N: � N1 ∪N2, where N1
and N2 represent the sets of nodes with and without stations,
respectively. Moreover, equation (1) is the performance
function used to describe the travel time of BEVs along each
link. Tis equation has the same form as the BPR function
according to Assumption (4):

ta va, l(a,k)􏼐 􏼑 � t
0
a 1 + α1

va

Ccap
a + Cunit

a l(a,1) + 2l(a,2)􏼐 􏼑
⎛⎝ ⎞⎠

α2
⎡⎢⎢⎣ ⎤⎥⎥⎦.

(1)
In the above equation, we let ta(va, u(a,k)) denote the

travel time on link a with va and u(a,k) and a: � (i, j)

represent a link, where j and i are the head node and tail
node of link a, respectively. Notations va and l � (l(a,k))

denote the vehicle fow volume and the lane expansion
scheme for link a. Here, l(a,k) is a binary variable, and when it
is equal to 1, the government expands link a by k lanes.
Notably, we only consider k � 1 and k � 2 in equation (1) to
match Assumption (5). Equation (1) could easily be applied
to add any number of lanes. t0a, Ccap

a , and Cunit
a denote the

free-fow travel time, current capacity, and increase in ca-
pacity after expanding link a by one lane, respectively. Fi-
nally, α1 and α2 are two positive parameters that are
predetermined.
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4. Model Establishment

4.1.Formulationof theBRUEState. In this section, the BRUE
state in the BEV transportation network is discussed. We
assume that all vehicles in the transportation network are
BEVs. Tis is because with strict environmental policies
being established by various governments, BEVs will come
to dominate transportation networks in the foreseeable
future [5]. We can also relax the abovementioned as-
sumption by introducing diferent types of vehicles (e.g.,
GVs, HEVs, and BEVs). According to the bounded ratio-
nality principle, each BEV driver can choose his or her travel
path freely from origin to destination when the travel times
along several paths do not exceed a threshold value (e.g.,
10minutes or 20minutes). However, due to limited battery
capacity and range anxiety phenomena, some paths are not
feasible for a BEV driver. To describe the diferent properties
of a path in a BEV transportation network, we frst present
several defnitions as follows.

Defnition 1. (useable path). A path is useable if and only if
the BEV drivers can complete the journey by selecting this
path and the SOC of the battery will not cause the drivers to
feel range anxiety at any time during their trip [35].

Defnition 1 indicates that, in a BEV transportation
network, the SOC at any point along a usable path must be
greater than or equal to the minimum battery power that
causes range anxiety. We use Figure 1 to further illustrate
Defnition 1.

A BEV transportation network with 4 nodes and 5 links
is shown in Figure 1, and the length of each link is marked
above it. We mark several nodes with shading to indicate
that they are the nodes with charging stations (i.e., Node 2
and Node 3 in Figure 1). We assume that a BEV driver needs
to travel from Node 1 to Node 4. Terefore, there are three
options for the driver: 1-2-4 (Path 1), 1-4 (Path 2), and 1-3-4
(Path 3). We set the battery capacity to 15 kWh and the BEV
electricity consumption to 1 kWh per kilometer. Te battery
of the BEV is fully charged at Node 1 (i.e., the SOC of the
BEV equals 15 kWh). Based on the above information, we
fnd that Path 2 is unusable (even without considering range
anxiety) because the BEV battery power consumed on link
(1, 4) is equal to 20 kWh. If we defne the range anxiety of the
BEV driver as 2 kWh, then Path 1 further becomes unusable.
Tis is because after the BEV driver travels 13 kilometers on
link (2, 4), the SOC of the BEV will be less than 2 kWh.
Similarly, if their range anxiety is further increased to 3 kWh,
the BEV driver will not be able to reach Node 4 from Node 1
because all paths are unusable. Based on Defnition 1, we
further present the following defnitions of a feasible path
and the network BRUE state to describe travel in a BEV
transportation network:

Defnition 2. (feasible path). For each origin-destination (O-
D) pair, a path is feasible if and only if this path is usable
(satisfes Defnition 1), and the diference between the travel
time along this path and the travel time along the path with
the shortest travel time is no larger than a threshold value [5].

Defnition 3. (network BRUE state). Te trafc fow dis-
tribution in the BEV transportation network reaches the
BRUE state if and only if all transportation demands are
satisfed and each BEV travels along a feasible path defned in
Defnition 2 [55].

To model the BRUE state in the BEV transportation
network, we let W represent the O-D pair set, with corre-
sponding element w (e.g., Node A to Node B). Pw denotes
the set of all usable paths in the BEV transportation network
defned in Defnition 1, and the corresponding element is p.
We set fw

p and cw
p as the trafc volume and shortest charging

time for the BEV driver on path p ∈ Pw, respectively. Te
abovementioned charging time cw

p should ensure that there
is no range anxiety on path p. δw

ap is a binary variable. If path
p ∈ Pw consists of link a ∈ A, then δw

ap equals 1; otherwise, it
equals 0. Te O-D demand of pair w is denoted as qw. Fi-
nally, we assume that BEV drivers with the same trans-
portation demand (i.e., same origin and destination) have
the same bounded rationality threshold value, i.e., εw. Tis
assumption can also be relaxed by introducing diferent
types of BEV drivers. Tus, we can establish the following
proposition:

Proposition 1. Vector (v, f)T � (va, fw
p )T denotes a BRUE

trafc fow distribution for the BEV transportation network if
and only if for each w, a λw solution exists that satisfes the
following equilibrium conditions:

c
w
p ≥ λ

w∀p ∈ Pw, (2)

c
w
p ≤ λ

w
+ εw∀p ∈ P

+
w

≔ p: f
w
p > 0, p ∈ Pw􏽮 􏽯,

(3)

􏽘
p∈Pw

f
w
p � qw, (4)

va � 􏽘
w∈W

􏽘
p∈Pw

f
w
pδ

w
ap ∀a ∈ A

, (5)

c
w
p � 􏽘

a∈A(p)

ta va, l(a,k)􏼐 􏼑 + c
w
p∀p ∈ Pw,

(6)

where f � (fw
p )≥ 0.

1

2

3
13 km

13 km

420 km

Link

Node without charging station

Node with charging station

15 km

3 km

Figure 1: An example BEV transportation network.
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Proof. See the proof in Section 2.1 of Lou et al. [55] for
details (Q.E.D.).

However, when incorporating these equilibrium con-
ditions into a model, all paths in the BEV transportation
network need to be enumerated due to the existence of
constraint (3) since it requires fw

p > 0. To facilitate the model
solution process, we further introduce a slack variable εw

p to
transform the BRUE conditions (1) to (6) as follows:

c
w
p − εw

p − λw
� 0∀p ∈ Pw, w ∈W, (7)

f
w
p εw

− εw
p􏼐 􏼑≥ 0∀p ∈ Pw, w ∈W, (8)

􏽘
p∈Pw

f
w
p � qw∀w ∈W, (9)

c
w
p � 􏽘

a∈A(p)

ta va, u(a,k)􏼐 􏼑

+ c
w
p∀p ∈ Pw, w ∈W,

(10)

where ε � (εw
p ) and (f, ε)≥ 0.

Remark 1. We can easily verify that when εw equals 0, the
variable λw represents the equilibrium travel time for O-D
pair w in the PRUE state, as noted by He et al. [35]. When
εw > 0, the trafc fow distribution that satisfes constraints
(1), (5), and (7)–(10) is a BRUE distribution according to
Defnition 3. Currently, λw represents the shortest travel
time for O-D pair w, and εw

p denotes the diference between
the travel time along path p ∈ Pw and the shortest travel time
λw ∈W.

4.2. Robust BEVNetwork DesignModel. Before constructing
the network design model, we frst focus on the solution of
the network equilibrium state (i.e., the BRUE state). In the
BRUE state, the trafc fow along each link is not unique
because BEV derivers can choose arbitrarily from several
feasible paths [55]. Tis uncertainty poses a challenge for the
government in BEV transportation network design. How-
ever, among the numerous choices of travelers, there are two
extreme situations: the shortest system travel time case (the
best case) and the longest system travel time case (the worst
case). In this section, we frst focus on the abovementioned
two extreme cases in BEV transportation networks because
the trafc fow distributions in these two situations can
provide estimates of the performance of the BEV trans-
portation network design. Referring to the modelingmethod
proposed by Liu and Song [50], we construct a network
equilibriummodel as an MPCC to facilitate the design of the
corresponding solution algorithm. To transform constraint
(8) into an equilibrium constraint, we frst introduce a slack
variable, say yw

p . Tus, the model that can provide the best-/
worst-case solution for the BEV transportation network is
established as follows: BC/WC-BRUE with vector
(v, f , y, ε, λ)T as decision variables. In BC/WC-BRUE, con-
straint (8) is converted into constraints (12) to (14).

BC/WC-BRUE:

min /max
(v,f ,y,ε,λ)

􏽘
a∈A

􏽘
k�1,2

ta va, l(a,k)􏼐 􏼑va + 􏽘
w∈W

􏽘
p∈Pw

c
w
p f

w
p ,

(11)

s.t. (1), (5), (7), (9), and (10),

f
w
p y

w
p � 0 ∀w ∈W, p ∈ Pw , (12)

y
w
p ≥ ε

w
p − εw ∀w ∈W, p ∈ Pw , (13)

y
w
p ≥ 0∀w ∈W, p ∈ Pw, (14)

where (f , ε, o)≥ 0, v � (va), y � (yw
p ), and λ � (λw).

Ten, we construct a robust network design model based
on the above BC/WC-BRUE model. For a real-world
decision-making problem, if the solution scheme to the
problem can improve upon the worst-casesolution, then we
consider the scheme robust [55]. In the urban transportation
NDP, the government is often cautious of the worst case
when formulating policies. Tis motivates us to provide
a robust optimization solution as a powerful decision-
making reference for the government. Based on the equi-
libriummodel, a robust optimization model (i.e., a min-max
programming model) for solving the BNDP (short as
BNDPM) is given as follows. Before introducing the model,
we defne the following notations. Let Imax denote the upper
limit of government investment and ξa represent the in-
vestment required to expand link a by one lane. Ten, the
BNDPM can be expressed as follows.

BNDPM:

min
l

max
(v,f ,y,ε,λ)

􏽘
a∈A

􏽘
k�1,2

ta va, l(a,k)􏼐 􏼑va + 􏽘
w∈W

􏽘
p∈Pw

c
w
p f

w
p ,

(15)

s.t. (1), (5), (7), (8), (9), (10), (12), (13), and (14),

􏽘
a∈A

ξa l(a,1) + 2l(a,2)􏼐 􏼑≤ Imax, (16)

0≤ l(a,k) ≤ 1∀a ∈ A, k � 1, 2, (17)

l(a,k) 1 − l(a,k)􏼐 􏼑 � 0∀a ∈ A, k � 1, 2, (18)

where l � (l(a,k)).
Equation (15) is the objective function, and the lane

expansion scheme l � (l(a,k)) minimizes the worst-case
scenario (i.e., the fow distribution associated with the
longest system travel time) in the BEV transportation net-
work. Constraint (16) restricts the investment from ex-
ceeding the ceiling Imax. Constraints (17) and (18) ensure
that the variable l(a,k) is binary.

To facilitate the description of this problem, we divide
the objective function of the BNDPM into two parts: the
inner problem and the outer problem. A similar division
approach was used by Lou et al. [55]. Te inner problem
refers to the maximized part of objective function (15), i.e.,
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max
(v,f ,y,ε,λ)

􏽐
a∈A

􏽐
k�1,2

ta(va, l(a,k))va + 􏽐
w∈W

􏽐
p∈Pw

cw
p fw

p . We let Γ(l),

Θ, and ψ(Θ) represent the feasible region, decision variable
vector, and objective function of the inner problem of the
BNPDM, respectively. Ten, the inner problem of the
BNPDM can be equivalently expressed as BNDPM-IN:

BNDPM − IN: Ω(l) � argmax
Θ

ψ(Θ): Θ ∈ Γ(l)􏼈 􏼉. (19)

Based on the expression proposed above, we can further
convert the original BNDPM into BNDPM-R, which is
shown as follows.

BNDPM-R:

min
l
Ω(l), (20)

subject to Ω(l) � argmax
Θ

ψ(Θ): Θ ∈ Γ(l)􏼈 􏼉 and constraints
(16) to (18).

By analyzing the BNDPM-R, we can observe a certain
connection between the inner problem and the outer
problem; specifcally, the feasible region of the inner
problem Γ(u) is determined based on the decision variable
(i.e., vector l) of the outer problem. Te abovementioned
relationship can be used to transform the BNDPM (or
BNDPM-R) into a generalized semi-infnite min-max
problem [60]. However, solving such problems has always
been a challenge [55]. To date, only a few studies (e.g., Royset
et al. [61] and Polak and Royset [60]) have discussed the
solution to this kind of problem. Moreover, the inner
problem is an MPCC because of the existence of constraints
(12) to (14).Tis characteristic further causes the BNDPM to
violate the Mangasarian–Fromovitz constraint qualifcation
at any feasible point in set Γ(l). Terefore, the algorithms
proposed by previous scholars may not be suitable for
solving the BNDPM or BNDPM-R. To obtain an efective
solution to the abovementioned model, we modify the
method proposed by Lou et al. [55] and design a heuristic
algorithm, as described in Section 5.

5. Solution Approach

In this section, we solve the robust network design model
with an ASA-based heuristic method. Te steps of this al-
gorithm are briefy summarized as follows: First, a series of
active sets is created according to the equilibrium conditions
of the network equilibrium model. Ten, we obtain the
BRUE state of the BEV transportation network by solving
the BC/WC-BRUE model based on the ASA. To avoid the
enumeration of paths, we need to use the CGA to generate
feasible paths before solving the model. Finally, the robust
network design model is converted into an ordinary semi-
infnite optimization problem and solved with an ASA-based
cutting-plane method. Te method used to construct the
active set and the solution procedure of the BC/WC-BRUE
model is introduced in Section 5.1. CGA for path enu-
meration is also introduced in this section. Section 5.2
presents the method used to transform the robust network
design model and the ASA-based cutting-plane method,
which is used to solve the transformed model. See He et al.

[35] for a detailed introduction to the proof of convergence
of the algorithm.

5.1. Solution Procedure for the BC/WC-BRUE Model. Te
core concept of the ASA is to rewrite the two parts of one
equilibrium condition into two diferent constraints. For
example, in BC/WC-BRUE, the mathematical expression of
the equilibrium condition (12) can be rewritten as the fol-
lowing equation:

0≤f
w
p⊥y

w
p ≥ 0∀w ∈W, a ∈ A. (21)

Notably, this condition consists of two parts: variables
fw

p and yw
p . Terefore, we develop two active sets, namely,

ΦP: � (w, p): fw
p � 0,∀p ∈ Pw, w ∈W􏽮 􏽯 and ΦP: �

(w, p): yw
p � 0,∀p ∈ Pw, w ∈W􏽮 􏽯, according to constraint

(19). Based on sets ΦP and ΦP, BC/WC-BRUE can be
reformulated as R-BC/WC-BRUE, which is shown as
follows.

R-BC/WC-BRUE:

min /max
(v,f ,y,ε,λ)

􏽘
a∈A

􏽘
k�1,2

ta va, l(a,k)􏼐 􏼑va + 􏽘
w∈W

􏽘
p∈Pw

c
w
p f

w
p ,

(22)

s.t. (1), (5), (7), (9), (10), (13), and (14),

f
w
p � 0 ∀(w, p) ∈ ΦϖP , (23)

y
w
p ≥ 0∀(w, p) ∈ ΦϖP , (24)

f
w
p ≥ 0∀(w, p) ∈ ΦϖP , (25)

y
w
p � 0∀(w, p) ∈ ΦϖP , (26)

where ε≥ 0.
We use the solution of WC-BRUE as an example and

introduce the ASA as follows:

Step 1: Let ϖ � 1 and solve for the PRUE state of the
BEV network with l � 0 by applying the algorithm
proposed by Xin et al. [62] or the classic Frank–Wolfe
algorithm. To avoid path enumeration, we also develop
a CGA to accelerate the algorithm computation pro-
cess. Moreover, to obtain good strongly stationary
solutions, one may also execute this step with multiple
initial solutions [55]. Based on the solution
(v, f , y, ε, λ)T, we set Φ1P and Φ1P and proceed to Step 2.
Step 2: Let vector (vϖ, fϖ, yϖ, εϖ, λϖ)T solve the R-
BC-BRUE problem, and go to Step 3.
Step 3: Set ΠϖP : � (w, p) ∈ ΦϖP ∩Φ

ϖ
P

: ](w,p)
ϖ > 0􏽮 􏽯,

where ](w,p)
ϖ represents the multipliers associated with

constraint (21). If ΠϖP � ∅, then stop. At this point, the
vector (vϖ, fϖ, yϖ, εϖ, λϖ)T reaches the local optimum of
the R-BC-BRUE problem; otherwise, go to Step 4.
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Step 4: Set Φϖ+1P � ΦϖP −ΠϖP and Φϖ+1
P

� (w, p): yw
p􏽮

� 0,∀p ∈ Pw, w ∈W}, and go to Step 5.
Step 5: Set ϖ � ϖ + 1, and go to Step 2.

Here, we introduce the CGA in Step 1 in detail. Recall that
Defnition 1 indicates that not all paths are usable in the BEV
transportation network.Tis requires us to calculate the usable
paths before solving for the BRUE state of the BEV trans-
portation network to avoid enumerating paths for each O-D
pair w ∈W. Tis approach motivated us to modify the CGA
proposed by Cheng et al. [5] to accelerate the algorithm cal-
culation process. Before proposing the algorithm calculation
process, we need to develop amodel and introduce the relevant
notations for each O-D pair w. Let 􏽥va denote the BEV fow
volume on link a. Since v is a variable in the model, a wavy line
is added above it to distinguish the variable va. Similarly, we use
􏽥l(a,k) to represent the parameter associated with the lane ex-
pansion scheme. mw

a is a binary variable. When the CGA
obtains a new usable path p ∈ Pw containing link a ∈ A, the
value of the binary variable is 1; otherwise, it equals 0. ei and gi

denote the charging operation time (i.e., the time required by
the driver to prepare before the BEV starts charging) and the
charging time at node i ∈ N1, respectively. Cw

i is a binary
variable indicating whether the BEV charges at node i ∈ N1.
Hw

i represents the increase in SOC per unit time at node
i ∈ N1. Λ is a node-link incidence matrix. Rw is a vector of
length |N|, where the notation | · | denotes the cardinality of
a set. Only two nonzero components are included in Rw: the
value of one component is 1 and that of the other is −1. Tese
components are associated with the origin (denoted as o(w))
and destination (denoted as d(w)) of O-D pair w, respectively.
In terms of battery-related information for BEVs, we use S0 and
Sw

i to denote the initial SOC of the BEV and the SOC at node
i ∈ N1, respectively. Smax represents the maximum SOC of the
BEV. ua and r denote the length of link a and the BEV energy
consumption per unit distance, respectively. θw

a is a binary
variable and equals 1 only when mw

a � 1. RAw indicates the
lower limit of the SOC allowed by the driver, which is asso-
ciated with range anxiety. Oi represents the amount of charge
that the charging station at node i ∈ N can provide. For node
i ∈ N1, Oi is a sufciently large number; for node i ∈ N2, Oi

equals 0. Finally, Q and T are two sufciently large positive
numbers.

CGA: For each O-D pair w,

min
(M,C,H)

􏽘
a∈A

􏽘
k�1,2

ta 􏽥va,􏽥l(a,k)􏼐 􏼑m
w
a + 􏽘

i∈N1

eiC
w
i + giH

w
i( 􏼁,

(27)

s.t.ΛMw � Rw, (28)

S
w
j − S

w
i + uar − H

w
j � θw

a ∀(i, j) � a ∈ A, (29)

S
w
i − uar≥ − Q 1 − m

w
a( 􏼁 + RAw ∀(i, j) � a ∈ A , (30)

−T 1 − m
w
a( 􏼁≤ θw

a ≤T 1 − m
w
a( 􏼁 ∀a ∈ A , (31)

0≤H
w
i ≤Oi ∀i ∈ N , (32)

0≤ S
w
i ≤ Smax ∀i ∈ N , (33)

S
w
o(w) � S0, (34)

m
w
a ∈ 0, 1{ } ∀a ∈ A , (35)

C
w
i ≥

H
w
i

Omax
∀i ∈ N , (36)

Omax � max
i∈N1

Oi􏼈 􏼉, (37)

C
w
i ∈ 0, 1{ } ∀i ∈ N , (38)

where Mw � (mw
a ), C � (Cw

i ), and H � (Hw
i ).

Based on the abovementioned model, we propose the
following method to explore the usable paths for each O-D
pair by applying the CGA:

Step 1: For each w ∈W, we set 􏽥v � 0 and solve the
model. A set Pw � pw􏼈 􏼉 is created based on the metric
M, and cw

p is calculated accordingly.
Step 2: We solve for the BRUE state of the network
based on Pw (see the algorithm proposed in Section 5.1
for details) and obtain vector (􏽥v, 􏽥λ

w
)T.

Step 3: For each w ∈W, we solve the CGA again and
obtain a new usable path pw. For all O-D pairs, if
􏽐

a∈A
􏽐

k�1,2
ta(􏽥va,􏽥l(a,k))m

w
a + 􏽐

i∈N1

(eiC
w
i + giH

w
i )≥ 􏽥λ

w
+ εw

always holds, then vector (􏽥v, 􏽥λ
w

)T represents the BRUE
fow distribution in the BEV transportation network;
otherwise, go to Step 2.

5.2. Solution Procedure for the Robust Optimization Model.
In this section, an ASA-based heuristic algorithm is designed
to solve the robust optimization model, i.e., the BDNPM.
Since the inner problem and outer problem of the original
model afect each other, we frst consider separating these
two problems. Here, we convert BNDPM-IN into P-
BNDPM-IN by adding a penalty term. With this approach,
an ordinary semi-infnite optimization problem is obtained,
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and this problem can be solved with the cutting-plane
method proposed by Lawphongpanich and Hearn [63].

P-BDNPM-IN(l):

max
(v,f ,y,ε,λ)

􏽘
a∈A

􏽘
k�1,2

ta va, l(a,k)􏼐 􏼑va + 􏽘
w∈W

􏽘
p∈Pw

c
w
p f

w
p − B 􏽘

w∈W
􏽘

p∈Pw

c
w
p − 􏽘

a ∈ A(p)

ta va, l(a,k)􏼐 􏼑 − c
w
p

⎛⎝ ⎞⎠

2

, (39)

s.t. (1), (5), (7), (9), (12), (13), and (14).
Let 􏽢ψ(Θ, l) denote function (39) and Ξ denote the

feasible region of the above model. If the penalty is infnite,
then 􏽢ψ(Θ, l) is an upper bound of ψ(Θ). For a feasible BEV
transportation network lane expansion scheme l, we let Θ
denote the solution to BNDPM-IN. 􏽢Θ represents the so-
lution to P-BDNPM-IN(l) for some B> 0. Ten, we can
obtain the following relationship:

ψ(Θ) � 􏽢ψ(Θ, l),
􏽢ψ(Θ, l)≤ 􏽢ψ( 􏽢Θ, l).

⎧⎨

⎩ (40)

When 􏽢ψ(Θ, l) is minimized,
B 􏽐

w∈W
􏽐

p∈Pw

(cw
p − 􏽐

a ∈ A(p)

ta(va, l(a,k)) − cw
p )2 in the objective

function equals zero, so the equation in equation (40) holds.
Moreover, since Θ is a feasible solution to P-BDNPM-IN(l),
the inequality in equation (40) also holds. Based on these
notations, we develop a penalized BDNPM (short as
BDNPM-P) as follows.

BDNPM-P:

min
u

max
Θ∈Ξ

􏽢ψ(Θ, l), (41)

subject to constraints (16), (17), and (18).
Note that BDNPM-P is an ordinary semi-infnite opti-

mization problem because the feasible region of the inner
problem (i.e., Ξ) is not related to the variablel. To apply the
cutting-plane method, we introduce an auxiliary variable ς
and convert BDNPM-P into BDNPM-P-1.

BDNPM-P-1:

min
(l,ς)

ς, (42)

subject to ς≥ 􏽢ψ(Θ, l) for all Θ ∈ Ξ and constraints (16), (17),
and (18).

Ten, we use Θ1, Θ2, . . ., Θn to represent the elements of
set Ξ and propose a relaxed version of BDNPM-P-1, namely,
R-BDNPM-P-1.

R-BDNPM-P-1:

min
(l,ς)

ς, (43)

subject to ς≥ 􏽢ψ(Θi, l) for all i � 1, 2, . . . , n and constraints
(16), (17), and (18).

It should be noted that, in R-BDNPM-P-1, we introduce
a set called Ξ ≔ Θ1,Θ2, ...,Θn􏼈 􏼉 to approximate set Ξ. Let
(􏽥l, 􏽥ς) denote a global optimal solution to R-BDNPM-P-1. If
(􏽥l, 􏽥ς) is feasible for BDNPM-P-1, then it is also an optimal

solution to R-BDNPM-P-1. Te feasibility of (􏽥l, 􏽥ς) can be
verifed by comparing 􏽢ψ( 􏽥Θ,􏽥l) and 􏽥ς. Specifcally, if the
solution 􏽥Θ to P-BDNPM-IN(􏽥l) satisfes 􏽢ψ( 􏽥Θ,􏽥l)≤􏽥ς, then
(􏽥l, 􏽥ς) is a feasible (also optimal) solution to BDNPM-P-1.
Otherwise, (􏽥l, 􏽥ς) is infeasible for BDNPM-P-1. At this time,
R-BDNPM-P-1 should be solved again to obtain an im-
proved solution with Ξ∪ 􏽥Θ􏽮 􏽯. Based on the above de-
scriptions, we give the solution procedure for the BNDPM as
follows:

Step 1: Set l � 0, and solve WC-BRUE with ASA to
obtain Θ1. Set the parameter τ � 1, and let Ξτ � Θ1􏼈 􏼉.
Step 2: Solve R-BDNPM-P-1 with Ξτ , and obtain
(lτ , ςτ)T.
Step 3: Solve P-BDNPM-IN (lτ) with lτ , and obtain
Θ(τ+1) � (v(τ+1), f(τ+1), y(τ+1), ε(τ+1), λ(τ+1)).
Step 4: If 􏽢ψ(Θ(τ+1), lτ)≤ ςτ , stop; currently, vector lτ is
a locally optimal robust lane expansion scheme for the
BEV transportation network. Otherwise, go to Step 5.
Step 5: Set Ξ(τ+1)

� Ξτ ∪ Θ(τ+1)􏽮 􏽯 and τ � τ + 1, and go
to Step 2.

6. Numerical Example

In this section, numerical experiments are performed based
on the transportation network in Sioux Falls [64, 65]. As
shown in Figure 2, 24 nodes, 76 links, and 90 O-D pairs exist
in this network according to Cheng et al. [5].

6.1. Parameter Setting. For the performance parameters of
BEVs, we set the BEV power limit to 40 kWh and the initial
SOC of all BEVs to 25 kWh according to Cheng et al. [5].Te
power consumption per kilometer of all BEVs is set to 0.29
kWh according to the data presented by He et al. [35]. For
the parameters in the performance function (i.e., equation
(1)), we let α1 � 0.15 and α2 � 3 [5]. Moreover, tfreea and CAa

were set as recommended by He et al. [35].Te link distances
are assumed to be 2.5 times the link free-fow travel times.
For all O-D pairs, the range anxiety for BEV drivers is set to
0.1 kWh. For the parameters in the CGA model, we let ei �

0.3 for all charging stations, gi �

0.7, Level A station
10.0, Level B station
40.0, Level C station

⎧⎪⎨

⎪⎩

min/kWh, and S0 � 0.25Smax based on the research of Chen
et al. [49]. Te bounded rationality parameter for traveler εw

is set to α times the path travel time in the PRUE state, and
we conduct a sensitivity analysis of α. Finally, we set 5 nodes
in the transportation network with charging piles. Node 11
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and Node 15 are equipped with Level A charging piles. Node
5 and Node 16 are equipped with Level B charging piles. At
Node 12, several Level C charging piles are installed.

All the codes were run on a computer with an Intel (R)
Core (TM) i7-1260P CPU and 16GB of RAM. Tis com-
puter was manufactured by Lenovo (in China). Among the
various models constructed in this article, the nonlinear
programming models were solved with CONOPT, the
mixed-integer linear programming models were solved with
CPLEX 12.4 [67], and the mixed-integer nonlinear pro-
gramming models were solved with DICOPT [68].

6.2. Sensitivity Analysis of the Degree of Bounded Rationality.
In this section, we adjust parameter α associated with
bounded rationality to observe the impact of diferent de-
grees of rational behavior on the vehicle fow distribution in
the BEV transportation network. We set the range of pa-
rameter α from 0.00 to 0.20 and perform 20 experiments
with 0.01 as the step size.Te convergence of the algorithm is
shown in Figure 3 (worst case, α� 0.20). Te best-/worst--
case system total travel times in diferent situations are
shown in Figures 4 and 5, respectively.

As parameter α gradually increased, the BEV trans-
portation network total travel time in the best case gradually
decreased and tended to stabilize. In contrast, the system
travel time in the worst case gradually increased. Te above
situation is in line with our expectations. As parameter α
increases, the choice behaviors of BEV drivers in the
transportation network become increasingly irrational.
Additionally, a BEV driver canmake concessions to facilitate
the travel of other individuals.Terefore, the total travel time
in the BEV transportation network in the best case will
gradually tend to the system optimal (SO) state. Conversely,
the opposite trend occurs in the worst case. With increasing
irrationality (increase in parameter α), the behaviors of BEV
drivers may hinder the travel of other individuals in extreme

cases, thus increasing the total travel time of the BEV
transportation network. Terefore, the diference between
the best- and worst-case BRUE states increases. Specifcally,
in our experiments, the diference between the two increased
from 100.26minutes when α � 0.01 to 35,444minutes when
α � 0.20. Tese two values difer by a factor of more
than 350.

We further determine the BEV fow distribution for the
best and worst cases with α � 0.05 and α � 0.20. Notably, as
parameter α increases, the BEV fow distribution in the
PRUE state will not change; however, the diference between
the best- and worst-case BRUE states becomes more obvi-
ous. For example, when parameter α � 0.05, the fow dif-
ference for link (1, 2) in the best and worst cases is only 0.41.
However, when parameter α increases to 0.20, this fow
diference increases to 6.67. Another noteworthy phenom-
enon is that the fows along some links are 0. Specifcally,
BEVs have limited SOC capacities, and the range anxiety of
travelers may limit vehicle use. Moreover, some links may
not be included in a usable path due to the particularities of
the corresponding geographical locations.

6.3. Sensitivity Analysis of the Government Investment Scale.
In this section, we fx the parameter α and explore the
changes in the lane expansion scheme for the BEV trans-
portation network by adjusting the scale of government
investment. We set α � 0.10, and the investment scale is
increased from 0 to 100 in steps of 20. Terefore, six sce-
narios (C0 to C5) are explored. Te optimal lane expansion
schemes and system travel times in diferent scenarios are
shown in Table 1. Te system travel times in diferent
scenarios are also shown in Figure 6.

Notably, with increased government investment, the
number of lane expansions signifcantly increases. Te
number of lane expansions increases from 4 in Scenario C1
to 24 in Scenario C5, an increase of 600%. Te system travel
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Figure 2: Te Sioux Falls network (source: He et al. [66]).
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time is reduced by 13915.06minutes; however, this de-
creasing trend is not signifcant. Specifcally, the limited
travel distance of BEVs and traveler anxiety limit the number
of usable paths available in the BEV transportation network.
Tus, the government could further reduce the travel time of
vehicles in the system by simultaneously establishing
charging stations and implementing lane expansion.

In addition, Figure 6 shows that the system travel time
insignifcantly decreases when the investment amount in-
creases from 20 to 40. Subsequently, the efect of investment
is not as obvious as that in the previous scenarios. Tis result
suggests that government investment is characterized by
diminishing marginal returns. In other words, with in-
creasing government investment, the corresponding rate of
decrease in system travel time will frst increase and then
decrease. Based on the current parameters, the government’s
optimal investment scale should be 40. Te above phe-
nomenon indicates that for diferent investment goals, the
government should scientifcally set the investment scale to
maximize social welfare.

On the one hand, as the scale of government investment
increases, the number of lanes included in expansion
gradually increases.Tis fnding is consistent with the results
in the table. On the other hand, the links where the expanded
lanes are located are almost all connected to nodes with
charging stations (e.g., Node 5, Node 11, Node 12, and Node
16). Tis situation is in line with expectations. Te links
connected to nodes with charging stations are more likely to
become components of usable paths. Moreover, as the scale
of government investment increases, some links repeatedly
appear in lane expansion schemes (e.g., links 2–6, 4–11, and
5–9). Tese links are bottlenecks in the current trans-
portation network. Te government should focus on such
bottleneck sections in the system and expand them frst to
efectively alleviate congestion in the entire network.

6.4. Managerial Insights. Based on the above calculation
results, we can obtain the following managerial insights:

(1) Te bounded rational behavior of BEV drivers sig-
nifcantly afects the total system travel time. Tis
suggests that the governmentmust consider the diverse
travel behaviors of travelers when developing the
transportation infrastructure. Due to the irrational
behavior of travelers, there may be deviations between
the distribution of trafc fow and the government’s
forecast, which in turn could result in a large number of
inefective investment policies. Te government must
fully investigate the travel behaviors of users in a region
and then implement appropriate decisions regarding
BEV transportation network design or other trans-
portation infrastructure construction. Moreover, as the
bounded rationality threshold increases, the system
travel time in the best case in the BEV transportation
network develops toward the travel time in the SO
state. Tis fnding indicates that as the rationality of
BEV drivers declines, the optimal solution in the best
case tends to revolve around the overall interest of
users in the system rather than personal interests. Tis
suggests that the government must take efective
measures to compensate BEV drivers and achieve
system-level optimization. For example, the govern-
ment can provide diferent forms of subsidies to BEV
drivers who give up their personal benefts and adhere
to certain transportation policies. In addition, some
links have low trafc volumes due to being part of
unusable links. Tis is due to the BEV range charac-
teristics. Te government should implement timely
infrastructure development (e.g., lane expansion) based
on the range of BEVs to enable BEV drivers to take full
advantage of the urban infrastructure.

(2) Te government’s investment in the BEV trans-
portation network exhibits diminishing marginal
returns and key link efects. On the one hand, as the
amount of investment increases, the efect of in-
vestment in the construction of the transportation
network infrastructure does not increase

×105

C1 C2 C3C0 C5C4

Scenario

8.3

8.32

8.34

8.36

8.38

8.4

8.42

8.44

8.46

8.48

8.5

Sy
ste

m
 T

ra
ve

l T
im

e

Figure 6: System travel times under diferent scenarios.
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proportionally. When the investment reaches a cer-
tain scale, the travel time in the BEV transportation
network system will not be proportionally reduced.
Tis is the classic principle of diminishing marginal
returns in economics. Te above results suggest that
the government must reasonably determine the scale
of investment when implementing large investment
projects related to BEV transportation network de-
sign. Te government must fnd a balance between
the investment scale and investment efect to avoid
wasting fnancial resources. On the other hand, there
are some key links in BEV transportation networks.
Regardless of the scale of government investment,
some links are always included in the optimal in-
vestment scheme identifed with the model. Tis
fnding further suggests that the government must
pay attention to these special links. When the in-
vestment scale is relatively small, priority should be
given to the expansion of these key links. Tus, the
efect of government investment can be maximized,
and the total travel time of drivers can be efectively
reduced.

7. Conclusions

In this article, a BEV transportation NDP is investigated. To
address issues related to the mileage limitations of BEVs,
traveler range anxiety, and bounded rationality, the
problem is formulated as an MPCC. Te model aims to
minimize the system travel time in BEV transportation
networks and establish an optimal lane expansion scheme
based on the available investment budget. An ASA-based
heuristic algorithm is proposed to solve the real-world-
scale problem.

Numerical experiments are performed to assess the
impacts of diferent traveler behaviors on travel times.
Moreover, a sensitivity analysis of the investment scale is
performed to explore the optimal level of government in-
vestment. Te experimental results show that diferent levels
of rationality among travelers infuence the fow distribution
in the best- and worst-case scenarios to various degrees. Te
greater the degree of irrationality is, the closer the best case is
to the SO state of the BEV transportation network. Gov-
ernment investment is characterized by the law of dimin-
ishing marginal returns. Most of the links included in the
investment scheme are connected to nodes with charging
stations. Terefore, the experimental results verify that there
are some bottleneck links in the BEV transportation net-
work. Mitigating these bottlenecks is the key to improving
network efciency. In addition, the solution approach can be
efciently used to support the proposed network design
scheme and can potentially be applied to even larger
networks.

Overall, the model and algorithms we propose can ef-
fectively provide decision-making support for the govern-
ment in infrastructure construction in BEV transportation
networks. We extend the bounded rationality model pro-
posed by [55] for BEV transportation network design.
Trough the ongoing adjustment of the model, the robust

joint optimization of congestion tolls and network design
could be achieved.

Future work could focus on the collaborative optimi-
zation of diferent transportation network design schemes
based on BEV characteristics. For example, the collaborative
optimization of construction schemes for charging facilities
(e.g., wireless charging roads and charging stations) con-
sidering bounded rationality is an interesting research di-
rection. In addition, the energy consumption of BEVs varies
for diferent trafc fows. Determining how to incorporate
these variations into the proposed model framework is also
a potential research direction. In addition, uncertainties are
not considered in this study (e.g., see the article considering
uncertainty factor [69]), and it will be an interesting research
direction to incorporate uncertainties into the research.
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