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Accurate access to real-time passenger fows on subway platforms helps to refne management in the era of networked operations.
Te narrow subway platforms sufer from signifcant crowd scale discrepancies and complex backgrounds when counting
passenger fow. In the proposed passenger fow counting algorithm, the feature-enhanced pyramid structure is used to retain the
channel information of deep features and eliminate the aliasing efect caused by fusion to enhance the feature representation of the
original image and efectively solve the scale problem. Te mixed attention mechanism suppresses background interference by
capturing the global context relationship and focusing on the target area. On the ShanghaiTech Part_A dataset, the mean absolute
error (MAE) and mean square error (MSE) of the proposed algorithm are 2.3% and 1.4% higher than those of the comparison
algorithm, respectively. Te MAE and MSE on the self-built platform dataset reach 3.1 and 5.7, respectively. Te experimental
results show that the accuracy of the proposed algorithm is improved and can meet the counting requirements of the subway
platform scene.

1. Introduction

Crowd counting aims to estimate the number and density
distribution of people in images or videos and is used in
felds such as crowd behavior analysis and public safety
management. Te surge of metro passenger fow on the
metro has posed a huge challenge to the organization of
trafc and safe operation, such as the difculty of trans-
portation organization during peak periods and the lack of
operability in emergency management. Real-time access to
station passenger fow through crowd counting algorithms
can provide scientifc data support for organizational
management and safety alerts. For example, the departure
interval can be optimized according to the passenger fow of
the subway platform obtained in real time, and the turn-back
station can be accurately obtained [1]. Te distribution of
passenger density on the platform is displayed in combi-
nation with the Passenger Information System (PIS) and the
Public Address System (PA), so as to induce passenger travel
behavior [2] and reduce operational pressure during peak
hours. At the same time, it can also implement control

strategies [3] such as closing stations and overtaking
according to the platform passenger fow, so as to reduce the
potential safety hazards caused by congestion.

Traditional crowd-counting algorithms fall into three
categories, detection-based methods take the whole hu-
man body or body parts as the object of detection and
calculate the number of people [4]; regression-based
methods treat the crowd as a whole and complete the
counting by establishing a mapping relationship between
the extracted features and the number of people, such as
ridge regression [5] and Bayesian regression [6]; and
density estimation-based methods count by learning
linear mapping [7] or nonlinear mapping [8] relationships
between features and density maps. Traditional methods
rely on manual feature extraction, which is less accurate
and only applicable to sparse scenes. At present, con-
volutional neural networks are widely used in crowd
counting due to their excellent feature extraction and
learning capabilities. According to the structure of the
neural network model, it is generally divided into two
categories: single-branch structure and multibranch
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structure. Te early crowd-counting algorithms are all
single-branch structures. Wang et al. [9] applied CNN to
crowd counting for the frst time and the model uses the
regression method to count. Due to the limitation of
network width and depth, the counting accuracy in dense
scenes needs to be improved and cannot meet the re-
quirements of cross-scene counting. To solve the cross-
scene problem, Zhang et al. [10] proposed the cross-scene
counting model (Crowd CNN), and the algorithm fne-
tunes the counting model according to the characteristics
of the input scene so that it can accomplish cross-scene
counting. Te diferent distances between the crowd in the
image and the camera lead to diferent crowd scales. To
solve the multiscale problem, various multibranch net-
works have been proposed. Te multicolumn convolu-
tional neural network (MCNN) proposed by Zhang et al.
[11] has three branches, which employ convolutional
kernels of diferent sizes for feature extraction of targets at
diferent scales to solve the scale problem. Sam et al. [12]
proposed a multicolumn selection network (Switch-
CNN), where the input images are frst cut, and then parts
of the images with diferent density levels are fed into the
corresponding branches separately, and counting is done
separately using diferent regression networks. Te quality
of the density map determines the counting accuracy. To
obtain high-quality density maps, Sindagi and Patel [13]
proposed the contextual pyramid model (CP-CNN),
which applies the global and local contextual information
extracted from diferent branches to density map gener-
ation. Although multibranch networks achieve better
counting results, they are accompanied by the problems of
large number of parameters, training difculties, and
model redundancy. To solve these problems, dilated
convolutions [14], deformable convolutions [15], and
generative adversarial networks [16] have been in-
troduced in the feld of crowd counting to reduce the
complexity of the models and improve the counting ac-
curacy. For passenger fow counting in the subway scene,
Sheng et al. [17] proposed a counting method with the
head and shoulder of passengers as the detection object.
Tis method performs well when the passengers are
sparse, but the counting accuracy decreases due to severe
occlusion during peak hours. Zhang et al. [18] used
a multiscale feature extraction module and transposed
convolutional upsampling to enhance multiscale features
but did not consider the efect of background interference
on the counting task. Xiao et al. [19] conducted crowd
counting in the target area of the subway based on the
background diference method, but the background dif-
ference method is mostly aimed at moving objects and is
not suitable for platform scenes where passengers are
mostly stationary or moving slowly. Hu et al. [20] used
a hybrid Gaussian background modeling method to
compensate for the defciencies in background difer-
encing, but the regression-based approach makes the
correlation between the features learned by the network
and the number of people weak, and the accuracy needs to
be improved. Te double-region learning algorithm
proposed by He et al. [21] divides the subway surveillance

image into near region and far region and adopts diferent
strategies for counting the two subregions to solve the
impact of perspective distortion. However, the method
can only divide the image into two fxed regions without
considering the variability of the scene. Te MPCNet
proposed by Zhang et al. [22] uses multicolumn dilated
convolution to aggregate multiscale context information
in crowded scenes, but the multicolumn structure in-
ference speed is slow and cannot meet the requirements of
real-time detection. Tiny MetroNet proposed by Guo et al.
[23] adopts a micro-passenger feature extraction network
as the backbone network to achieve a balance between
counting accuracy and detection speed. In the MDP al-
gorithm proposed by Liu et al. [24], the MetroNext based
on the multiscale convolutional attention module can
quickly obtain the location information of the train and
passengers, and the optical fow algorithm is used to
predict the direction of passenger movement. Te com-
bination of the two completes the detection of passengers
on and of the train. Yang et al. [25] introduced CBAM
into YOLOv4 to solve the problem of inhomogeneous
illumination in the station to improve the accuracy and
robustness of the network. Te MPDNet proposed by
Yang et al. [26] uses the pyramid vision transformer to
extract features and then uses an adaptive spatial feature
fusion algorithm to compensate for the loss of spatial
information in feature extraction, achieving higher ac-
curacy while meeting real-time requirements.

Most of the current research is aimed at outdoor open
scenes, which is quite diferent from the subway platform
scene. Te existing passenger fow counting algorithms in the
platform scene still need to be improved. For the subway
platform, the narrow and long platform leads tomore obvious
diferences in passenger scales in diferent areas of the
monitoring image, and there may be a problem of missing
detection of small-scale heads away from the camera side.Te
variety of building facilities in the station leads to complex
background and difcult crowd feature extraction. In addi-
tion, most of the existing public datasets are images of open
scenes, and there is no public dataset suitable for subway
platform scenes. Based on the above analysis, this paper frst
constructs a metro platform dataset by capturing images from
Lanzhou metro platform surveillance video and then pro-
poses a subway platform passenger fow counting algorithm
based on feature-enhanced pyramid andmixed attention.Te
pyramid structure efectively fuses the semantic information
and spatial information of deep and shallow features to solve
the problem of diferent crowd scales. A mixed attention
module is constructed to aggregate global context in-
formation, and the problem of complex background is solved
by paying more attention to the target area.

2. Literature Review

Temain difculties of crowd counting in the platform scene
are the large diference in head scale and the complex
background of the platform. In this section, two types of
networks related to the algorithm in this paper, i.e., multiscale
feature fusion network and attention network, are reviewed.
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2.1. Multiscale Feature Fusion Network. Te diferent dis-
tances between the person and the camera in the image
lead to the inconsistency of the head scale to be detected.
Te scale problem is one of the common problems in
crowd counting, and multiscale feature fusion is an ef-
fective means to solve the scale problem. In the traditional
method, the resolution of the input image is gradually
reduced to construct the image pyramid in order to obtain
the target of the corresponding scale in the image of each
level. Te efect of this method is signifcant, but the
feature extraction of multiple inputs brings huge memory
and time consumption. Te feature pyramid [27] uses
diferent layer feature maps as input and adds horizontal
links and upsampling to fuse deep and shallow features,
and the computational complexity of the model is re-
duced. Te MARNet [28] proposed by Xie et al. improves
the feature pyramid structure by introducing dilated
convolutions with diferent dilation rates to enhance
multiscale features to obtain richer context information.
Te STNet [29] proposed by Wang et al. uses a tree
structure to hierarchically analyze the head scale, which
enriches the scale level and solves the problem of large-
scale changes in the head scale. SASNet [30] proposed by
Song et al. can learn the correspondence between scale
and feature level and obtain the fnal density map after
weighting the confdence maps of diferent feature levels.
Te MZNet [31] proposed by Ma et al. enlarges or reduces
the initial features to the corresponding level in each
zooming path for aggregation and then propagates and
utilizes multilevel context information in multiple
zooming paths. MSIANet [32] proposed by Zhang et al.
uses four branches of diferent receptive felds for feature
extraction and then interacts the features of diferent
branches to deal with continuous scale changes.

Te above research studies use diferent methods to solve
the scaling problem in image processing, which have
achieved certain results but still have some problems, such as
higher complexity of the model and feature loss.Te feature-
enhanced pyramid structure proposed in this paper uses
a channel conversion module to highly preserve the channel
features and a semantic consistency learning module to
simplify the model while solving the aliasing efect.

2.2. Attention Network. Te main idea of the attention
mechanism is to allocate limited information processing
resources to the parts of the input that are useful for task
execution, and the widely used ones in crowd counting
algorithms are channel attention, spatial attention, and
pixel attention. Te FANet [33] proposed by Niu et al. sets
the weight of the background area to zero and weights the
target area according to the area where the crowd is located
and the density to exclude background interference. Te
MS-SPCANet [34] proposed by Wang et al. assigns dif-
ferent channel weights to diferent spatial positions of the
channel feature map, in order to highlight useful in-
formation and suppress useless information to the greatest
extent. MGANet [35] proposed by Li et al. uses spatial
attention to focus on the human head region to solve the

problem of foreground and background confusion and uses
channel attention to enhance the dependence between
features and improve semantic expression. In the co-
ordinated attention module CA [36] proposed by Hou
et al., the channel attention is decomposed into two one-
dimensional feature coding processes, and the features are
aggregated along two spatial directions. In this way, long-
range dependencies can be captured in one spatial di-
rection, while precise position information can be pre-
served in the other spatial direction. In CAFNet [37]
proposed by Wang et al., pixel attention and channel at-
tention are used to integrate low-level features into high-
level features, and then density maps are generated by
combining each layer of features that adaptively aggregate
local context.

Te existing research on attention mechanism is rela-
tively rich, but there are still some limitations. Some studies
only consider channel attention or spatial attention, which is
not comprehensive enough, while the research considering
both ignores the global relationship of feature maps. Te
mixed attention mechanism proposed in this paper uses the
idea of nonlocal operation to obtain the long-distance de-
pendence of spatial and channel feature maps to make full
use of context information to obtain high-quality
density maps.

3. Algorithm

Temain difculty in counting passenger fow in the subway
platform scene comes from the high density of crowds
during peak hours. Te camera angle on the platform is low,
and the head scale tends to increase from far to near and the
scale diference is large, which needs to be taken into
consideration in the algorithm design. In addition, since
there are many escalators and other building facilities on the
platform, the complex background brings difculties to
crowd feature extraction, and the interference brought by
the complex background needs to be minimized when de-
signing the algorithm.

Figure 1 shows the network framework of the algo-
rithm in this paper, consisting of a VGG-16 network with
the fully connected layer removed, a feature enhance-
ment pyramid structure, and a mixed attention module.
Taking the platform monitoring image as input, the frst
13 layers of VGG-16 are used to extract the image fea-
tures. Te original features are sent into the feature-
enhanced pyramid structure, and the problems of dif-
ferent crowd scales and small target missed detection are
solved by aggregating features of diferent scales. Ten,
the fused features are sent to the mixed attention
mechanism, which can efectively focus on the global
information by capturing the long-distance de-
pendencies of any two positions in the space or any two
channels, which is helpful to solve the problem of
background interference and occlusion. Finally, the at-
tention feature map is upsampled to the size of the input
image, and the predicted density map is obtained. After
the integral sum, the number of passenger fows in the
image can be obtained.
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3.1. Feature-Enhanced Pyramid Structure. Targets of dif-
ferent scales in subway platform surveillance images will
have a semantic generation gap after the same proportion
of downsampling, which is manifested by the loss of small
targets after multilayer convolution. Te feature pyramid
captures targets of diferent scales by fusing deep and
shallow feature maps and solves the problem of missed
detection of small targets. However, the traditional feature
pyramid has the following disadvantages [38]. Firstly, the
lateral link uses 1 × 1 convolution to reduce the number of
channels of deep features so that the deep and shallow
features can be fused, but this operation causes a large loss
of channel information of deep features. Secondly, 3 × 3
convolution is used to eliminate the aliasing efect after
feature fusion, which introduces redundant calculation.
Terefore, this paper proposes an improved feature-
enhanced pyramid structure, using a channel conversion
module (CCM) and externally introduced semantic con-
sistency learning module (SCLM) to solve the above two
problems. Te specifc feature-enhanced pyramid structure
is shown in Figure 2.

Te backbone network extracts features from the
bottom up and takes the feature map after the four-layer
convolution of Conv2_2, Conv3_3, Conv4_3, and Conv5_3
as input, recorded as C2-C5. Te input feature map is sent
to the channel conversion module to convert the reduced
channel information into pixel information, that is, the
channel information is retained by expanding the width
and height of the feature map. As shown in Figure 3, frst
the channel conversion operation can reshape the low-
resolution feature map H×W × α2C into the high-
resolution feature map αH× αW ×C by upsampling.
Since the backbone network uses 2 times downsampling, α
is taken as 2 in the algorithm for the subsequent fusion of
adjacent feature maps. At this time, the width and height of
the feature map increase by 2 times, and the number of
channels decreases to 1/4. Because the number of channels
in each layer needs to be consistent with the feature map
C2, 1 × 1 convolution is used to enrich the channel in-
formation. Finally, 3× 3 convolution is used to down-
sample the feature map to the original size, which can

aggregate the original channel information at the pixel
level. Te deep feature map after CCM processing retains
rich channel information for subsequent fusion stages.

Due to the inconsistent distribution of features, the
direct fusion of deep feature maps with shallow feature maps
after sampling will lead to aliasing efects, and the continuity
of features cannot be guaranteed. Terefore, before the
fusion after CCM and upsampling operation, the semantic
consistency learning module is used to standardize the
distribution of features. As shown in Figure 2, the SCLM
module consists of a 3× 3 convolution and two 1× 1 con-
volutions, and then the consistency features are output
through the activation layer. Te channel information of the
original feature map after CCM and SCLM is preserved and
the aliasing efect brought by the fusion process is elimi-
nated, and thus the features are enhanced. Te fused feature
maps P3-P5 are upsampled to the size of P2 and then spliced
in the channel dimension to obtain the feature map F, which
preserves more feature information.

3.2.MixedAttentionMechanism. In the convolution process,
the receptive feld is limited to a certain range leading to
diferences in the feature representation between pixels of the
same category [39], which then leads to a decrease in counting
accuracy. Te idea of the nonlocal operation [40] is that when
calculating the weight of a certain position, all other positions
need to be weighted so that the global contextual information
can be fully utilized. Inspired by this, a mixed attention
module is built to solve the problem of complex background
of station monitoring images from two dimensions. Te
spatial attention mechanism can capture global dependencies
and suppress background interference by focusing on target
regions with high similarity. Te channel attention weights
each channel to highlight the channels useful for the counting
task and suppress the useless channels.

Figure 4 shows the specifc structure of the mixed at-
tention mechanism, with the left-hand branch being the
spatial attention mechanism and the right-hand branch
being the channel attention mechanism. Te idea of the
spatial and channel attention mechanisms is similar, except
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Figure 1: Subway platform passenger fow counting algorithm framework.
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that the spatial attention mechanism performs a 1× 1
convolution operation to reduce the dimensionality before
reshaping and transposing the feature map. Te input fea-
ture map of the mixed attention mechanism is F ∈ RC×H×W,
where C, H, and W represent the channel, height, and width,
respectively. After convolution, reshaping, and trans-
position, the feature maps s1, c2  ∈ RHW×C and
s2, c1  ∈ RC×HW are obtained; then the matrix multiplica-
tion operation is performed and normalized by Softmax to
obtain the spatial and channel attention maps s and c. Te
formulas are
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where FS and FC denote the spatial and channel attention
feature maps, respectively. s

j
3 and c

j
3 denote the j-th

position or channel of the spatial feature map s3 and
channel feature map c3, respectively, and matrix multi-
plication is used to reshape the feature maps into RC×H×W.
Te coefcients λ1 and λ2 are learnable parameters that
are initially set to zero and are adaptively assigned
weights to local features through network training. Fi is
the i-th position or channel of the input feature map. FS

and FC are fused to obtain a mixed attentional feature
map Fa with the same dimensions as F.
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Figure 2: Feature-enhanced pyramid network diagram.
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3.3. LossFunction. Te loss function is made up of two parts.
Te Euclidean distance loss function LE is the pixel-level
diference between the predicted density map and the true
density map. Te formula is

LE �
1
N



N

i�0
F Xi; θ(  − F

GT
i

����
����
2

2
, (3)

where N is the number of images, Xi is the i-th input image,
and θ is the learnable network parameter. F(Xi; θ) and FGT

i

are the predicted and true density maps for the i-th image.
Te Euclidean distance loss function is based on the premise
that pixels are independent of each other, ignoring the
correlation between them. Averaging all pixels without at-
tention to structured information leads to blurred density
maps and unclear details. To compensate for the short-
comings of the Euclidean distance loss function, the model
introduces a structural similarity loss function LS, which
uses three local statistics of mean, variance, and covariance
to calculate the similarity between the predicted density map
and the true density map. Te formula is

LS � 1 −
1

M

p∈P

SSIM(p), (4)

where M is the number of pixels in the density map and P is
the image block corresponding to the same pixels p in the
predicted and true density maps. SSIM is the structural
similarity index and is calculated as

SSIM �
2μFμFGT + C1(  2σFFGT + C2( 

μ2F + μ2FGT + C1  σ2F + σ2FGT + C2 
, (5)

where μF, μFGT , σ2F, and σ2FGT denote the mean and variance of
the predicted and true density maps, respectively, and σFFGT

denotes the covariance between the predicted and true
density maps. C1 and C2 are small constants set to prevent
zeros in the denominator. SSIM ∈ [−1, 1] and the image
similarity is proportional to the value of SSIM.

Te fnal loss function is obtained by weighting LE and
LS:

L � LE + αLS, (6)

where α is the weighting coefcient used to balance pixel-
level loss with structural loss and α is set to 0.001 through
experiments.
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Figure 4: Structure diagram of the mixed attention mechanism.
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4. Experimental Results and Analysis

Te experiment was divided into two stages and the frst was
the training stage. Taking the training set images as input,
the predicted value obtained by forward propagation was
compared with the true value to obtain the loss value, and
the parameters were updated in the process of backward
propagation to make the loss value smaller and smaller until
it reached the ideal value, completing the network training.
Te test set images were then fed into the trained network to
obtain the predicted values, where the accuracy and ro-
bustness of the network were evaluated by the MAE
and MSE.

4.1. Environment and Parameter Settings. All comparison
experiments in this paper were completed on the Windows
11 system equipped with an NVIDIA GeForce RTX 3050
graphics card. Te environment confguration was CUDA
11.6 +Anaconda 4.13 + Python 3.7 + PyTorch 1.10. Te
Gaussian distribution was used to initialize the convolu-
tional layer parameters randomly, and the Adam algorithm
was used to optimize the parameters. To balance the training
speed and the loss, the initial learning rate was set to 1× 10−5

and the learning rate decay parameter was set to 0.995. Te
training batch size was set to 16 and the number of iterations
was set to 200. To better compare the performance of the
algorithms, the experimental parameters of all the compared
methods were set in the same way as the methods in
this paper.

4.2. Evaluation Indicators. In this paper, mean absolute
error (MAE) and mean square error (MSE) are used to
evaluate the performance of the algorithm. MAE represents
the error between the predicted and true values, refecting
accuracy, while MSE represents the degree of diference
between the predicted and true values, refecting robustness.
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where N is the number of images and CP
i and CGT

i are the
predicted and true number of people for the i-th image,
respectively.

4.3. Dataset Description. To verify the performance of the
proposed algorithm, experiments were conducted on
ShanghaiTech and UCF_CC_50 public datasets and self-
built station dataset, respectively.

Te ShanghaiTech dataset contains 1198 images, with
a total of 330,165 individuals tagged. Te dataset is divided
into two parts. Te images in Part_A are randomly obtained
from the Internet while the images in Part_B are obtained
from street surveillance in Shanghai. Part_A is characterized

by a high density of crowds and variable scenes, while Part_B
is characterized by a low density of crowds but sufers from
the problem of large diferences in crowd scales. Tis dataset
is a challenging dataset across diferent scene types and
densities.

Te UCF_CC_50 dataset images cover a wide range of
scenes such as marathons, stadiums, and concerts. Te
average number of people in the images is as high as 1280,
while the number of people in the single image ranges from
94 to 5453, with a large gap in density levels between images,
making the dataset challenging. Te disadvantage of this
dataset is the insufcient number of images, only 50, and
thus a fve-fold cross-validation method was used to conduct
experiments in this paper.Te 50 images were randomly and
equally divided into fve, one of which was used in turn as the
test set and the other four were combined as the training set,
and the results of the fve experiments were averaged as the
fnal result.

For deep learning crowd counting, the quality of the
dataset will to a certain extent afect the counting efec-
tiveness of the model. Te existing public datasets are
mostly images of open scenes, while the long and narrow
subway platforms and numerous construction facilities
pose the problem of cluttered backgrounds. Due to the
height limitation of the platform, the height of its sur-
veillance cameras also difers from the public dataset. In
order to better evaluate the performance of the model in
this paper, platform images were collected from the
Lanzhou Metro to build the dataset. Five stations in
Lanzhou Metro Line 1 with high passenger fow, including
Xizhanshizi, Xiguan, Dongfanghong Square, Wulipu, and
Lanzhou University, were selected to capture images from
the surveillance video at one end of the platform waiting
area during the morning peak (e.g., 7:00–9:00), evening
peak (e.g., 17:30−20:00), and fat peak periods (e.g., 10:
00–16:00) of weekdays and weekends. Te dataset is la-
belled with a total of 2000 images, of which 1500 are used as
the training set and 500 as the test set. Te size of each
image is 1200 ×1024.

Typical images for each dataset are shown in Figure 5.

4.4. Experimental Result Analysis. Table 1 shows the ex-
perimental results of the proposed algorithm and fve other
classical or advanced comparison algorithms on the
ShanghaiTech dataset. Te comparison between the exper-
imental results of the two-part datasets shows that the
counting results of sparse scenes are better than those of
dense scenes, indicating that dense scenes are still the key
direction for future research on crowd counting. Te pro-
posed algorithm achieves the best results on this dataset
compared to the comparison algorithm. Compared with the
best MIA [43] model, the MAE and MSE of Part_A im-
proved by 2.3% and 1.4%, respectively.TeMAE andMSE of
Part_B improved by 0.9% and 1.6%, respectively, indicating
the efectiveness of the feature-enhanced pyramid structure
and the mixed attention mechanism, which can perform the
counting task well in the case of higher crowd density and
diferent scales.
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Table 2 shows the experimental results on the
UCF_CC_50 dataset. It can be seen that only the context-
aware model (CAN) [41] is superior to the proposed al-
gorithm in the comparison algorithm, and the accuracy and
robustness of other algorithms are lower than the proposed
algorithm. Te CAN network, which uses spatial pyramid
pooling to compute scale-aware features, is a multicolumn
network that adaptively encodes contextual information.
Te multiscale enhanced network (MSEN) [42] and the
multivariate information aggregation (MIA) [43], which also
employed multicolumn structures, have also achieved good
results, indicating that the multicolumn structured model
works better on this dataset. Te algorithm in this paper is
a single-column structure, which has less parameters and
simpler calculation while achieving competitive results, and
can also meet the counting requirements of various dense
scenes. Te last two columns are the number of parameters
and the inference time of each algorithm; the model in this
paper is a single-column structure; therefore, the number of
parameters is less and the inference time is shorter.

Te experimental results of the self-built platform dataset
are shown in Table 3.Te algorithm in this paper has achieved
the best results because the algorithm has been improved on
the traditional pyramid. Te application of CCM and SCLM
makes the channel information of the original feature map
retained and eliminates the aliasing efect caused by the fusion
process, enhances the feature representation, and helps to
solve the scale problem. In addition, the mixed attention
mechanism in the algorithm utilizes the idea of nonlocal
image processing. By focusing on the relationship between
local features, the global context information is fully aggre-
gated to generate a high-quality prediction density map.

To further verify the efectiveness of the algorithm in this
paper, the platform of Xizhanshizi Station of LanzhouMetro
Line 1 on April 26, 2023 (Wednesday), was selected, and the
passenger fow on the platform was counted every
10minutes during the period of 6:30−9:00, and a total of 16
groups of predicted passenger fow and the real passenger
fow on the platform and the relative error were obtained, as
shown in Figure 6. It can be seen from the fgure that the
number of passengers on the platform increases gradually
with time, and the number of passengers on the platform
increases signifcantly after 7:30 and remains at a high level,
which is consistent with the trend of passenger fow in the
morning peak of weekdays. Te relative errors of the 16
groups of data are all within 4.5%, and the average absolute
percentage error is 2.71%, which proves the efectiveness and
accuracy of the passenger counting algorithm in this paper.

Figure 7 shows partial density maps obtained from the
proposed model on diferent datasets, with every two rows of
experimental result maps coming from the same dataset,
arranged in the order of the ShanghaiTech, UCF_CC_50,
and self-built station datasets. Te experimental results on
the frst four rows of the public datasets show that the
counting error is greater for dense scenes than that for

(a) (b) (c) (d)

Figure 5: Typical images for each dataset. (a) ShanghaiTech Part_A. (b) ShanghaiTech Part_B. (c) UCF_CC_50. (d) Self-built station
dataset.

Table 1: Experimental results of the ShanghaiTech dataset.

Algorithm
Part_A Part_B

MAE MSE MAE MSE
MCNN [11] 110.2 173.2 26.4 41.3
CSRNet [14] 68.2 115.0 10.6 16.0
CAN [41] 62.3 100.0 7.9 12.9
MSEN [42] 63.5 106.2 8.2 12.3
MIA [43] 59.4 96.2 7.7 11.9
Proposed algorithm 57.1 94.8 6.8 10.3

Table 2: Experimental results of UCF_CC_50 dataset.

Algorithm MAE MSE Params (MB) Inference time
(s)

MCNN [11] 377.6 509.1 23.62 1.28
CSRNet [14] 266.1 397.5 21.95 0.92
CAN [41] 212.2 243.7 24.94 1.51
MSEN [42] 226.7 310.6 23.81 1.33
MIA [43] 224.9 318.4 22.77 1.07
Proposed algorithm 213.1 254.7 20.48 0.84

Table 3: Experimental results of the self-built station dataset.

Algorithm MAE MSE
MCNN [11] 7.6 12.1
CSRNet [14] 4.6 9.2
CAN [41] 4.9 9.3
MSEN [42] 6.2 10.5
MIA [43] 5.3 9.8
Proposed algorithm 3.1 5.7
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Figure 6: Platform real passenger fow and predicted passenger fow.
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Figure 7: Partial density plot of each dataset. (a) Original images. (b) True density maps. (c) Predictive density maps.
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sparser scenes, but in general, the enhanced feature fusion
and the suppression of background interference by the at-
tention mechanism allow the algorithm to achieve good
counting results Te predicted values in the last two rows of
the experiment are greater than the true values, and

observation of the density distribution shows that it is the
refection of passengers by the platform screen doors that
causes the repeat counts to bring about the slightly larger
predicted values. Te experimental results show that the
model performs well on both public and self-built station

Table 4: Ablation experimental results.

Algorithm MAE MSE Params (MB)
Backbone + FPN 71.5 110.8 19.47
Backbone + FPN+MA 65.7 107.6 23.85
Backbone + FEPN 63.3 103.2 20.27
Backbone + FEPN+MA 57.1 94.8 24.65
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Figure 8: Loss and accuracy convergence curve. (a) Training loss convergence curve. (b) Test loss convergence curve. (c) Training accuracy
convergence curve. (d) Test accuracy convergence curve.
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datasets and can make accurate predictions in scenes with
very high crowd density, large variations in crowd size, and
severe background interference.

4.5. Ablation Experiments. To verify the efectiveness of the
modules in the network, ablation experiments were con-
ducted in Part_A of the ShanghaiTech dataset. Te backbone
network is denoted as Backbone, the traditional feature
pyramid structure is denoted as FPN, the feature-enhanced
pyramid structure is denoted as FEPN, and the mixed at-
tention mechanism is denoted as MA. Te experimental
results are shown in Table 4.Te comparison between the frst
two rows and the last two rows shows that the embedding of
mixed attention improves the counting accuracy and ro-
bustness of the network, indicating that fully utilizing global
contextual information works well in crowd counting studies.
Te comparison between the frst and third rows illustrates
that the feature-enhanced pyramid structure with channel
transformation and semantic consistency learning brings
about an improvement in network performance compared to
the traditional feature pyramid structure. Te loss and ac-
curacy convergence curves of the ablation experiment are
shown in Figure 8; in order to ensure the simplicity and
readability of the image, the training loss curve and the test
loss curve are presented in two fgures, and the training
accuracy curve and the test accuracy curve are also presented
in two fgures.

Te feature-enhanced pyramid structure proposed in
this paper is improved on the traditional feature pyramid
structure. While the model achieves excellent performance,
it also needs to pay attention to whether this improvement
brings redundant calculation. Te number of model pa-
rameters refects the calculation amount and running time of
the model to a certain extent. Terefore, this paper analyzes
the improvement of the feature pyramid structure based on
the number of model parameters. As shown in the last
column of Table 4, the comparison of the frst and third rows
shows that the improvement of the feature pyramid brings
less than 1MB increase in parameters, which proves that the
feature-enhanced pyramid network algorithm does not
bring redundant calculation while improving the network
counting accuracy.

Figure 8 shows the loss convergence curve and accuracy
convergence curve of the model. In the early stage, the
fuctuation of training loss is large, mainly because the
parameter learning of the network is not yet completed and
the model is disturbed by useless information. As the
learning proceeds, the training loss curve tends to be stable
and converges, indicating that the model has efectively
completed the learning. Te accuracy convergence curve
indicates that the parameters of the model are well set and
learned, and the counting performance of the model is good.

5. Conclusion

Based on the problems of large changes in crowd scale and
strong background interference in subway platform pas-
senger fow counting, the algorithm proposed in this paper

uses a feature-enhanced pyramid structure to retain channel
information and eliminate aliasing efects. Te enhanced
feature representation is more conducive to solving the scale
problem. By embedding a mixed attention module in the
algorithm, the idea of nonlocal image processing is used to
capture the global context information, to obtain a high-
quality prediction density map.Te algorithm achieves good
results on the two public datasets and the self-built station
dataset, which proves the efectiveness of the algorithm in
this paper. However, there are still some shortcomings in the
study. For example, refections of passengers from platform
screen doors may lead to repeated counts and thus large
predictions, and preprocessing of the images to cover or cut
sections of screen doors with severe refections will be
considered in the future. For the problem that passengers are
completely occluded by pillars or other passengers on the
platform, resulting in missed detection and small prediction
results, the idea of the target detection algorithm can be used
for reference in the future to reduce the impact of occlusion
on crowd detection from the loss function.
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