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Tis paper proposes a method for estimating the speed and position of unsampled vehicles using sampled data from connected
automated vehicles (CAVs). Te determination of vehicle speed and position on the road is a challenging and crucial task, as they
can efectively refect trafc fow characteristics and contribute to trafc state estimation and intersection signal timing opti-
mization. Connected automated vehicles have the capability to upload their own trajectory data while also capturing trajectory
data of surrounding vehicles through onboard sensors. Terefore, this paper proposes a novel approach to estimate the speed and
position of unsampled vehicles. Firstly, using real vehicle trajectory data, the correlation between the velocity of following vehicles
and the velocity of leading vehicles under diferent densities is analyzed, leading to the development of a velocity estimationmodel
incorporating a speed correction factor. Secondly, the correlation between time headway, the rate of change of following vehicle
acceleration, and trafc density is examined. To address the issue of heterogeneous behavior in vehicle following described by the
Intelligent Driver Model (IDM), a real-time optimization model for estimating vehicle position by optimizing IDM parameters is
proposed. Te velocity estimation model and the position estimation model are summarized as two nonlinear optimization
problems. Finally, the proposed method is validated using actual vehicle trajectory data. Experimental results demonstrate that
when the number of connected automated vehicles (CAVs) is 2, the proposed method reduces the average absolute error by
30.73% and the standard deviation of the average absolute error by 42.8% compared to a linear model-based speed estimation
method under diferent density conditions. Compared to a method that estimates vehicle position by calibrating desired gaps, the
proposed method reduces the average absolute error by 38.2% and the standard deviation of the average absolute error by 41.7%
under diferent density conditions. Furthermore, the proposed method exhibits good practicality under diferent CAV
penetration rates.

1. Introduction

Vehicle trajectory information accurately refects the spa-
tiotemporal evolution characteristics of trafc fow and has
been widely used by many scholars to estimate queue length
[1, 2], travel time [3], trafc delay [4], and trafc volume [5].
It also helps optimize signal timing at intersections and
evaluate control strategies [6], providing a solid foundation
for intelligent management and control of trafc systems.

Currently, there are two main ways to obtain vehicle
trajectory data: fxed position sensors and mobile sensors.
Fixed sensors include video cameras, loop detectors, and
microwave radar detectors.Tey can only detect limited data
of fxed sections at fxed times, including trafc fow and
vehicle types. However, the detection range of these sensors
is small and the missed detection rate is high, making it
impossible to record detailed vehicle spatiotemporal in-
formation [7]. Moreover, due to their high installation and
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maintenance costs and the high coverage of urban road
networks, these fxed detectors are difcult to cover the
entire urban road network [8].

Terefore, the development of connected and automated
vehicle (CAV) technologies have created the possibility of
solving the above problems. CAVs can provide safer, more
environmentally friendly, more energy-efcient, and more
convenient travel methods and comprehensive solutions.
Tey are believed to have the potential to improve trafc
efciency, reduce energy consumption, and reduce the oc-
currence of trafc accidents. CAVs are vehicles that achieve
assisted driving or even autonomous driving without human
intervention, using advanced sensing technology [9].
Equipped with advanced sensors and various wireless
technologies, it can not only share its own trajectory data
with other CAVs and upload it to the Roadside Unit (RSU)
but also acquire trajectory data from human-driven vehicles
(HVs) without sensors within its surrounding detection
range. Terefore, CAVs can be considered a new type of
mobile sensor and can be used to collect spatiotemporal
information of other vehicles, thus providing comprehen-
sive vehicle trajectory data [10]. However, CAVs will not
appear on daily roads in a highly penetrated form in the next
few decades. Even if CAVs can provide complete trajectory
data of vehicles within their sampling range, the sparse
spatiotemporal data are caused by the low penetration rate.

Wireless transmission of data for trafc management
and control has been a hot research topic in recent years.
Most of the work has focused on using wireless transmission
of data for trafc state estimation and single-vehicle position
estimation, rather than position estimation of unsampled
vehicles in a queue. Bar-Gera et al. [10] estimated vehicle
speed and travel time based on triangulation from signal
towers. Te literature [11–13] proposed linear state esti-
mation algorithms based on Kalman fltering to estimate the
position of a single vehicle using GPS location data. Te
literature [14, 15] used particle fltering algorithms to esti-
mate vehicle positions. Liu et al. [16] improved the accuracy
of single-vehicle position estimation by using high-
resolution data from 5G base stations. Although the
above methods can estimate the position of a single vehicle
well, weak signals in remotemountainous areas, tunnels, and
overlapping overpasses can easily cause GPS and 5G signal
loss, making it impossible to estimate the position of a single
vehicle using wireless transmission of data. Qin et al. [17]
used passive RFID tags deployed on the road to perform
real-time position estimation of a single vehicle, but this
method relies too heavily on special road infrastructure and
communication equipment. Terefore, determining the
state of unsampled vehicles based on partially sparse sam-
pled data is the key to solving the above problem.

In recent years, with the development of CAV tech-
nologies, it has become a trend to estimate the state of
unsampled vehicles based on partially sampled data. Nu-
merous studies, such as literature [18], estimate the travel
time of this type of vehicle based on partial CAVs passing
through the intersection, assessing trafc delays. Feng et al.
[19] reconstructed vehicle trajectories in the road network
using Particle Filter theory and fve correction factors,

including path consistency, travel time consistency, fow
model, etc., based on data from Automatic Vehicle Iden-
tifcation (AVI) and traditional detectors. Chen et al. [20]
proposed a method for reconstructing highway vehicle
trajectories based on CAV sampling data using the In-
telligent Driver Model (IDM) and introducing expected
headway calibration factors. Some scholars also use a data-
driven approach to complete unsampled data by analyzing
the correlation among sampled data. Lint et al. [21] esti-
mated vehicle speed using a State-Related Filter. Ji [22]
used Long Short-Term Memory (LSTM) to train on
NGSIM data and estimated the speed and position of
vehicles closely following the front vehicle on highways.
Nanthawichit et al. [23] estimated the travel time of ve-
hicles through the fusion of data from mobile sensors and
fxed-point detectors. However, when the sampled data are
sparse, data-driven methods (such as LSTM) cannot obtain
sufcient data for training, which can lead to anomalous
driving behavior in estimating the state of unsampled
vehicles, such as negative estimated speed or overlapping
vehicle positions.

In order to address the issue of sparse sampling data
afecting the estimation accuracy of data-driven methods,
using a car-following model to estimate vehicle positions
can fully consider the interdependence between the leading
and following vehicles [24]. Goodall et al. [25] utilized GPS
data from highway vehicles and developed a car-following
position estimation algorithm based on the Wiedemann
model with preset parameters. By comparing the actual
acceleration of vehicles with the expected acceleration
calculated based on the Wiedemann model, it was de-
termined that there were undetected manually driven ve-
hicles between two CAVs when the diference in
acceleration exceeded a certain threshold [26]. Yao et al.
[27] employed the IDM to optimize the insertion position
of human-driven vehicles, with the primary objective of
minimizing the mean squared error between the actual
acceleration of the leading vehicle and the estimated ac-
celeration. Tis method, based on car-following models,
not only addresses the limitations of data-driven ap-
proaches but also signifcantly enhances the accuracy of
estimating the position of artifcially driven vehicles.

In general, current research on vehicle position and
velocity estimation primarily falls into two categories: data-
driven methods and model-based methods. Data-driven
approaches face a major challenge stemming from the
sparsity of sampled data, resulting in insufcient training
data. On the other hand, while model-based methods for
vehicle position estimation using car-following models
address issues related to vehicles deviating signifcantly from
these models, they also encounter accuracy challenges when
dealing with sparsely sampled data. One signifcant reason
for this is that existing research often utilizes predefned
parameter models (e.g., Wiedemann and IDM) for vehicle
estimation, disregarding the heterogeneity within trafc
fow. For instance, car-following behaviors exhibit variability
under diferent trafc densities, even within the same vehicle
platoon, as local density fuctuations lead to variations in
car-following behavior.
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Considering the limitations of prior research, this paper
presents a model-based method for estimating the speed and
position of human-driven vehicles. Unlike conventional es-
timation methods that rely on fxed-parameter models, this
study formulates the selection of parameters for vehicle speed
and position estimation models as two optimization prob-
lems. Te objective is to utilize real-time trafc data from
connected and autonomous vehicles (CAVs) to adjust model
parameters to better align with the current trafc conditions,
thus reducing estimation errors. Te results demonstrate that
this proposed method exhibits strong estimation perfor-
mance, even in environments with low CAV penetration
rates. Te major contributions are as follows:

(1) In response to the issue of low estimation accuracy
when using fxed-parameter models for vehicle speed
and position estimation, this study, based on real-
world trafc data, analyzes the model parameters
that infuence the precision of estimating the speed
and position of human-driven vehicles.

(2) Considering the infuence of unstable car-following
behavior, based on the analysis of model parameters
that impact estimation performance, a method is
proposed to optimize the speed estimation model
and corresponding parameters of the IDM using
CAV detection data, thereby enhancing the precision
of speed and position estimation for human-driven
vehicles.

(3) Under various CAV penetration rates and diferent
trafc densities, a comprehensive evaluation of the
proposed method was conducted using real-world
trafc scenario data.Te results demonstrate that the
proposed method consistently outperforms other
baseline models, leading to signifcant improvements
in both speed and position estimation accuracy as
well as stability.

Te rest of this paper is organized as follows. Section 2
introduces the research problem. Section 3 describes the
speed and position estimation modeling method. Section 4
validates the proposed method using actual data. Section 5
concludes the paper and proposes future research directions.

2. Representative Scenario

First, we provide a representative scenario to explain our
work, as shown in Figure 1. For modeling simplicity, we only
focus on the car-following process without lane changing.
Te mixed trafc fow studied in this paper consists of two
types of vehicles: human-driven vehicles (HVs) and con-
nected and automated vehicles (CAVs). We assume that
each CAV is equipped with a Mobile Object Detection and
Tracking System (MODAT) to detect the surrounding trafc
conditions [24]. CAVs are equipped with various sensors,
including GPS, stereo vision cameras, and LiDAR. LiDAR is
used to acquire point cloud data in the surrounding space,
and the data from stereo vision cameras and GPS are fused to
obtain real-time positions of surrounding vehicles. Te
acquired data include vehicle ID, timestamp, and location.

Referencing to [10, 20], the detection range for CAVs is set at
100m. CAVs use their communication capabilities to upload
this information to Roadside Units (RSUs). RSUs are
equipped with data processing systems and computing units.
Te data processing system can generate high-resolution
trajectory maps (speed, position, and acceleration) for CAVs
and vehicles within the detection range. Te computing unit
estimates the speed and position information of undetected
human-driven vehicles based on velocity and position es-
timation models and sends this information to all CAVs to
assist them in evaluating the surrounding trafc conditions.

3. Methodology

Figure 2 illustrates a typical following scenario. In the fol-
lowing model, it is assumed that the driving behavior of the
following vehicle is infuenced by the changes in the motion
of the leading vehicle, which is refected in the speed, po-
sition, and acceleration of the following vehicle. Terefore,
the following model can be used to defne the behavior of the
following vehicle under the infuence of the leading vehicle.
When the following vehicle signifcantly deviates from the
expected behavior defned by the following model, it in-
dicates that the following vehicle is infuenced by other
vehicles [26], and therefore, the position of these vehicles
needs to be estimated.

3.1. Acceleration Estimation. In 2002, Helbing et al. [28].
proposed the Intelligent Driver Model (IDM) based on
empirical observations, which difers frommost existing car-
following models that separate free-fow and congested
states. Te IDM provides a unifed framework to describe
various states of vehicles, ranging from free fow to complete
congestion, with a concise set of interpretable parameters.
Furthermore, the IDM has been widely utilized to capture
the efects of driving behavior between CAVs and HVs
[7, 20, 24]. Terefore, for the sake of modeling convenience,
this study assumes that the interactions between HVs and
CAVs, as well as between HVs, conform to the IDM. Te
IDM takes into account both the position and velocity
diferences between the leading and following vehicles, and
a typical IDM is shown in the following equation:

an(t) � amax 1 −
vn(t)

vmax
 

δ

−
S∗(t)

Δs(t)
 

2
⎡⎣ ⎤⎦. (1)

where n represents vehicle n, which is the following vehicle in
a group of adjacent cars; amax is the maximum acceleration; vn

represents the velocity of the following vehicle; vmax represents
the desired velocity of the vehicle under free-fow conditions; t
represents the current time; δ is the acceleration exponent;
and Δs represents the actual distance between two vehicles,
defned as Δs � pn− 1 − pn − L, in which pn− 1 represents the
position of the leading vehicle n − 1, pn represents the po-
sition of the following vehicle n, and L represents the length of
the vehicle. S∗ represents the desired distance between two
vehicles, which is expressed as a function of the velocities of
both vehicles in the following equation:
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S
∗
(t) � sa + max vn(t)T +

vn(t) vn(t) − vn− 1(t) 

2
������
amax · b

 , 0 , (2)

where Sa represents the minimum safe distance between two
cars; T represents the safe time headway between the following
car and the leading car; and b represents the comfortable
deceleration.

3.2. Checking for the Existence of Unsampled HVs.
Figure 3 shows a typical following scenario in a mixed trafc
fow. Te frst HV within the detection range of CAV2 is
designated as the following vehicle Vn, and the last vehicle
within the detection range of CAV1 is designated as the
leading vehicle Vn− 1. Assuming that there are two vehicles
on the road, CAV1 and CAV2, with Vn following Vn− 1
within the detection range and responding based on Vn− 1’s
behavior, at time t, if the diference between the theoretical
acceleration of Vn calculated by IDM and the actual ac-
celeration an(t)actual exceeds a preset threshold value σ, it is
assumed that there exist unsampled HVs in the detection
blind zone and their trafc parameters need to be estimated.
For the selection of threshold value σ, we refer to the study

by Goodall et al. [26], who calibrated the NGSIM data in the
United States and found that when σ � 1.96, it can describe
various actual situations.Te theoretical acceleration of Vn is
calculated by the following equation:

an(t)estimate � amax 1 −
vn(t)

vmax
 

δ

−
S∗(t)

Δs(t)
 

2
⎡⎣ ⎤⎦. (3)

Terefore, the diference between theoretical and actual
acceleration can be calculated by the following equation:

σ � an(t)estimate − an(t)actual


. (4)

After determining the existence of unsampled HVs
between CAV1 and CAV2, it is necessary to estimate the
positions of these unsampled vehicles. At any time, the HVs
whose positions need to be estimated must satisfy the
minimum safe distance between Vn− 1 and Vn. We denote the
i-th vehicle inserted in front of Vn as Vn,i, and therefore, the
position of Vn,i, denoted as pn,i, must be kept within the safe
distance range between Vn− 1 and Vn, as shown in the fol-
lowing equation:

Driving direction

Following vehicle: Vn Leading vehicle: Vn-1

Vehicle spacing

Figure 2: Typical car-following scenario.
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pn(t) + sa + l<pn,i(t)<pn− 1(t) + sa + l, (5)

where sa represents the minimum safe distance between
Vn− 1 and Vn.

3.3. Estimation of the Lead Vehicle Speed. As shown in
Figure 4, we assume that Vn is following the frst human-
driven vehicle HV1 in the detection blind zone. Te ac-
celeration of the following vehicle Vn is afected by its
current speed vn(t) and the speed of a leading vehicle HV1.

Terefore, the following conditions hold:

vn− 1(t)
′

� max vn(t) + λan(t), 0 , (6)

where vn− 1(t)′ represents the estimated speed of the leading
vehicleVn.Te coefcient λwas calibrated byGoodall et al. [27]
in 2013 to be 0.162 based on NGSIM data. Using a preset
parameter model to estimate the speed of the leading vehicle in
free fow and stable following situations may work well.
However, when the following vehicle is sufciently close to the
leading vehicle, the randomness of the following vehicle’s ac-
celeration increases, and a fxed λ cannot accurately capture the
efect of the leading vehicle’s speed changes on the following
vehicle’s acceleration. To verify this idea, we randomly extracted
trajectory data of 1000 vehicle convoys for each density between
30 and 60 veh/km at intervals of 10 veh/km, considering the
majority of density scenarios in actual road conditions using the
NGSIMdata collected on theUS-101 highway.We analyzed the
efect of diferent densities on the value of λ, and the calibration
formula used is shown in the following equation:

λ �

vn− 1(t) − vn(t)

an(t)
, an(t)≠ 0,

0, an(t) � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(7)

In Figure 5, the change trend of the λ value under
densities of 30–60 veh/km is shown, and with the increase of
the number of selected vehicle platoons, the λ values under
diferent densities fnally converge to diferent values. Table 1
provides the statistical values of λ under diferent densities. It
can be found that when the trafc density is between 30 and
50 veh/km, the absolute value of the average of coefcient λ
increases with the growing density. Tis can be easily
explained because as the trafc density increases, the
headway distance between vehicles becomes smaller, and the
impact of the preceding vehicle on the following vehicle
becomes more severe. When the trafc fow enters the range
of 50–60 veh/km, λ becomes smaller. At this point, the trafc
fow gradually transitions from free fow to congestion, and
most vehicles in the platoon will follow the preceding ve-
hicle’s speed closely. Te infuence of the preceding vehicle’s
velocity change on the following vehicle’s velocity and ac-
celeration gradually decreases. Terefore, it can be verifed
that the degree to which the acceleration of the following
vehicle is afected by its own current speed and the preceding
vehicle’s velocity depends on the trafc density. Using the
preset λ value method to estimate the velocity of the leading
vehicle cannot well refect the real trafc situation.

To address this issue, this study incorporates an optimi-
zation factorΘ into the model as shown in equation (8), where
Θ is calculated through optimization based on the detection
data within the CAV detection range. In addition, it is con-
sidered that the estimated speed of the lead vehicle should not
exceed the free-fow speed, as shown in equation (9). Based on
these considerations, a method is proposed to use real-time
CAV sample data to optimize the value of Θ (the optimization
method is introduced later and is also applied to improve the
IDM) in order to improve the accuracy ofHV speed estimation.

vn− 1(Θ(t))
′

� max Θ(t) vn(t) + λan(t) , 0 , (8)

0≤ vn− 1(Θ(t))
′ ≤ vmax. (9)

Once the speed of HV1 immediately leading the vehicle
Vn has been determined, it is reasonable to assume that the
speeds of other HVs ahead of HV1 and between HV1 and
the vehicle Vn− 1 can be estimated as the average of the speeds
of HV1 and Vn− 1, considering that in stable trafc fow, the
speed diference between the leading and following vehicles
is small. Te speed is calculated by the following equation:

Detection range of
CAV2

Detection
blind Area

Detection range of
CAV1

CAV

HV

Vn Vn-1HV1

Figure 4: Mixed trafc fow following scenario 2.
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Figure 5: Te values of the coefcient λ under diferent densities.

Table 1: Statistical values of parameter λ under diferent trafc
densities.

Trafc density (veh/km) Parameters Mean
30 λ − 0.23316
40 λ − 1.20608
50 λ − 2.43141
60 λ − 1.96361
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vinserti
(t) �

max Θ(t) vn(t) + λan(t) , 0  + vn− 1(t)

2
. (10)

3.4. Estimation of HV Position. Te essence of using a car-
followingmodel to estimate the position of the lead vehicle is
to calculate the headway between the following vehicle and

the leading vehicle based on the following vehicle’s speed,
position, and acceleration. Solving and transforming
equation (1) yields equation (11), and substituting equation
(2) into equation (11) results in equation (12).

Δs(t) �
S
∗
(t)

��������������������������

1 − vn(t)/vmax( 
δ

− an(t)/amax( 

 , (11)

Δs(t) �
sa + max vn(t)T + vn(t) vn(t) − vn− 1(t) /2

������

amax · b



 , 0 
��������������������������

1 − vn(t)/vmax( 
δ

− an(t)/amax( 

 . (12)

When the trafc fow reaches a stable state, it can be
assumed that the following vehicle will follow the leading
vehicle at a speed close enough to the front vehicle and the
leading vehicle’s acceleration is 0. Terefore, vn(t) − vn− 1(t)

approaches 0 infnitely, and equation (2) can be simplifed to
equation (13). Equation (10) can be transformed to equation
(14), and the estimated position of the leading vehicle can be
calculated by equation (15).

S
∗
(t) � Sa + vn(t)T, (13)

Δs(t) �
sa + vn(t)T

��������������

1 − vn(t)/vmax( 
δ

 , (14)

pn− 1(t) � pn(t) +Δs(t). (15)

Based on equations (1)–(15), we can estimate the posi-
tion and velocity of unsampled HVs in the detection blind
zone at any time. When an HV is inserted into the un-
detected range, it can be treated as a known vehicle within
the CAV detection range, and its information can be used to
continue estimating the position of the leading vehicle. Te
entire estimation process is repeated until it exceeds the
predetermined estimation interval. To verify the efective-
ness of using the IDMwith preset parameters to estimate the
position of unsampled HVs, we evaluate the mean absolute
error between the estimated position of the HV (denoted by
pinsert,i(t)estimate) and its actual position (denoted by
pinsert,i(t)actual) by the following equation:

P, errorMAE �
1
k



k

i�0
pn,i(t)estimate − pn,i(t)actual


, (16)

where k represents the number of HVs to be inserted be-
tween Vn and Vn− 1.

However, when the trafc density is moderate, using
equations (1)–(16) may not be a problem, as the mutual
infuence between vehicles remains stable and the following
car can maintain a stable following rule with the leading car.
When the trafc density is low, themutual infuence between

vehicles is weak, and the IDM with preset parameters may
not accurately estimate the headway distance between two
cars. On the other hand, as the trafc density increases, the
following car may approach the leading car with a smaller
safe headway distance. At this time, the randomness of the
infuence of the leading car on the following car increases.
For example, if the leading car suddenly decelerates, its
infuence on the following car mainly manifests in the
signifcant oscillation of its acceleration.

In the IDM, δ is the acceleration exponent, which
characterizes how the acceleration decreases. A larger δ
means a higher rate of change of the acceleration of the
following vehicle, and in previous studies [28], it was usually
set to 4. To verify the correlation between the acceleration
exponent and trafc density, we extracted the trajectory data
of four diferent trafc density scenarios with intervals of
10 veh/km between 30 and 60 veh/km from the NGSIM
dataset and specifed the frst and last vehicles in the convoy
as CAV1 and CAV2, respectively. Based on previous studies,
we frst set the safe time headway T in the IDM as a constant
(e.g., 1.98°s) and selected diferent values of δ to estimate the
position of HV1 using equations (1)–(15). Te changes in
MAE under diferent δ values are shown in Figure 6. It can
be seen that the MAE of estimating vehicle positions in-
creases with increasing δ at a density of 30 veh/km, and at
a density of 40 veh/km, the MAE reaches a minimum value
at a value of 1.6.Tis indicates that when the trafc density is
moderate, the mutual infuence between vehicles is weak,
and the rate of change of the acceleration of the following
vehicle is less afected by the preceding vehicle and remains
relatively stable. At trafc densities between 50 veh/km and
60 veh/km, the MAE of estimating vehicle positions de-
creases with increasing δ, indicating that as trafc density
increases, the degree of mutual infuence between vehicles
increases, and the rate of change of the acceleration of the
following vehicle increases accordingly, especially when
trafc density is between congested fow and free fow.

In the IDM, parameter T represents the safe time
headway between the following vehicle and the leading
vehicle. Te IDM assumes that the vehicle maintains a fxed
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safe headway when following the leading vehicle, which is
obviously unrealistic. Similar to the analysis method of the δ
value in the IDM, based on the NGSIM data, we extracted
1000 diferent platoon trajectory data in the density range of
30–60 veh/km with an interval of 10 veh/km, aiming to
analyze the evolution of the average headway of platoon
under diferent densities. Te headway calculation formula
used is shown in equation (17), where THDW(t) represents
the time headway between the following vehicle Vn and the
leading vehicle Vn− 1. Figure 7 shows the change of the av-
erage headway of platoon under diferent densities, and
Table 2 provides statistical values for the average headway of
platoons under diferent density conditions. It is evident that
under density conditions ranging from 30 veh/km to 60 veh/
km, the average platoon time headway decreases as trafc
density increases. Tis conforms to the fundamental char-
acteristics of trafc fow. Figure 7 illustrates the variations in
time headway under diferent density conditions. It can be
observed that, when density is held constant, the average
time headway within diferent platoons exhibits fuctuations
due to the heterogeneity in following behaviors. For in-
stance, within the same vehicle platoon, variations in driving
behaviors among diferent drivers result in these fuctua-
tions. Cautious drivers tend to maintain a larger gap behind
the leading vehicle during the following process, while more
aggressive drivers tend to closely tail the leading vehicle.
Tus, even within the same platoon, diferences in driving
behavior can lead to local changes in trafc density.

THDW(t) �

pn− 1(t) − pn(t)

vn(t)
, vn(t)≠ 0,

0, vn(t) � 0.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(17)

Terefore, we can reasonably assume that the acceler-
ation index δ and the safe time headway T are related to
trafc density. Previous studies have assumed them as fxed
values, which difers from the randomness of vehicle

behavior found in the above experiments. Terefore, before
estimating the position of the preceding vehicle using the
IDM, we introduce correction factors β and κ in the formula
for Δs(t) to, respectively, correct the acceleration exponent δ
and headway T based on the sampling data obtained within
the CAV detection range. Te aim is to obtain IDM pa-
rameters that are more in line with the actual situation of the
current vehicle feet. Te correction process, similar to the
previous speed correction factorΘ, will be discussed in detail
in the following.Terefore, equation (12) is transformed into
equations (14) and (18) is transformed into equation (19):

D= 30 veh/km
D= 40 veh/km

D= 50 veh/km
D= 60 veh/km

0 200 400
Vehicle platoon

600 800 1000

4.5

4.0

3.5

3.0

2.5

2.0

Av
er

ag
e h

ea
dw

ay
 (s

)

Figure 7: Changes in average time headway under diferent trafc
densities.

Table 2: Statistics of time headway at diferent trafc densities.

Trafc density (veh/km) Parameters Max Mean
30 THDW 4.663 4.343
40 THDW 4.379 3.846
50 THDW 3.040 2.669
60 THDW 2.328 2.147

D=30 veh/km
D=40 veh/km

D=50 veh/km
D=60 veh/km
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M
A

E 
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Figure 6: Variation of MAE with respect to δ at diferent densities.
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Δs(κ(t), β(t)) �
sa + max vn(t)κ(t)T + vn(t) vn(t) − vn− 1(t) /2

������

amax · b



 , 0 
�����������������������������

1 − vn(t)/vmax( 
β(t)δ

− an(t)/amax( 

 , (18)

pn− 1(t)
′

� pn(t)+Δs(κ(t), β(t)). (19)

Te fowchart of the proposed vehicle position estima-
tion method is shown in Figure 8.Tis method includes four
parts: determining the diference between expected and
actual behavior, optimizing model parameters, estimating
trafc parameters, and estimating vehicle position. Te
specifc details will be discussed in the following sections.

3.5.TeCalculationProcedure for theCorrectionFactors (Θ, β,
κ). In this section, we will provide a detailed explanation of
how to calculate the three correction factors using the
platoon data extracted from the NGSIM dataset. Assuming
that the platoon scenario extracted is as shown in Figure 9,
when any vehicle in the platoon is assumed to be a CAV, as
depicted in Figure 10, there are a total of j vehicles within its
detection range, including the CAV itself, all sequentially
numbered as veh1, veh2, · · · vehJ− 1, vehj; with the aid of
various CAV sensors, information about the j vehicles
(including speed, position, and acceleration) can be ac-
quired. Let Vci be defned as the i− th group of leading and
following vehicles within these j vehicles (e.g.,
Vc1 � [veh1, veh2]). As a result, the platoon comprises
a total of j − 1 vehicle combinations (Vc1,Vc2, · · · ,Vcj− 1).
Taking Vc1 as an example, based on the information of veh2
(velocity, position, and acceleration), it is possible to esti-
mate the information of veh1 and then compare it with the
information of veh1. Te process can be repeated for vehicle
combinations Vc2 to vehicle combinations Vcj− 1.

3.5.1. Speed Correction Factor Θ. When optimizing the value
of Θ, it is necessary to impose constraints on the range of Θ.
In order to ensure that the estimated speed of vi(Θ(t))′ does
not exceed the free-fow speed and is not negative, vi(Θ(t))′

is constrained as follows:

0≤ vi(Θ(t))
′ ≤ vmax. (20)

Substituting (20) into (21), Θ(t) is constrained as
follows:

0≤Θ(t)≤
vmax

vi(t) + λai(t)
. (21)

Taking vehicle combination Vc1 as an example, assuming
that the real speed, position, and acceleration of veh1 and veh2
obtained are p1(t), v1(t), a1(t) and p2(t), v2(t), a2(t), by
substituting the speed v2(t) and acceleration a2(t) of veh2 into
equation (8), the estimated speed v1(Θ(t))′ of vehicle veh1 can
be calculated. While varying Θ(t) within the feasible range
leads to diferent results for v1(Θ(t))′, when the estimated
speed v1(Θ(t))′ of vehicle veh1 is closest to its real speed v1(t),

the corresponding value of Θ(t) is the result obtained using
vehicle combination Vc1. Expanding this calculation process to
all vehicle combinations in the entire platoon, in all vehicle
combinations (Vc1, Vc2, . . . Vcj− 1), the leading vehicles are
veh1, veh1, · · · , vehj− 1, respectively, each with diferent values
ofΘ(t) within the feasible range, and their respective estimated
speeds v1(Θ(t))′, v2(Θ(t))′, · · · , vj− 1(Θ(t))′ also change.
When the overall error in the estimated speeds of all vehicles is
minimized, the corresponding Θ(t) is the fnal result after the
calculations are completed.

Tus, an objective function can be constructed to solve
for the optimal speed correction factor Θ(t), taking into
consideration all vehicle combinations (Vc1,Vc2, . . . , Vcj− 1)
within the detection range that can be used for calculations.
Te i− th vehicle in the platoon used for estimation is
denoted as vehi, and the optimization objective is to min-
imize the root mean square error between vehi’s real speed
and estimated speed, as shown in the following equation:

min velocity error v
′
, θ  �

������������������������

1
j − 1



j− 1

i�1
vi(Θ(t))

′
− vi(t) 

2
,




s.t.vi(Θ(t))
′

� max Θ(t) vi+1(t) + λai+1(t) , 0 ,

0≤Θ(t)≤
vmax

vi(t) + λai(t)
.

(22)

3.5.2. Time Headway Correction Factor κ(t) and Acceleration
Exponent Correction Factor β(t). When adjusting the value
of the correction factor κ(t), it is essential to take into ac-
count the time headway situation in the actual trafc sce-
nario.Terefore, the values of the integral term κ(t)T should
satisfy the following equation:

Tmin ≤ κ(t)T≤Tmax, (23)

where Tmin and Tmax represent the minimum and maximum
time headways, respectively. Based on equation (5), after
calibrating the extracted NGSIM data, we obtain Tmin � 0.8°s
and Tmax � 5°s. Equation (22) can be rearranged to obtain the
range of values for κ(t), as shown in the following equation:

Tmin

T
≤ κ(t)≤

Tmax

T
. (24)

Referring to Helbing et al. [28], 1≤ δ ≤ 5. Te integral
term β(t)δ should satisfy 1≤ β(t)δ ≤ 5; during the optimi-
zation process, we set δ to a fxed value of 5, and β(t) is
constrained as follows:
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0≤ β(t)≤ 1. (25)

Taking vehicle combination Vc1 as an example, by
substituting the speed v2(t), position p2(t), and acceleration
a2(t) of veh2 into equation (19), the estimated position
p1((κ(t), β(t))′ of vehicle veh1 can be calculated. While
varying κ(t) and β(t) within the feasible range leads to
diferent results for v1(Θ(t))′, when the estimated position
p1((κ(t), β(t))′ of vehicle veh1 is closest to its real positon
p1(t), the corresponding value of κ(t) and β(t) is the result
obtained using vehicle combination Vc1. Expanding this
calculation process to all vehicle combinations in the entire
platoon, in all vehicle combinations (Vc1, Vc2, . . . Vcj− 1), the
leading vehicles are veh1, veh2, · · · , vehj− 1, respectively, each
with diferent values of κ(t) and β(t) within the feasible

range, and their respective estimated positions p1((κ(t), β
(t))′, p2((κ(t), β(t))′, · · · , pj− 1((κ(t), β(t))′ also change.
When the overall error in the estimated positons of all
vehicles is minimized, the corresponding value of κ(t) and
β(t) is the fnal result after the calculations are completed.

Tus, an objective function can be constructed to solve
for the optimal speed correction factor Θ(t), taking into
consideration all vehicle combinations (Vc1,Vc2, . . . , Vcj− 1)
within the detection range that can be used for calculations.
Te i− th vehicle in the platoon used for estimation is
denoted as vehi, and the optimization objective is to min-
imize the root mean square error between vehi’s real speed
and estimated speed, as shown in the following equation:

min positon error P
′
, κ, β  �

����������������������������

1
j − 1



j− 1

i�1
pi((κ(t), β(t))

′
− pi(t) 

2




,

s.t.pi(κ(t), β(t))
′

� pi+1(t)+Δs(κ(t), β(t)),

0≤ β(t)≤ 1,

Tmin

T
≤ κ(t)≤

Tmax

T
.

(26)

In summary, the determination of the three correction
factors has been summarized into two nonlinear optimization
problems. Based on equations (1)–(26), we are able to estimate
the information of the HVs in the detection blind zone be-
tween CAV1 and CAV2, including position and speed. Once
a vehicle is estimated, it is treated as a known vehicle and used
to continue estimating the positions of the HVs in lead. Te
position estimation stops when the position estimation in-
terval is exceeded, and the complete convoy position in-
formation is obtained. To better describe the entire position
estimation process, we provide Algorithm 1 as an explanation.

4. NGSIM Data-Based Experiments

4.1. Experimental Setup. Firstly, we set up various experi-
mental scenarios involving diferent densities and pene-
tration rates, as well as nonideal conditions more in line with
real trafc scenarios, to evaluate the performance of the
proposed method.

Many scholars choose NGSIM (the Next-Generation
Simulation) data as their data source when researching
real vehicle trajectories. Tese data encompass the south-
bound lanes of US-101, the eastbound lanes of California’s
Emeryville I-80, Peachtree Street in Atlanta, Georgia, and
others. To validate the practicality of the proposed meth-
odology in this study, we selected vehicle trajectory data
from the US-101 segment as experimental data to assess the
performance of the proposed method and for comparative
experiments. Te characteristics of the experimental seg-
ment are illustrated in Figure 11.

Te experiments were conducted under varying trafc
densities ranging from 30 veh/km to 65 veh/km, with density
intervals of 5 veh/km, as this range covers most real-world
trafc scenarios. In total, 400 trafc scenarios were extracted
from the experimental data, with 50 scenarios extracted for
each density interval. Each scenario represents a continuous
queue of vehicles on a lane, with the number of vehicles in
the queue corresponding to the density condition. Te data
include vehicles’ IDs, timestamps, positions, speeds, accel-
erations, and lane IDs.

4.2. Optimization Problem Calculation. To solve the opti-
mization problem of calculating the correction factors
mentioned in Section 3.5, it is essential to solve two sets of
nonlinear optimization functions in equations (20) and (21).
In this paper, we used the Particle Swarm Optimization
(PSO) algorithm to solve such optimization problems, with
the following parameters: population size of 100, inertia
weight of 0.4, individual weight of 0.7, social weight of 0.9,
maximum iteration of 500, minimum particle movement
step of 1e − 8, and minimum change value of objective
function of 1e − 8. Since the initial positions of the pop-
ulation are diferent, which can lead to diferent results for
each run, we repeated the optimization process 10 times and
selected the correction factors corresponding to the mini-
mum error as the optimization result. We no longer assign
specifc IDM parameters to CAVs but instead assume
a human-like behavior for CAVs. Terefore, both CAVs and
HVs utilize the IDM parameters of HVs. Te IDM
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parameters used in the calculations are based on the research
by Chen et al. [20] as shown in Table 3. Te other experi-
mental parameters are shown in Table 4, and the optimi-
zation results of the correction factors for each density are
shown in Table 5.

4.3. Performance under Diferent Densities. In this section,
we consider a fxed number of CAVs in the platoon, which is
set to 2 since the proposed estimation method requires at
least two CAVs. To evaluate the performance of the pro-
posed method under nonideal conditions, we assume that

(1) %Step 1: Obtain the speed, position, and acceleration information of the vehicles within the detection range of CAV1 and CAV2.
(2) Vehicle information: vehicles � veh1, · · · , veh2, · · · , vehj ;

(3) Speed information: v � v1(t), · · · , vn(t), vn+1(t), · · · , vj(t) ;

(4) Position information: p � p1(t), p2(t)· · · · · · , pj(t) ;

(5) Acceleration information: a � a1(t), a2(t)· · · , aj(t) ;

(6) %Step 2: Calculate the speed correction factorΘ(t), acceleration index correction factorκ(t), and headway distance correction factor
β(t)at the current time.

(7) While vehi ∈ veh1, veh2· · · , · · · , vehj− 1 :

(8) Optimization Correction Factors Θ(t):

(9) min
��������������������������

(1/j − 1)
j
i�2(vi(Θ(t))′ − vi(t))



(10) Optimization Correction Factors κ(t) and β(t):

(11) min
�������������������������������

(1/j − 1)
j
i�2(pi(k(t), β(t))′ − pi(t))2



(12) Output: Θ(t), κ(t), β(t)

(13) %Step 3: Estimating the position of the HV
(14) Determine if there are any undetected HVs that need to be estimated:
(15) Calculate the theoretical acceleration of vehj:
(16) aanticipate(t) � amax[1 − (vn(t)/vmax)

δ − (S∗(t)/Δs(t))2]

(17) If aestimated(t) − aactual(t)> σ:
(18) %Tere are HVs that have not been detected and need to be estimated.
(19) While pestimate,i(t) ∈ [pn(t) + sa + l, pn− 1(t) − sa − l]:
(20) %Calculate the velocity of the HVs within the undetected range
(21) vi(t) � max Θ(t)[vn(t) + λan(t)], 0  + vn− 1(t)/2
(22) %Calculating the vehicle spacing
(23) Δs(t) � sa + max vn(t)κ(t)T + (vn(t)[vn(t) − vn− 1(t)]/2

������
amax · b


), 0 /

�����������������������������

1 − (vn(t)/vmax)
β(t)δ − (an(t)/amax)



(24) %Calculate the position of the undetected HV.
(25) pi− 1,estimate(t) � pi(t) + Δs(t) + l

(26) Else:
(27) Continue
(28) Output: pestimate(t) 

ALGORITHM 1: Speed and position estimation for unsampled human vehicles.

Lane 1
Lane 2
Lane 3
Lane 4
Lane 5

Detection range: 640 m
251 m213 m176 m

Driving direction

Figure 11: Layout of the studied road section.
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the lead and rear vehicles in the platoon are CAVs, which
enables us to estimate more vehicles. Figure 12 shows
a typical scenario of estimating the positions of HVs in the
unsampled blind zone of the platoon with a fxed number of
CAVs. Te positions of the vehicles sampled by CAVs are
denoted by green dots, and the unsampled vehicles are
denoted by red dots. Our goal is to estimate the velocities
and positions of the unsampled vehicles based on the ob-
served information. To evaluate the velocity estimation
performance of unsampled vehicles, we calculate the mean
absolute error between the true velocity and the estimated
velocity at the current time for each unsampled vehicle, as
shown in equation (26). To evaluate the position estimation
performance of unsampled vehicles, we calculate the mean
absolute error between the true position and the estimated
position for each unsampled vehicle, as shown in the fol-
lowing equation:

V, error(t)MAE �
1
k



k

i�0
vi(t)estimate − vi(t)actual


,

P, error(t)MAE �
1
k



k

i�0
pi(t)estimate − pi(t)actual


.

(27)

Figures 13(a)–13(h) present the average absolute errors
between the estimated speeds and the true speeds of the
vehicles under 50 diferent trafc scenarios within the
density range of 30–65 veh/km for the two methods. Table 6
provides the statistical values of the errors. As shown in the
fgure, the proposed method has the best speed estimation
accuracy. To further verify the stability of the proposed speed
estimation method, the standard deviations of the mean

Table 5: Statistical results of optimized correction factors at various densities.

Trafc density (veh/km)
Θ β κ

Max Mean MAE (m/s) Max Mean Max Mean MAE (m)
30 1.49 1.08 1.2×10–8 0.85 0.66 1.18 0.69 1.18
35 1.29 1.03 1.44×10− 8 0.82 0.61 1.0 0.71 1.37
40 1.32 1.01 1.27×10− 8 0.83 0.62 1.08 0.66 1.39
45 1.43 0.94 1.21× 10− 8 0.86 0.57 0.82 0.63 1.06
50 2.01 0.98 7.94×10− 4 0.83 0.62 0.99 0.68 0.3
55 1.24 0.85 7.4×10− 9 0.78 0.56 1.33 0.90 0.46
60 3.78 1.09 3.9×10− 3 0.82 0.60 1.36 0.87 1.41
65 3.47 1.05 1.1× 10− 2 0.73 0.58 1.29 0.83 1.12
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37 39 41 4329 312725 33 352321197 1715113 9 131 5

Vehicle ID
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Figure 12: Example of experimental scene.

Table 3: Selected IDM parameters.

Model parameters Defnition Unit Value
sa Static safety distance m 2.48
vmax Free-fow speed m/s 32.8
amax Maximum acceleration m/s2 2.78
bc Comfortable deceleration m/s2 2.35
T Safe time headway s 1.98

Table 4: Other experimental parameters.

Parameters Defnition Unit Experimental values
l Vehicle length m/s 4.5
σ Estimation threshold m/s2 1.96
κ Correction factor —
β Correction factor —
Θ Correction factor
λ Correction factor 0.162
Dec CAV detection range m 100
P CAV penetration rate %
D Trafc density veh/km
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Figure 13: MAEs of speed estimation under diferent densities. (a) D� 30 veh/km. (b) D� 35 veh/km. (c) D� 40 veh/km. (d) D� 45 veh/km.
(e) D� 50 veh/km. (f ) D� 55 veh/km. (g) D� 60 veh/km. (h) D� 65 veh/km.
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Table 6: Te statistical values of the MAE of speed estimation under diferent densities.

MAE (m)

Trafc density (veh/km)
Proposed method Goodall’s method

Performance improvement (%)
Mean SD Mean SD

30 2.28 0.87 3.40 1.27 +32.9
35 2.02 0.79 2.43 1.17 +16.9
40 2.06 0.62 2.75 1.42 +25.1
45 2.81 1.06 4.58 2.06 +38.6
50 2.36 0.87 2.95 1.24 +20
55 2.61 0.39 3.92 0.68 +33.4
60 3.31 0.62 3.76 1.01 +11.97
65 2.96 0.44 4.35 1.17 +47
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Figure 14: Continued.
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absolute errors are also provided in Table 6. A lower value
indicates stronger stability of the method. According to the
statistical results in Table 6, the stability of the proposed
method is better than that of the Goodall method at all
densities because the proposed method considers the het-
erogeneity of the following behavior caused by diferent

trafc densities, which afects the vehicle speed and can
better refect the speed of vehicles in diferent trafc sce-
narios, based on the Goodall algorithm.

Figure 14 shows the estimated vehicle positions and the
true vehicle positions under 50 diferent trafc scenarios
within the density range of 30–65 veh/km for both the
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proposed method and the method proposed by Chen, which
uses calibrated expected spacing such as (a-1). It also shows
the average absolute errors between the estimated positions
and the true positions for both methods such as (a-2). Te
red dashed line represents the true vehicle position, the
green dashed line represents the vehicle position estimated
by the proposed algorithm, and the blue dashed line rep-
resents the vehicle position estimated by Chen’s method.
From the subplots, it can be observed that the number of
vehicles to be estimated increases with the increase in trafc
density. Moreover, under various density conditions, the
proposed method achieves the best estimation accuracy.

Table 7 presents the average mean absolute error (MAE)
for position estimation of the two methods under diferent
densities. Te standard deviation of the average MAE is also

provided to assess the stability of the proposed position es-
timation method. Te results demonstrate that the proposed
method outperforms Chen’s method in terms of accuracy and
stability across various density conditions. Te error in ve-
hicle position estimation decreases as the trafc density in-
creases, which is expected. In low-density trafc, the larger
vehicle spacing and weaker interaction between vehicles pose
challenges for the proposed method to capture detailed
driving behavior accurately. However, as the trafc density
increases, the reduced vehicle spacing and enhanced fol-
lowing characteristics make it easier for the proposed method
to interpret the driving behavior of each vehicle, leading to
improved position estimation accuracy. On the other hand,
Chen’s method exhibits an increasing MAE from 55 veh/km
to 60 veh/km. Tis can be attributed to Chen’s method

Table 7: Te statistical values of the MAE of position estimation under diferent densities.

Trafc density (veh/km)
Proposed method Chen’s method

Performance improvement (%)
Mean SD Mean SD

30 44.09 19.99 69.97 22.62 36.9
35 42.51 21.30 62.94 23.06 32.5
40 37.33 15.83 53.62 21.27 30.4
45 34.87 14.84 46.80 24.13 25.5
50 31.19 14.63 42.46 17.38 26.5
55 27.31 4.38 41.5 16.11 34.2
60 24.88 4.29 53.45 22.70 53.5
65 17.43 3.81 51.87 18.18 66.4
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primarily considering the impact of trafc density through
calibrating the desired headway while overlooking important
factors such as variations in vehicle speeds, headways, and
acceleration rates of change, which afect the accuracy of
position estimation. In summary, in real-world trafc envi-
ronments, calibrating the desired headway method is more
suitable for medium to low trafc densities. However, the
proposed method, incorporating three correction factors of
speed, time headway, and acceleration rate of change, pro-
vides more accurate position estimation for unsampled ve-
hicles in a variety of trafc scenarios.

4.4. Performance under Diferent CAV Penetration Rates.
In this section, the trafc density is set as a fxed constant,
and we conducted experiments using data from a trafc
density of 60 vehicles/km, which falls between free fow and
congested fow. At this density, there are 40 vehicles on the
selected US-101 road segment, and considering that the
proposed method requires a minimum of 2 CAVs, the
minimum required CAV penetration rate should be 5%.
Terefore, we set the CAV penetration rates to 5%, 7.5%,
10%, and 12.5% and randomly selected the corresponding
number of vehicles in the platoon to be CAVs. Te ex-
periments were conducted on 50 randomly selected trafc
scenarios using diferent random seeds.

Figure 15 shows the estimated vehicle positions (rep-
resented by red dashed lines) and the actual vehicle positions
(represented by green solid lines) for the proposed method
under diferent penetration rates. It is evident that as the
penetration rate of CAV increases, the number of human-
driven vehicles (HVs) to be estimated decreases. Tis in-
dicates that the proposed method efectively captures the
characteristics of real trafc scenarios.

Figure 16 shows the variation of mean absolute error
(MAE) in position estimation between the proposed method
(represented by green solid lines) and Chen’s method
(represented by blue solid lines) across 50 diferent convoy
scenarios under varying penetration rates. Similarly, Fig-
ure 17 shows theMAE variation in speed estimation between
the proposed method (represented by green solid lines) and
Goodall’s method (represented by red solid lines) under
diferent penetration rates. To provide a comprehensive
performance evaluation, the average MAE values for posi-
tion and velocity estimation were computed and are pre-
sented in Table 8. Notably, the results demonstrate
a consistent decrease in MAE values for both position and
velocity estimation as the penetration rate increases.Tis can
be attributed to the increased availability of HV trajectory
information within the CAV sampling range, which con-
tributes to enhanced optimization of the correction factors
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and subsequently improves the accuracy of velocity and
position estimation. Furthermore, when compared to
Goodall’s method, the proposed velocity estimation method
consistently outperforms it across all penetration rate sce-
narios. Moreover, the proposed position estimation method
signifcantly reduces the error in HV position estimation
compared to Chen’s method.

5. Conclusion and Future Work

Tis paper presents a method for velocity and position esti-
mation of vehicles based on sampled data from CAVs and its
validation using real-world datasets. Firstly, vehicle trajectory
data under diferent densities are extracted from the NGSIM
dataset. Based on the model proposed by Goodall for esti-
mating the preceding vehicle speed, the infuence of the

preceding vehicle’s speed variation on the following vehicle’s
acceleration is analyzed under diferent densities. Te results
show that this infuence increases with increasing trafc
density under noncongested conditions but decreases when
the density is between congested and free-fowing states.
Terefore, a velocity correction factor is introduced based on
the Goodall model, and the correction factors are optimized
using CAV sampled data, transforming the determination of
the correction factors into a nonlinear optimization problem.
Next, the variations of average time headway and acceleration
rate of change are analyzed under diferent densities. Te
experimental results demonstrate that when density is held
constant, the average time headway within diferent platoons
exhibits fuctuations due to the heterogeneity in following
behaviors, while the acceleration rate of change exhibits
higher randomness under low densities. Terefore, time
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Table 8: Statistical values of MAE under diferent penetration rates.

Penetration
rate (%)

Speed estimation MAE (m/s) Position estimation MAE (m)
Proposed
method

Goodall’s
method

Performance
improvement (%)

Proposed
method

Chen’s
method

Performance
improvement (%)

5 3.31 3.86 14.3 26.02 53.4 51.3
7.5 2.36 2.79 15.4 22.58 49.4 54.3
10 2.11 2.62 19.5 18.27 40.43 54.8
12.5 1.56 2.34 33.3 13.25 30.19 56.1
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headway correction factors and acceleration exponent cor-
rection factors are introduced in IDM, and their values are
determined using CAV detection data. Te determination of
these correction factors is transformed into a nonlinear op-
timization problem involving two parameters. Ten, based on
the proposed speed estimation model and position estimation
model, the speed and position of unsampled HVs are esti-
mated in a CAV platoon. Finally, the performance of the
proposed method is experimentally validated using the
NGSIM dataset.Te results show that even under the extreme
condition where there are only two CAVs in the platoon,
serving as the lead and trailing vehicles, the proposed method
can more accurately refect the true speeds of vehicles under
diferent densities compared to the linear model’s method.
Furthermore, compared to the method that estimates the
positions of unsampled vehicles using calibrated desired
headways, the proposed method signifcantly reduces the
estimation errors of undetected vehicle positions. Addition-
ally, the CAV penetration rate has a minimal impact on the
estimation results, and in general, the error in position esti-
mation decreases with an increase in the penetration rate.

Although the infuence of unstable following behavior
has been considered in this study, the range of consideration
is limited to the number of vehicles within the detection
range of CAV because the optimization process of IDM
parameters is based on the vehicle data within the detection
range of CAV. In future research, the proposed method can
be further extended by considering the time-variant factors
in the CAV detection blind zone to reproduce more realistic
HV information. However, the proposed estimation method
is based on the moment level, which greatly improves the
efect of the lane change behaviors of multilane.

Data Availability

Te dataset is available at https://data.transportation.gov/
Automobiles/Next-Generation-Simulation-NGSIM-Vehicle-
Trajector/8ect-6jqj.
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