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Te study aims to examine the impact of the built environment and weather conditions on travel time for bus passengers in
Weinan, China. Various sources of data, including smart card data, bus GPS data, bus station data, road information data, and
smart card swiping time, were integrated and analyzed. Te study employed the light gradient boosting machine (LightGBM)
model and SHapley Additive exPlanations (SHAP) value to assess the feature importance and nonlinear efects of diferent types of
POI density, weather conditions, and time series on bus passengers’ travel time.Te study fndings indicate that several factors are
associated with bus passengers’ travel time, including destination residential density, destination diversity, destination life service
density, origin science and education density, origin residential density, origin diversity, humidity, visibility, boarding time
between 7 and 8 a.m., and precipitation. Tis study also reveals nonlinear threshold efects. Te study fndings provide valuable
insights that can be utilized to optimize the bus network and develop low-carbon-oriented land-use planning.

1. Introduction

Te increasing number of motor vehicles has brought about
challenges such as congestion, noise, and pollution to urban
transportation systems. Public transportation systems have
become essential components of the transportation systems
in most cities worldwide [1]. Travel time, the duration re-
quired to complete a trip, is infuenced by travel distance,
travel speed, and various nontravel factors. For bus pas-
sengers, managers, planners, and operators, bus travel time
is an essential transportation parameter that helps in the
development of bus route planning and optimization of bus
operation networks [2]. In many small- and medium-sized
cities located in the underdeveloped regions of western
China, the bus is often the only mode of transportation
available to connect diferent parts of the city. Consequently,
the bus travel time largely represents the commuting time of
residents in these cities.Terefore, exploring the evolution of
bus passengers’ travel time and identifying the factors that
infuence it can help relevant departments to predict resi-
dents’ bus travel time, plan the bus operation network

reasonably, and provide a scientifc and reasonable basis for
the development of native low-carbon strategies.

In recent years, various studies have been conducted on
travel time prediction using relevant models [3–5]. Several
factors that infuence bus travel time have been analyzed,
including congestion within the bus, bus section length,
trafc signal density, land use, and departure delay relative to
the expected departure time [6–8]. Moreover, previous
studies have shown that the built environment [9–11] and
weather conditions [12–15] signifcantly impact bus travel.
However, most of these studies have focused on large cities
in developed countries. As small- and medium-sized cities
difer in size, population, land development, and climate
region, travel time and the related infuencing factors of
passengers in such cities may difer from those in large cities.
Terefore, the study of bus travel time and its infuence
factors in small- and medium-sized cities remains largely
unexplored.

Moreover, most of the current studies have utilized
traditional small sample data to analyze bus travel time and
its related factors [16, 17]. However, small sample survey
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data cannot fully and accurately obtain the origin, desti-
nation, and departure time of bus passengers, thereby
making it challenging to accurately reveal the joint infuence
of the built environment at the origin and destination,
weather, and temporal and spatial characteristics on travel
time. Furthermore, previous studies have shown that the
impact of the built environment on travel behavior is often
nonlinear [18, 19]. Terefore, the nonlinear threshold efect
is essential in understanding how the regulation of the built
environment and weather infuence can be utilized to reduce
the travel time of passengers. Tis can help planners de-
termine what type of urban planning controls can efectively
reduce travel time. However, the nonlinear efects of factors
related to bus travel time have not been fully revealed.

Te aim of this study is to examine how theweather
conditions and built environment at both the origin and
destination afect the travel time of bus passengers in
Weinan, a medium-sized city located in western China. To
achieve this goal, multisource spatiotemporal big data for
two consecutive weeks from November 12 to November 30,
2018, was collected fromWeinan Bus Company. In addition,
POI and weather data were obtained through web crawler
technology. Te interpretable LightGBM model was used to
explore the feature importance and nonlinear efects of
multidimensional factors.

Te study makes two main contributions. Firstly, it
reveals the efects of the built environment, weather, and
spatiotemporal characteristics on bus travel time. Tis
provides new insights into the resilience of the bus transit
system. Secondly, it employs an interpretable machine
learning approach using LightGBM and SHAP to uncover
the feature importance and nonlinear efects of signifcant
infuencing factors.

2. Literature Review

Te urban built environment is a complex system that
comprises land use patterns, urban design, and trans-
portation systems. One widely adopted framework for
characterizing the built environment is the 6D elements,
which include density, diversity, design, distance to transit,
destination accessibility, and demand management [20].
However, to obtain a more accurate understanding of travel
behavior, scholars have introduced point of interest (POI)
data as an additional indicator to characterize the built
environment [21]. POI data are an emerging geographic
location big data that ofer the advantages of large data
volume, low cost of acquisition, fast update speed, and
comprehensive information coverage. A plethora of studies
have utilized POI data to analyze and understand the built
environment. For instance, Krumm and Mummidi [22]
utilized user-generated POI data to analyze access to POIs.
Xie and Yan [23] proposed a network kernel density analysis
that integrated the line element into kernel density analysis
to improve operational efciency. Kwan [24] analyzed travel
characteristics by using POI data to obtain activity density
and spatial distribution of residents and conducted spatial
and temporal simulations using GIS methods. McKenzie
et al. [25] explored regional variability in POIs by analyzing

the diferences in characteristics of POIs in various regions.
Becker et al. [26] analyzed population migration charac-
teristics by examining POI point data of call locations in
Morristown. Lian et al. [27] weighted POI check-in in-
formation, expanded the infuence area of the POI through
user check-in frequency, and provided users with POI
recommendations. Yue et al. [28] found that mixed land use
had a signifcant impact on travel behavior, and residential,
employment, entertainment, and life service facilities could
reduce travel distances. Rich diversity can provide more job
opportunities for nearby residents and reduce the pro-
portion of working residents who use private cars [29]. Te
impact of diversity is not limited to regional diversity but can
also refect individual attribute diversity. For instance,
higher-income groups have more complex and longer travel
chains and more fexible travel patterns compared to lower-
income groups [30]. Sun et al. [31] found that better-
designed urban roads with a better road network and
fewer parking spaces encouraged residents to use green
modes of travel, such as public transportation and bicycles.
Loo et al. [32] argued that the design, rationality, and
perfection of the public transport network have a signifcant
impact on the proportion of bus travel. When dedicated
corridors are provided between bus and railway stations, the
proportion of railway travel increases signifcantly. Wells
and Hutchinson [33] emphasized that improving station
accessibility is crucial to enhancing the quality of public
transport services and increasing the attractiveness of public
transport travel. Choi and Zhang [34] highlighted that ac-
cessibility can be assessed based on the distance from the
residence to the city center, with shorter distances indicating
better accessibility and thereby reducing travel distances to
some extent, which could infuence travel mode choice in
favor of public transportation.

Weather is a real-time environmental factor that can
have a signifcant impact on urban trafc travel. Research
into the mechanisms by which weather afects travel can
provide valuable insights into the relationship between
weather and transportation, ultimately leading to the de-
velopment of more efective and efcient transportation
systems [35]. Numerous studies have explored the infuence
of various weather parameters such as temperature, hu-
midity, and rainfall on public transit travel behaviors, in-
cluding trafc volume, travel mode choice, travel time, and
distance traveled, among others [12–15, 36–42]. For in-
stance, with regard to trafc volumes, Ngo [12] found that
bus ridership decreases signifcantly during extreme weather
conditions, particularly during periods of very hot, cold, or
heavy precipitation. Kalkstein et al. [13] surveyed three
regions in the United States (the Bay Area, Chicago, and
northern New Jersey) and found that public transportation
travels were greater during periods of dry, comfortable
weather compared to wetter and cooler weather conditions.
Similarly, Arana et al. [14] studied the impact of weather
conditions on buses in Guipuzcoa, Spain, and found that
strong winds and heavy rain led to a reduction in bus travel.
Singhal et al. [15] investigated the impact of rainfall on travel
volumes on diferent days of the week and found that, during
weekends, the negative impact of rainfall is consistent, while
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during working days, rainfall has a greater impact on travel
volume during morning and evening rush hours. Regarding
travel time, Kamga and Yazıcı [39] found that during severe
weather, such as heavy rainfall, taxi passengers’ trips tend to
be work-oriented and necessary, and these trips generally
take longer to complete, while nonnecessary trips such as
short-distance shopping and fun trips are reduced due to the
occurrence of severe weather. Tsapakis et al. [40] noted that,
in London, light, moderate, and heavy rainfall resulted in
increases in travel time for motor vehicles of 0.1–2.1%,
1.5–3.8%, and 4.0–6.0%, respectively, while the efect of
temperature on travel time was almost negligible. Li et al.
[41] analyzed the characteristics of travel time under dif-
ferent weather conditions to determine the change rule of
travel time and speed of motor vehicles on urban highways
under diferent rainfall intensities and visibility. Te results
showed that the new model for predicting travel time with
consideration of weather conditions has less error and can
efectively improve the calculation accuracy compared with
the Bureau of Roads and Highways (BPR) function model.

Te implementation of machine learning algorithms for
travel time prediction mainly focuses on two areas: pre-
dicting vehicle arrival times and estimating trafc travel
times. Vehicle arrival time prediction involves collecting
arrival information of buses at each station and then using
time series analysis, Kalman fltering, support vector ma-
chines (SVM), and other methods to process the data. For
example, Abidin and Kolberg [43] used Kalman fltering to
process real-world input data, allowing their model to
overcome existing models’ data processing limitations. Tis
approach predicts arrival times by utilizing information
obtained from social networks, particularly Twitter, and
simulates the vehicle arrival time through urban trafc
simulation software. Te results demonstrated excellent
performance. He et al. [44] proposed a multi-index evalu-
ation method for bus arrival time prediction based on SVM.
Tis method uses three new metrics, including GPS cov-
erage, release rate, and accuracy, to evaluate the prediction
service. Te SVM model is then trained using these metrics
to evaluate the accuracy of the prediction. Te study con-
cluded that the SVM-based multi-index evaluation method
is intuitive and comprehensive, allowing for the accurate
identifcation of issues based on the three new indicators.
Chen et al. [45] developed a neural network-based bus ar-
rival time prediction model that uses automated passenger
count data collected by the New Jersey Transportation
Bureau. Te model was tested and found to predict travel
time fairly accurately.

In the domain of travel time prediction, machine
learning methods have gained considerable attention in
recent years. Zhang and Ge [46] introduced a Taka-
gi–Sugeno–Kang fuzzy neural network- (TSKFNN-) based
online prediction method for expressway corridor travel
time. In another study, Ran et al. [47] utilized convolutional
neural networks (CNNs) for predictive analysis of short pass
times. Te study considered the stochastic nature of trafc
demand, spatiotemporal dependence between trafc fows,
and other periodic and nonperiodic factors to develop
a relevant predictive model. Gupta et al. [48] employed

random forest and gradient boosting to analyze one-year
taxi travel time data in Porto City and compared the ac-
curacy of the two models. Te results showed that gradient
boosting slightly outperformed random forest in predicting
travel times. He et al. [49] developed a passenger travel time
prediction model for multiple road sections and starting
points in Singapore based on bus swipe data.Temodel used
long- and short-term memory networks (LSTM) and was
compared with other models such as time series and SVM.
Te study validated the superiority of LSTM for passage-
time prediction.

In recent years, LightGBM has emerged as a popular
choice for interpretable machine learning models due to its
numerous advantages. Chen and Guestrin [50] found that
LightGBM and XGBoost support parallel algorithms, but
LightGBM is more powerful, is faster to train, and consumes
less memory than XGBoost, thus reducing the communi-
cation cost of parallel learning. Compared to deep learning
methods, statistical models (e.g., SVM), and graphical
models (e.g., Bayesian belief networks), LightGBM is more
predictable [51]. Bentéjac et al. [52] compared existing
gradient boosting models and demonstrated that LightGBM
has unique advantages in terms of training speed during
algorithm optimization, especially for larger datasets.
Moreover, Wen et al. [53] utilized LightGBM to quantify the
infuence of hazard factors on the probability of vehicle
crashes. Using Texas vehicle crash data, they analyzed and
compared the efect of key crash factors on the total number
of crashes and the number of crashes of diferent types.Teir
results indicate that LightGBM outperforms other models in
terms of mean absolute error (MAE) and root mean square
error (RMSE).

Machine learning models are not only capable of ana-
lyzing variables with signifcant efects but are also highly
interpretable in terms of nonlinearities and threshold efects.
In their recent study, Zhang et al. [54] demonstrated the
usefulness of nonlinear analysis in examining the efective
sphere of infuence of urban and suburban centers, which
can provide planning guidelines for polycentric develop-
ment. In addition, threshold efects can assist planners in
determining the normative range of land use settings for
planning pedestrian-scale neighborhoods, such as the 15-
minute living circle scheme in China. Many local land-use
variables exhibit unique threshold efects, including local
indicators of daily facilities and density. Tese fndings
highlight the importance of nonlinear and threshold ana-
lyses and suggest that polycentric development and neigh-
borhood living circle planning can help reduce vehicle use in
Beijing. Similarly, Yang et al. [55] explored the nonlinear
and threshold efects of the built environment on e-scooter
sharing using two spatial analysis units (census area and
census block groups) and four temporal units of analysis
(spring, summer, autumn, and winter).

After conducting a thorough literature review, there is
a lack of analysis regarding the impact of the built envi-
ronment and weather factors on bus travel time and the
threshold efects of these infuencing factors remain un-
disclosed, especially in small and medium-sized cities in
developing countries. However, with the increasing maturity
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of LightGBM technology and SHAP analysis, it is expected
to explore the feature importance of built environment and
weather factors on bus travel time and their nonlinear
threshold efects.Tis study employs big data and LightGBM
models to investigate the mechanistic analysis of weather
and the built environment on bus travel time.

3. Data

3.1. Research Subjects. Weinan is a prefecture-level city
situated in Shaanxi Province and is renowned for its his-
torical signifcance as the birthplace of the Chinese nation. It
is also known as the root of China, the source of culture, the
hometown of three saints, and the town of generals. Te city
is located in the eastern part of the Guanzhong Plain and the
eastern part of Shaanxi Province, with the Wei River serving
as the primary terrain axis. It encompasses fve major
geomorphological zones, including the twomountains in the
north and south, the two plateaus, and the central fat river,
and experiences a temperate monsoon climate. Weinan has
a total area of 13,030 square kilometers and comprises two
districts, seven counties, and two county-level cities.Te city
is an important ecological protection barrier zone and
a crucial economic zone in the Yellow River section of
Shaanxi. Figure 1 provides a general layout of Weinan City.

As of the end of 2018, the main urban area of Weinan
(Linwei District) had a total of 24 bus operating lines with
a bus network length of 187.6 km and an average bus line
length of 15.7 km. Tis includes 19 unmanned ticket lines
and 5 suburban lines. Te urban areas have 377 bus stations,
with a coverage rate of 64.5% for a 300-meter radius covering
35.10 square kilometers and a coverage rate of 91.4% for
a 500-meter radius covering 49.71 square kilometers. Te
urban bus-sharing rate is about 10.31%, and a total of 418
buses were put into use, including 492 standard buses op-
erating in the main urban area, resulting in a bus ownership
rate of approximately 9.98 standard buses/10,000 people.
Furthermore, 100% of electric vehicles are used for state-
owned bus lines in the central urban area. Figure 2 illustrates
the public transport network in Weinan City.

3.2. Data Collection. Te Advanced Public Transportation
Systems (APTS) data [56] used in this study are bus mul-
tisource data provided by the Weinan bus corporation for
two consecutive weeks from November 12 to November 30,
2018. Te data includes bus smart card data, bus GPS data,
bus station data, road information data, bus station POI
data, and weather data. Due to the certain correlation be-
tween APTS data, multiple tables can be associated with data
fusion technology. Smart card data, bus GPS data, and bus
station data are associated based on the related felds. Te
data source-association relationship is shown in Figure 3.

3.2.1. Bus Smart Card Data. Te data collected from the
smart card system contain various felds such as user name,
card swiping number, amount, card swiping time, rate, and
others. To simplify data processing and minimize in-
terference, redundant felds are removed, and only relevant

information such as users’ travel date, boarding swiping
time, bus route, self-numbering, bus registration number,
terminal number, and smart card number are retained.

3.2.2. Bus GPS Data. Te onboard GPS data covers all
vehicles of the 24 bus lines operated by the Weinan Bus
Company. Te data include the date, time, bus route, self-
numbering, bus registration number, running mileage, in-
stantaneous bus speed, longitude, and latitude of the
bus lines.

3.2.3. Bus Station Data. Te bus station data include in-
formation on the GPS coordinates of 1280 bus stations in
Weinan. Te data provide details such as the station name,
number, route, latitude, and longitude, as well as the di-
rection of the upline and downline.

3.2.4. Road Information Data. To obtain basic road in-
formation, the BaiduMap “API Console” was utilized, which
provided data on coordinate location, road name, unique
identifcation number, road level, one-way status, bridge
status, and other related information.

3.2.5. Bus Station POI Data. Te Amap open platform API
was utilized to collect POI distribution information near bus
stations inWeinan City. Te Amap platform subdivides POI
interest points into more than 20 small types, which we
classifed into fve large types based on their use: commercial
land, science and education land, residential land, ofce
land, and life service land. We connected the station co-
ordinate data to the Amap API interface and collected the
above fve types of POI data within a 500-meter radius of the
bus station, according to the radius size and POI coding
rules. Te station name in the bus passenger boarding and
unloading data was matched with the corresponding POI
value, and the direction of the bus was determined. We
selected ten feature values, including the number of
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Figure 1: General layout of Weinan in China.
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commercial POI, science and education POI, residential
POI, ofce POI, and life service POI in the of-boarding
station and within 500meters of the of-boarding station. To
characterize the built environment of the city when

modeling, we used density, defned as the number of POI on
a 500 by 500 square meter block area. Tese features were
denoted successively as “origin commercial density,” “origin
science and education density,” “origin residential density,”
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Figure 2: Bus routes’ network of Weinan.
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“origin ofce density,” “origin life service density,” “desti-
nation commercial density,” “destination science and edu-
cation density,” “destination residential density,”
“destination ofce density,” and “destination life service
density.”

3.2.6. Weather Data. Te historical weather information
was obtained by using Python crawlers on the website
(https://lishi.tianqi.com/weinan/201811.html). Tempera-
ture, humidity, precipitation, and visibility were extracted as
variables for measuring the weather conditions.

3.3. Data Judgment. In Weinan, residents swipe their cards
only when boarding the bus, not when alighting. Since there
is a correlation between the various APTS datasets, data
fusion techniques can be used to obtain more compre-
hensive information than single datasets. Te method used
to determine the boarding and alighting stations and the bus
travel time is primarily based on existing data processing
methods, with modifcations and adjustments made to the
calculation methods to suit the characteristics of the
existing data.

3.3.1. Boarding Station Judgment. By utilizing data from bus
smart cards, valuable information can be extracted for ef-
fective decision-making in bus system planning and man-
agement. Moreover, accurately identifying the boarding
stations of passengers via smart card data is fundamental for
utilizing such data in analyzing bus travel time, as estab-
lished in previous studies by Chen et al. [57] and Chen and
Yang [58].

Step 1: Determine the coordinates of the bus when
swiping a smart card
Preliminary Screening. Te study utilizes the GPS data
of Weinan buses and smart card swiping data to match
the route number, vehicle number, swiping date, and
swiping time of the smart card data with the bus GPS
data by truncating the records. Furthermore, as buses
primarily follow fxed routes and there are no identical
bus routes with the same paths in the city, this study
employs the discrete Freixian distance (DFD) algo-
rithm, which is a distance-based trajectory similarity
measurement algorithm, to match the current Weinan
bus onboard GPS data with theWeinan bus station data
to obtain alternative bus GPS data [59].
Final Determination. Te study matches the time of
smart card swiping with the operating time of buses,
which is from 6 a.m. to 10 p.m. in Weinan. Te swiping
records are sorted by time and aligned with the GPS
operating records. Te coordinates of the bus vehicle at
the time of swiping are determined by taking the
“longitude” and “latitude” values of the lowest in-
stantaneous speed in the alternative GPS data. If

multiple GPS data points have the same minimum
instantaneous speed, the one closest to the 30-second
mark within 1minute of the swiping time is selected.
Step 2: Determine the direction of the upline or
downline of the bus
Te bus smart card data are correlated with the op-
eration record data to determine the direction of the
bus, whether it is upline or downline, at the time of card
swiping. Specifcally, the direction is determined based
on the location of the station, where the card was
swiped. If the station is a secondary station and follows
a main station, then the bus is considered to be trav-
eling in the downline direction. Conversely, if the
station is not following a main station, then the bus is
considered to be traveling in the upline direction.
Step 3: Match the bus coordinates with station co-
ordinates when swiping smart cards
When a passenger swipes their smart card while
boarding a bus, the system calculates the distance
between the current coordinates of the bus and the
coordinates of all the stations listed in the bus station
data table. Tis calculation is performed to identify the
nearest station to the bus. Te station with the mini-
mum distance is considered to be the one where the
passenger gets on the bus. Tis process is based on the
principle of identifying the nearest neighbor using
distance calculations in mathematics and geography.

3.3.2. Alighting Station Judgment. Te process of de-
termining a bus passenger’s alighting station involves ana-
lyzing the time and space relationship of their card number
within the travel chain of the bus. By examining the sequence
of bus stops visited by the passenger, their fnal destination
can be calculated. Te travel chain-based station estimation
method is based on the following four assumptions [60].

Hypothesis 1. Te same route matches the same direction.
Assuming that a passenger takes two bus trips on the same
route and direction and boards at the same or nearby sta-
tions, we can infer that their alighting station on the current
day is likely to be the same or similar to their alighting
station on the previous day.

Hypothesis 2. Te same route matches the opposite di-
rection. If a passenger takes two bus trips on the same route
but in opposite directions, and these trips occur on the same
day and a previous day, we can infer that their alighting
station for the current day’s travel is likely to be the same as
their boarding station or a nearby station on the previous
day’s travel.

Hypothesis 3. Diferent routes match the same direction.
When a passenger takes two bus trips on diferent routes but
in the same direction, and these trips occur on the same day
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and a previous day, we can predict that the downstream
station on the current day’s route, which is the same or close
to the alighting station on the previous day’s travel, is likely
to be the alighting station for the current day’s travel.

Hypothesis 4. Diferent routes match the opposite direction.
Suppose a passenger takes two bus trips on diferent routes,
one on a previous day and the other on the same day. If the
direction of travel on the two routes is opposite and the
routes themselves are diferent, then we can infer that the
station where the passenger alighted on the previous day is
likely to be the same or close to the downstream station on
the route taken on the same day.

Te basic steps are shown as follows:

Step 1: Deletion of single smart card records
Once the boarding station has been identifed, any
records that have been determined to be incorrect or
impossible are removed from the dataset. In addition,
any consecutive records that are identical, indicating
multiple swipes at the same station, are also removed.
Finally, any single swiping records throughout the day
that do not represent a complete trip are removed
as well.
Step 2: Traversal verifcation of whether the hypothe-
sizes are satisfed
Te card numbers are sorted and examined one by one
to determine if they satisfy the four hypotheses men-
tioned above. If a card fails to meet these criteria or if
the distance between two consecutive boarding stations
is outside the reasonable distance range, the card is
considered unprojectable and excluded from further
analysis.

3.3.3. Travel Time Calculation. Te time diference between
the boarding and alighting swiping times is used to calculate
the passenger’s travel time by bus. Te swiping records are
sorted in chronological order, and the time interval between
each swiping time and the GPS running time immediately
before or after it is calculated.Te data point that is closest to
both the swiping time and the adjacent running time is
selected based on this interval, ensuring that the swiping
time and its corresponding running time are as consistent as
possible.

Step 1: Add the “Travel Time” column to the database
A new column named “Travel Time” is added to the
database to record the travel time.
Step 2: Judge the boarding time
Te operating hours for buses in Weinan are from 6
a.m. to 10 p.m. Terefore, the boarding time for each
passenger can be assumed to fall within this time frame.
Te boarding time is determined by identifying the
boarding station and retrieving the corresponding
smart card swiping record for that station.
Step 3: Judge the alighting time

Te process of determining the alighting time primarily
involves analyzing the time and spatial relationship
between consecutive swiping records associated with
the same card number. By examining the travel chain
formed by the passenger’s bus boarding and alighting
stations, the alighting time can be calculated with
reasonable accuracy.
Step 4: Correct smart card swiping time and association
analyze bus GPS data
To ensure the accuracy of time data and avoid dis-
crepancies between bus travel time data and bus routes,
we use a combination of the time similarity method and
the time average deviation method to calculate the
similarity between vehicle GPS track data and smart
card data. Trough several days of data verifcation, we
can fully establish the corresponding relationship and
make necessary time corrections [59].
Step 5: Calculate the interval between boarding and
alighting time to obtain passengers’ bus travel time

3.4. Data Description. Te collected data are subjected to
normalization to ensure its reliability and suitability for
subsequent analysis. Tis involves two steps: (1) outlier
processing, which involves checking for missing and du-
plicate values that could adversely afect subsequent studies
and (2) text labeling, which involves digitizing text in-
formation in the data and labeling data such as boarding and
alighting stations, smart card numbers, bus running di-
rections, and weather.

Table 1 shows the results of the basic data descriptive
analysis. For this study, travel time is selected from two
consecutive weeks of 7, 8, and 9 a.m. peak data in November
2018 in Weinan City.

4. Methodology

4.1. LightGBM

4.1.1. Overview of LightGBM. LightGBM is a framework
based on XGBoost, which was released by Microsoft in 2017
[61]. Both LightGBM and XGBoost [50] support parallel
algorithms, but LightGBM is more powerful than XGBoost
due to its faster training speed and lower memory re-
quirements, which reduce the communication cost of par-
allel learning. LightGBM has several main features,
including gradient-based one-side sampling (Goss), exclu-
sive feature bundling (EFB), and a histogram and leaf-
oriented growth strategy with depth limitation. Goss can
achieve a balance between the number of samples and the
precision of LightGBM’s decision tree. During the training
process, downsampling will give more weight to the samples
with larger gradients, which have a greater impact on in-
formation acquisition. When the feature space is sparse,
LightGBM can use EFB to group mutually exclusive features
into new features, thereby reducing the dimensionality of the
feature space.
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LightGBM performs better than existing decision tree
methods such as deep learning methods (e.g., neural net-
works), statistical models (e.g., SVM), and graphical models
(e.g., Bayesian belief networks) [51]. However, existing
decision tree methods have low performance and require the
use of specifc algorithms such as GBDT, Goss, and EFB.
Terefore, the LightGBM method is used in this study. Its
basic idea is to linearly combineNweak regression trees into
a strong regression tree [62].Te calculation formula is given
as follows [63]:

G(x) � 
N

n�1
gn(x), (1)

where G(x) is the fnal output and gn(x) is the output of the
weak regression tree.

Te LightGBM model has made signifcant improve-
ments in two key areas: the histogram algorithm and the
leaf-wise strategy with depth limitation. Te histogram al-
gorithm converts continuous data into K integers and
constructs a histogram with a width of K. During the tra-
versal process, the discrete values are accumulated as indexes
in the histogram, and the optimal decision tree segmentation
points are searched. Te leaf-wise strategy with depth
limitation means that during each split, the leaf with the
greatest gain is selected to split and cycle. Furthermore, the
complexity of the model is reduced, and overftting is
avoided by limiting the depth of the tree and the number of
leaves.

4.1.2. Model Building and Hyperparameter Tuning.
Initially, we utilized the LightGBM model with default
parameters, and subsequently, we employed the bagging
algorithm to perform hyperparameter tuning. Bagging is
a well-known ensemble learning method that combines the

outcomes of multiple weak learners to collaborate on
a shared learning task. Tis method involves generating N
sets of samples by repeatedly sampling M samples. Each
sample set is used to train a separate learning model,
resulting in N weak learners.

To begin the tuning process, we frst focus on adjusting
the “n_estimators” and “learning_rate” parameters. Te
default value for “n_estimators” is 100, and we explore
a broad range of values to identify an optimal number before
narrowing down to a threshold range. Te default value for
“learning_rate” is 0.1, and we adjust this based on the specifc
needs of the data. Next, we adjust the “num_leaves” and
“max_depth” parameters, with “num_leaves” defaulting to
31, but ultimately determined by the data. Tese parameters
can be adjusted simultaneously, using a “coarse tuning, then
fne-tuning” strategy. Finally, we use a larger “n_estimators”
value to train the data using the optimized parameters
obtained from the tuning process.

4.1.3. Model Evaluation. Regression models were evaluated
using the common statistical functions: mean absolute error
(MAE), mean square error (MSE), root mean square error
(RMSE), root mean squared logarithmic error (RMSLE),
mean absolute percentage error (MAPE), and coefcient of
determination (R2). It should be noted that the ideal value
for R2 is 1, and the ideal values for MAE, MSE, RMSE,
RMSLE, and MAPE are all 0.

4.2. SHAP. SHapley Additive exPlanation (SHAP) is
a model that utilizes the principles of additive explanation
inspired by cooperative game theory [64]. Te SHAP value
is a technique that determines the relative contribution of
each input variable in generating the fnal output variable.
Tis concept is similar to parametric analysis, where one

Table 1: Descriptive statistics of original variables.

Variables Units Count Mean Std. Min Max
Travel time min 7822 20.58 14.60 4 70
Longitude ° 7822 109.47 0.03 109.41 109.53
Latitude ° 7822 34.50 0.01 34.48 34.53
Temperature °C 7822 3.8 2.42 − 0.8 7.9
Humidity %rh 7822 75.45 15.16 44 98
Precipitation mm 7822 0.01 0.05 0 0.3
Visibility m 7822 5.78 6.09 0 26
Origin road density km/km2 7822 4.12 0.95 0.93 10.57
Origin business density pcs/500m2 7822 550.95 471.06 1 1920
Origin science and education density pcs/500m2 7822 55.16 45.48 1 239
Origin ofce density pcs/500m2 7822 70.08 48.86 1 266
Origin life service density pcs/500m2 7822 256.03 198.26 1 921
Origin residential density pcs/500m2 7822 53.68 48.65 1 497
Origin diversity pcs/500m2 7822 0.75 0.09 0.38 0.98
Destination road density km/km2 7822 4.12 0.95 0.93 10.57
Destination business density pcs/500m2 7822 791.92 609.04 1 1920
Destination science and education density pcs/500m2 7822 75.89 55.78 1 194
Destination ofce density pcs/500m2 7822 91.43 67.18 3 266
Destination life service density pcs/500m2 7822 359.02 259.73 1 921
Destination residential density pcs/500m2 7822 73.47 58.65 1 326
Destination diversity pcs/500m2 7822 0.73 0.09 0.38 0.96
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variable is changed while the others remain constant to
observe the efect of the changed variable on the target
attribute [65].

In the SHAP method, all features in the dataset are
considered contributors to the predictions made by the
machine learning model [66]. For each sample that is
predicted by the model, SHAP generates a value called the
SHAP value, which is assigned to each feature in the sample.
SHAP maps the original input value r to a simplifed input
value z and creates a simplifed function of f (z). Using the
additive feature attribution method, SHAP constructs a bi-
nary linear function to estimate the objective function f. Te
explanation process is as follows [67]:

f(r) � u(z) � φ0 + 
M

m�1
φmzm, (2)

where zm equals one when feature m is involved in the
prediction process and zero otherwise. M is the number of
features and φm is the contribution of feature m. Te
contribution of feature m is described in the following [67]:

φm � 
S⊆F/ m{ }

|S|!(M − |S|! − 1)!

M!
fr(S∪ m{ }) − fr(S) ,

(3)

where F is the set of all input features, S is a subset of
diferent feature combinations without featurem, and fr(C)

is a prediction model with input instance r conditional on
the subset C of feature combination. For SHAP, fr(C) is
defned as E[f(r)|rC] that this means that the function f has
an exceptional value in terms of the input characteristic
subset C [68].

Te conventional feature importance method only
measures the importance of features without considering
their efect on the prediction results. However, SHAP
provides both the magnitude and direction of the impact of
each feature on the prediction results for each sample. Te
SHAP value is used to calculate feature importance, and
visualization results are generated. We present SHAP de-
pendency plots for the most important features to describe
their impact on the predicted output. For analyzing the
nonlinear efects of a single variable, partial dependence
plots are used to show the partial dependence of travel
time [69].

5. Results

We implemented the LightGBM regression model using
Python 3.8. Te available dataset was partitioned into two
disjoint sets, namely, the training set and the testing set.
Random sampling was applied to split the dataset, where
80% of the samples were assigned to the training set and the
remaining 20% were assigned to the testing set.

5.1. Models Construction. Before establishing the model, we
conducted univariate regression to identify signifcant fac-
tors contributing to travel time. We also examined the
correlations among these signifcant factors. However, we

found strong correlations among specifc pairs of variables.
To address multicollinearity issues, we removed one variable
from each highly correlated pair based on their variance
infation factor (VIF) values [70]. As a result, the following
variables were included from the variable set used for
modeling: destination diversity, destination residential
density, destination life service density, origin diversity,
origin residential density, origin science and education
density, visibility, precipitation, and humidity.

We utilized the same dataset to compare the perfor-
mance of LightGBM models against other machine learning
models. Our fndings suggest that the LightGBM model
outperformed other models in terms of accuracy and ftting
performance, as presented in Table 2. We constructed
LightGBMmodels with and without hyperparameter tuning
using the bagging method. Te important hyperparameters
of the twomodels are presented in Table 3, with the ones that
were altered after tuning highlighted in red. To assess their
performance, we conducted a 5-fold cross-validation sepa-
rately for each model, as shown in Table 4. Te results in-
dicate that the LightGBM model after hyperparameter
tuning exhibited signifcantly better 5-fold cross-validation
performance compared to the model before tuning. Te
process of generating LightGBM models and their pre-
diction performances are presented in Figure 4.

5.2. Explicability of Variables. Figure 5 displays the impact
directionality of the top 10 features on travel time, where the
overall impact of each variable on travel time is represented
by its average SHAP value across all samples, indicating the
average impact of each variable on travel time. Each data
point in the graph represents a sample of data, where
DateTime_hour_7 represents boarding time between 7 and 8
a.m. Figure 6 depicts the efect of POI and weather variables
on passenger travel time in a nonlinear relationship with
a threshold efect. Tis graph can be utilized to analyze the
threshold efect of a single independent variable on the
dependent variable while holding other variables constant.
Moreover, the black rugs on the horizontal axis represent the
actual data distribution.

5.2.1. Residential Density. In the POI variables, we fnd both
the residential density at the origin and destination play
important roles in infuencing travel time during the
morning peak hours. In particular, destination residential
density is the primary factor afecting travel time, and this
infuence is predominantly inhibitory.Tis is consistent with
the fndings of Feng et al. [71], highlighting the suppressive
role of residential density in travel time. Tis could be be-
cause higher residential population density leads to the
growth of supporting industries in the community. Con-
sequently, residents in such areas spend less time on essential
travel due to the availability of amenities within proximity.

In Figure 6(a), it is evident that the overall reduction in
travel time for residents persists with an increase in desti-
nation residential density. However, a noteworthy upward
rebound in travel time occurs when the destination resi-
dential density falls within the range of 135 to 160 pcs/
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500m2. One possible reason is that when the residential
density reaches this threshold range, road trafc congestion
can be severe during peak hours, potentially increasing the
bus travel time. Similar fndings were found for the re-
lationship between origin residential density and bus travel
time. Figure 6(e) also shows that bus travel time increases
slightly when the origin residential density is approximately
85–100 pcs/500m2.

5.2.2. Land Diversity. Figure 5 shows that both the diversity of
land at the destination and the origin are crucial factors af-
fecting bus travel time. Tis can be attributed to the greater
variety of land types (e.g., business, ofce, science and edu-
cation, life service, and residence) that have a signifcant impact
on bus travel time both at the origin and at the destination.
Figures 6(b) and 6(f) indicate that the diversity of land at the
destination and origin have diferent efects on bus travel time.

Table 2: Comparison of fve machine learning algorithms.

Model MAE MSE RMSE RMSLE MAPE R2

LightGBM 7. 327 90.859 9.53 6 0.4672 0.5 40 0.5620
GBDT 9.2712 146.6968 12.1110 0.5743 0.6848 0.2930
AdaBoost 11.6253 195.2151 13.9703 0.7054 1.0033 0.0592
Bayesian ridge 10.9980 196.8434 14.0292 0.6680 0.8451 0.0513
LR 10.9960 196.8575 14.0297 0.6679 0.8448 0.0513
We have used bold formatting to emphasize that the LightGBMmodel outperforms these performance metrics (MAE, MSE, RMSE, RMSLE, MAPE, and R2)
among these models, in order to enhance the readability of the article.

Table 4: 5-fold cross-validation results.

LightGBM models 5-fold MAE MSE RMSE RMSLE MAPE R2

Before tuning

0 7.1199 91.5006 9.5656 0.4656 0.5120 0.5703
1 7.0385 87.4810 9.3531 0.4639 0.5074 0.5666
2 7.2264 91.9952 9.5914 0.4662 0.5127 0.5633
3 7.1034 91.3756 9.5591 0.4672 0.5143 0.5571
4 7.1751 91.9433 9.5887 0.4731 0.5237 0.5529

Mean 7. 327 90.859 9.53 6 0.4672 0.5 40 0.5620
SD 0.0640 1.7062 0.0901 0.0031 0.0054 0.0063

After tuning

0 3.4854 28.9521 5.3807 0.2823 0.2369 0.8641
1 3.2938 24.9931 4.9993 0.2774 0.2235 0.8762
2 3.5073 28.8135 5.3678 0.2896 0.2359 0.8632
3 3.4933 30.0568 5.4824 0.2920 0.2374 0.8543
4 3.5205 29.4615 5.4278 0.2975 0.2468 0.8567

Mean 3.460 28.4554 5.33 6 0.2878 0.236 0.8629
SD 0.0840 1.7855 0.1710 0.0071 0.0074 0.0076

We have used bold formatting to emphasize that the LightGBMmodelsmean performance after 5-fold validation, in order to enhance the readability of the article.

Table 3: Hyperparameter for LightGBM models.

Hyperparameters
Values

Before tuning After tuning
boosting_type GBDT GBDT
class_weight None None
colsample_bytree 1.0 1.0
importance_type Split Split
learning_rate 0.1 0.3
max_depth − 1 − 1
min_child_samples∗ 20 86
min_child_weight 0.001 0.001
min_split_gain∗ 0.0 0.2
n_estimators∗ 100 280
n_jobs − 1 − 1
num_leaves∗ 31 90
Objective None None
random_state 5734 5734
reg_alpha∗ 0.0 0.05
reg_lambda∗ 0.0 0.005
Silent Warn Warn
Subsample 1.0 1.0
subsample_for_bin 200000 200000
subsample_freq 0 0
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Travel time shows a nonlinear three-stage variation pattern:
initially increasing, then decreasing, and fnally increasing
again as the degree of destination diversity rises (Figure 6(b)).
In the previous stage, as destination diversity increases within
the range of 0.5 to 0.6 pcs/500m2, the probability of residents
opting for longer journeys also rises. Tis could be because
when the industrial function of the destination area reaches
a certain small scale, the comprehensive experience of small
business ofces and residential complexes attracts long travel.
Ten, with an improvement in destination diversity, travel time

gradually decreases. Te strongest inhibitory efect on travel
time is observed when destination diversity is at 0.85 pcs/
500m2. At this point, the travel purpose of residents near the
medium-sized business ofce complex has been adequately
fulflled, and long travel is unnecessary. In the fnal stage, when
destination diversity is greater than 0.9 pcs/500m2, travel time
tends to increase again. Tis occurs because large business,
ofce, and residential complexes attract greater trafc volumes,
involving nearby and even whole city residents, leading to
longer travel times.
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Figure 4: Predictive performance and generation process of LightGBM models. (1) Learning curve is a representation of the model’s
performance metrics against varying sizes of training data. It helps analyze the impact of dataset size on model accuracy and generalization.
(2) t-Distributed stochastic neighbor embedding (t-SNE) is a technique used for dimensionality reduction and visualization of high-
dimensional data in a lower-dimensional space. (3) Scale location helps assess the assumption of homoscedasticity, where the spread of
residuals remains consistent across the range of predicted values. (4) Residuals represent the diferences between observed and predicted
values. (5) Leverage indicates the infuence of individual data points on the regression model. (6) Prediction error refers to the discrepancy
between predicted values and observed outcomes (R2). (7) Cook distance is able to assess the infuence of individual data points on the
regression analysis. (8) Validation curve illustrates how the performance of a model changes with variations in a specifc hyperparameter.
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However, Figure 6(f ) shows that the nonlinear efect of
origin diversity on bus travel time is signifcantly diferent.
When the origin diversity exceeds 0.7 pcs/500m2, as the
origin diversity increases, residents’ bus travel time becomes
increasingly shorter. Especially when origin diversity is
between 0.8 and 0.9 pcs/500m2, higher origin diversity
signifcantly shortens bus travel time.Te result is consistent
with the fndings of Hu et al. [72] and Ji et al. [65], who also
indicated that the higher the land mix, the shorter the
electric vehicle and cycling time for residents.

5.2.3. Life Service Density. Figure 5 indicates that the des-
tination life service density also has a slightly positive impact
on bus travel time. One possible reason is that with the
increase of the density of life services, the infuence range of
the area on the surrounding residents is increasing, and then
the farther residents are attracted to the area, and the bus
travel time of the residents is longer.

Furthermore, the promotion efect of destination life
service density on bus travel time reaches its maximum
when the density is around 350 pcs/500m2 (Figure 6(c)).
Once the density of life services exceeds this threshold, the
efect of this factor on bus travel time remains stable. It is
possible that once the commercial service facilities reach
a certain scale, the increase in the density of life service
facilities will not lead to the continuous expansion of the
attraction range of residents. Te corresponding residents’
bus travel time will not change greatly.

5.2.4. Science and Education Density. As shown in Figure 5,
origin scientifc and education density is an important factor
that negatively afects bus travel time. One possible reason is
that, with the continuous increase of science and education
density at the origin, the supporting facilities of the region
are more perfect. Tis allows passengers to complete their
travel purposes in a relatively short time, such as school and
shopping.

Figure 6(d) shows that when the origin scientifc and
education density is low, especially when the density of
science education is below 10 pcs/500m2, residents travel
longer by bus. In contrast, when the origin scientifc and
education density exceeds this threshold, residents’ bus
travel time is relatively short. Tis shows that the centralized
use of land for science and education can shorten the bus
travel time of residents to a great extent.

5.2.5. Humidity and Precipitation. Humidity and pre-
cipitation are signifcant weather variables that afect travel
time. Among them, the positive impact of precipitation on
travel time is quite evident. Tis kind of impact was ex-
pected, as various factors such as reduced visibility, slippery
road surfaces, and increased trafc congestion, which are
caused by increases in humidity or precipitation, collectively
contribute to longer bus travel time. Similarly, Mathew and
Pulugurtha [73] also found rainfall leads to reduced driving
speeds.

Figures 6(g) and 6(i) both demonstrate the macroscopic
nonlinear efects of humidity and precipitation on bus travel
time, showing a pattern of increasing frst and then de-
creasing. Tis is possible because increasing humidity and
precipitation will result in longer travel times as mentioned
above. However, when the humidity increases to 75% rh or
the precipitation increases to 0.20mm, the bad weather will
make residents give up the bus and choose the taxi that can
reach the destination point to point, which will potentially
shorten the bus travel time of residents to some extent.

5.2.6. Visibility. We found visibility is also a crucial weather
factor afecting residents’ bus travel time, which is supported
byMathew and Pulugurtha [73]. Furthermore, this infuence
exhibits a slight inhibitory tendency. Tis is possible because
low visibility signifcantly reduces the ability of drivers to see
obstacles, road signs, and other vehicles, which can cause
longer bus travel time.

High

Low

Destination residential density

Destination diversity

Destination life service density

Origin science and education density

Origin residential density

Origin diversity

Humidity

Visibility

DateTime_hour_7

Precipitation

SHAP value (impact on model output)
151050–5–10

Fe
at

ur
e v

al
ue

Figure 5: Te SHAP values of variables.
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As shown in Figure 6(h), the infuence of visibility on bus
travel time showed a nonlinear trend of increasing frst and
then decreasing. When the visibility is lower than 16meters,
the lower visibility will lead to a signifcantly longer bus
travel time. However, when the visibility exceeds this
threshold, the continuous increase in visibility will instead
make the bus travel time signifcantly shorter.

5.2.7. Boarding Time. Among time series variables, the
boarding time between 7 and 8 a.m. has the most important
impact on passengers’ bus travel time in Weinan. Tis is
possible because the period from 7 to 8 a.m. is the peak time
for Weinan residents. During this period, the road trafc
congestion will be more serious, which will lead to a longer
bus travel time for passengers.
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Figure 6: Nonlinear efects of signifcant factors.
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6. Conclusion and Discussion

Tis study utilized a multisource big data approach to in-
vestigate the efect of the built environment and weather on
passengers’ bus travel time, in Weinan, a small- and
medium-sized city in western China. Data source included
bus smart card, bus operation information, bus station in-
formation, card swiping data, road information data, bus
station data, POI data, and weather data. Trough data
fusion and mining, the study constructed a spatiotemporal
database of bus travel in Weinan. Using the interpretable
tuned-LightGBM model and SHAP values, the study ana-
lyzed the nonlinear threshold efects of the built environ-
ment and weather on bus travel time. It has been found that
destination residential density, destination diversity, desti-
nation life service density, origin science and education
density, origin residential density, origin diversity, humidity,
visibility, boarding time between 7 and 8 a.m., and pre-
cipitation are important factors potentially afecting pas-
sengers’ bus travel time. What’s more, the built environment
and weather factors have a threshold efect on the bus
travel time.

Te fndings of this study ofer valuable insights to bus
companies in the development of bus routes. Firstly, the
peak hour in the morning, particularly at 7 a.m., has
a substantial positive impact on travel time, as commuting
constitutes a signifcant portion of residents’ travel. Ac-
cordingly, optimizing bus routes, providing customized
signal timing schemes for intersections, and reducing bus
travel intervals during peak hours may be very important
measures that can signifcantly reduce bus travel time.
Secondly, poor weather, such as higher humidity, pre-
cipitation, and low visibility, can also increase the bus travel
time for individual passengers. Terefore, the trafc man-
agement department can issue relevant travel warning in-
formation according to the weather forecast to provide more
accurate travel services for individual passengers, especially
when a particular weather factor reaches its threshold.

Furthermore, the study’s results provide valuable and
novel evidence for urban land planning authorities with low-
carbon goals to plan small- and medium-sized urban sites in
the context of high-growth urbanization challenges. Te
application of POI indicators can promote comprehensive
land-use and trafc planning in developing countries’ small-
and medium-sized cities. For instance, the comprehensive
ofce, science, education, and business complex diversity
near the residential gathering area should reach 0.85 pcs/
500m2, as this satisfes the residents’ travel purposes, sig-
nifcantly reducing travel time when the origin diversity is
between 0.8 and 0.9 pcs/500m2 and the destination diversity
is between 0.7 and 0.9 pcs/500m2. Urban land-use planning
authorities should consider balancing occupancy and resi-
dence in their land-use planning. Areas with a residential
density of 75–135 pcs/500m2 had the lowest total travel time
cost.Tus, residential planning in the future should consider
a density within this range to inhibit travel time.

Tis study has some limitations that should be taken into
consideration. Firstly, the analysis is limited to the small-
and medium-sized city of Weinan, and the behavioral

characteristics of passengers in other urban contexts may
vary. Secondly, the study relies on a dataset of only ffteen
days, which may not provide a comprehensive un-
derstanding of the impact of weather and other factors on
bus travel time. In addition, the use of POI amount without
considering POI size does not fully represent the built en-
vironment. Terefore, future studies should include data
from other cities to verify the transferability of the model
and should aim to obtain more comprehensive bus-related
data and POI data covering a longer period to more ac-
curately investigate the impact of related factors on bus
travel time.
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