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In order to solve the problem that the railway passenger volume data are abnormal due to holidays and major events interfering
with the prediction accuracy, the spline interpolation method is introduced to replace the abnormal passenger volume data. In
addition, an improved particle swarm optimization (IPSO) is proposed to optimize the gradient diference acceleration law to
combine and improve the predicted value and further improve the prediction accuracy of the railway passenger trafc. Finally,
taking Beijing as the research object, the Holt exponential smoothing method and the BP neural network are selected to verify the
efect of spline interpolation and IPSO-gradient diference acceleration law on prediction accuracy.Te research results show that
the spline interpolation method has a better prediction efect after processing abnormal passenger trafc data, and the improved
particle swarm algorithm also shows better optimization ability and convergence speed when solving the double diference
postulate. In comparison with the BP neural network, Holt exponential smoothing, simple averaging, and conventional
rediference approaches, the IPSO-rediference acceleration method achieves a superior prediction performance, and the absolute
values of the forecast error are reduced by 3.320%, 1.518%, 2.419%, and 0.602%.

1. Introduction

As an important basis for preparing macro development
strategy and passenger transportation plan, railroad pas-
senger volume forecasting is of great signifcance for for-
mulating railroad network planning, designing train
operation plans, optimizing passenger transportation
product structure, and improving passenger transportation
service level. Tere are more research results on railroad
passenger trafc forecasting, which are broadly divided into
two categories: one is to introduce corresponding meth-
odologies to improve the model according to the short-
comings of the forecasting model itself in order to improve
the forecasting accuracy. Dempster and Bui et al. studied the
neural network model and proved that the prediction results

of this model are more accurate than those of other models
[1, 2]. Aihara et al. successfully combined artifcial neural
networks with the chaos theory to develop a freight volume
forecasting model [3]. Li et al. predicted passenger transport
volume on railways based on the Grey–Markov chain model
[4]. Qiu et al. forecasted China’s railway freight volume
based on the combined PSO-LSTM model [5].

Another category is the combined prediction model
formed by combining the characteristics of several models.
Wang combined the Gray model and the neural network to
obtain a Gray neural network model, and successfully
predicted the highway passenger fow [6]. Ye et al. combined
the Markov and the Gray GM (1, 1) model and established
the Gray–Markov forecasting model to forecast the freight
volume [7]. Ge et al. studied an ARIMA model and
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combined it with the FSVR to propose a hybrid prediction
method for high-speed railway passenger trafc
forecasting [8].

When social emergencies such as epidemics and major
social events occur, scholars choose models with a strong
adaptability to passenger fow fuctuations to make relevant
predictions. Jiao proposed an improved STL-LSTM model
to improve the accuracy of bus passenger fow prediction
during COVID-19 [9]. Wang et al. showed that the SAR-
IMA-NAR combined model can be used during the
epidemic [10].

Based on the current research fndings, when there are
sudden fuctuations in the training data caused by un-
expected social events, scholars select models with a high
adaptability to predict passenger fow fuctuations. However,
the impact of sudden increases or decreases in the passenger
volume caused by epidemics, major social activities, and
other unexpected social events on the changes in the trend
and pattern of passenger volume has not been efectively
addressed. Consequently, it disrupts the accuracy of the
prediction [11]. Sudden events such as the 2003 SARS ep-
idemic in Beijing, the 2020 COVID-19 pandemic, and major
holidays all cause sudden fuctuations in passenger volume
[12]. When incorporating such data for volume prediction,
fuctuations in passenger volume over time may impact the
model’s training parameters, thus resulting in higher pre-
diction errors [13]. In addition, most of the existing fore-
casting methods improve the forecasting models according
to the characteristics of the research object or apply multiple
forecasting models for combined forecasting.Te prediction
accuracy of the weighted combination of multiple models is
too dependent on the prediction efect of the selected
prediction model and has a certain degree of uncertainty,
especially when one of the models has a better prediction
accuracy, while another model has a poor prediction ac-
curacy, then there will be a situation that the combined
prediction accuracy is worse [14].

Spline interpolation is based on the segmented low-order
polynomial interpolation method, and the interpolation
condition and smoothness of the curve are achieved by
adjusting the coefcients of the interpolation basis function
on each interval, which has a high accuracy and stability, and
the ftted curve is smooth and not easy to oscillate [15].
Spline interpolation can better explore the rule of smooth
change of railroad passenger volume with time series [16].
Terefore, to address the problem that the irregular changes
in railroad passenger volume under social emergencies afect
the accuracy of passenger volume prediction, this paper
introduces spline interpolation to correct the preprocessing
of abnormal passenger volume data caused by major events
such as new crown pneumonia and epidemics to solve the
problem of interference of abnormal data on model pre-
diction accuracy, and applies the Holt exponential
smoothing method and the BP neural network for railroad
passenger volume forecasting [17]. To address the short-
comings of the existing combined forecasting methods, the
idea of the rediference acceleration rule is proposed to
combine the forecast results for correction, and the redif-
ference metric parameters are optimized by the improved

particle swarm algorithm. Finally, combining the spline
interpolation method and rediference acceleration rule with
the Holt exponential smoothing method and the BP neural
network forecasting proposes a railroad passenger trafc
forecasting method that can adapt to irregular fuctuations
of passenger trafc under unexpected events and canim-
prove the accuracy of combined forecasting.

2. Triple Spline Interpolation

Triple spline interpolation (spline interpolation for short) is
an important method used in numerical analysis for func-
tion estimation and numerical ftting, which can explore the
variation pattern of data series and estimate the function
values of certain interpolation nodes in between [18]. Te
basic idea of applying the spline interpolation method to
solve the problem of abnormal railroad passenger volume
data caused by holidays or major events is as follows: as-
suming that the variation law of the railroad passenger
volume forecast data series in the study area in the past years
is a cubic polynomial function S(x), and by excluding the
abnormal data due to holidays or major events, the in-
terpolation nodes (i.e., time nodes) are noted as xc, then the
function is a cubic polynomial on every small interval
[xj, xj+1] of the interval (a, b). If the node is
a � x0 <x1 < · · · < xn � b, then S(x) is said to be a node
x0, x1, · · · , xn on the cubic spline function. If a function value
yj is given at node xj, then the interpolation condition is
satisfed [19].

S xj􏼐 􏼑 � yj. (1)

Ten, we call S(x) three times the spline interpolation
function.

Te expression of the cubic spline interpolation function
is

S(x) � a + bx + cx
2

+ dx
3
, (2)

where a, b, c, and d are the parameters to be estimated.
To fnd out S(x), it is necessary to determine the 4

parameters to be estimated on each small interval [xj, xj+1].
Since S(x) is a second-order derivative continuous on the
interval (a, b), the continuity condition is satisfed at node
xj.

S xj − 0􏼐 􏼑 � S xj + 0􏼐 􏼑,

S
′

xj − 0􏼐 􏼑 � S
′

xj + 0􏼐 􏼑,

S
″

xj − 0􏼐 􏼑 � S
″

xj + 0􏼐 􏼑.

(3)

Te natural boundary condition of S(x) at the in-
terpolation node x0, xn is

S
″

x0( 􏼁 � S
″

xn( 􏼁 � 0. (4)

By combining the interpolation condition, the conti-
nuity condition and the natural boundary condition can be
solved for S(x). Te correction value of the abnormal data
due to holidays or major events is S(xc).
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3. IPSO-Redifferential Acceleration Law

3.1. Law of Rediferential Acceleration. Te law of redifer-
ential acceleration is an approximation acceleration tech-
nique proposed by Liu Hui, a mathematician in the Wei-Jin
period of China, to solve higher precision values, the basic
principle of which is that in a monotonically bounded ap-
proximation series an􏼈 􏼉, the existence of a1, a2, · · · , an

gradually approaches the limiting value a∗, assuming that
the approximating series all satisfy the rediference metric δ,
the series deviation ratio is a certain value, and the resulting
series can be accelerated to approximate the limiting value
according to the following formula:

􏽢an � 1 +
1

δ − 1
􏼒 􏼓an+1 −

1
δ − 1

an, (5)

where 􏽢an is the improved value of an and δ is the rediference
metric (δ > 1).

Te rediference metric is calculated as

δ ≈
an+1 − an

an+2 − an+1
. (6)

According to the rediferential acceleration law, an+2 is
the higher accuracy series approximation value, and an+1 and
an have the next highest accuracy. Applying this idea to the
correction of railroad passenger volume forecast results, the
following rediference acceleration correction formula is
available:

􏽢F � 1 +
1

δ − 1
􏼒 􏼓Fb −

1
δ − 1

Fa, (7)

where 􏽢F is the improved value of the railroad passenger
volume forecast, Fb is the forecast value of model b, which
has a higher forecast accuracy, and Fa is the forecast value of
model a, which has a lower forecast accuracy than model b.

According to (7), it can be seen that the imple-
mentation of the acceleration rule requires the selection of
“one main and one auxiliary” forecasting methods for
railroad passenger trafc forecasting, and “one main”
means the forecasting method with a better forecasting
accuracy, and the forecasting result is Fb. Te “one
auxiliary” is the forecasting method with a poorer fore-
casting accuracy, and the forecasting result is Fa. Te
optimization by the rediferential acceleration rule can
make the forecast correction value better than the fore-
casting result of the “one main” model. Tis design idea
maximizes the promotion of the prediction value with
a better accuracy and suppresses the prediction value with
a poor accuracy, so as to obtain the prediction value with
a higher accuracy.

Te rediference metric can be calculated according to
(6), but this method has two drawbacks: one is that a better
or worse accuracy forecasting model is also needed to
forecast the railroad passenger trafc, which not only in-
creases the difculty and complexity of the forecasting work,
but also cannot guarantee the forecasting accuracy of the
selected model; and the other is that the rediference metric
calculated according to (6) is an estimated value, which is not
the optimal parameter value to achieve combined

forecasting. Terefore, this paper proposes an improved
particle swarm algorithm (IPSO) to solve the optimal
rediference metric.

3.2. IPSO Optimization Rediference Metric

3.2.1. Basic Principle of the Particle Swarm Algorithm (PSO).
Te PSO is a swarm intelligent search algorithm developed
by imitating the characteristics of a fock of birds foraging.
Its basic idea is to fnd the fnal foraging location, i.e., the
optimal solution position, by sharing the respective search
information of each forager in the fock. In practical ap-
plication, the particle fies continuously in the set space, and
continuously adjusts its position according to its own search
experience in the process of fnding the optimal target lo-
cation, until it satisfes the search termination condition to
fnd the optimal solution [20].

Suppose the position and velocity of the ith particle of
a certain population at the tth iteration are xi,t and vi,t,
respectively, then the particle updates the position and
velocity by supervising the individual extremes and pop-
ulation extremes to further approximate the optimal solu-
tion. Te particle velocity and position update are calculated
as follows:

vi,t+1 � w∗ vi,t + c1 ∗ rand∗ pbesti − xi,t􏼐 􏼑

+ c2 ∗ rand∗ gbesti − xi,t􏼐 􏼑,

xi,t+1 � xi,t + λ∗ vi,t+1,

(8)

where w is the weight, taken from 0.4 to 0.9; c1 and c2 are the
individual learning factor and group learning factor, re-
spectively; rand is a random number generated between
0 and 1; pbest is the individual extreme value; gbest is the
group extreme value; and λ is the speed coefcient, generally
taken as 1 [21].

3.2.2. Improvement of PSO. Te basic PSO generally adopts
the method of fxed weights to seek the optimal solution, i.e.,
a certain fxed value in 0.4∼0.9, and the learning factor is
generally taken as c1 � c2 � 2. Depending on diferent data
and simulation environments, its value afects the
optimization-seeking ability and convergence speed of the
particle swarm algorithm.Terefore, this paper proposes the
idea of nonlinear variation to optimize the weights and
learning factors of PSO to improve the optimization ability
of the algorithm.

Te principle of weight optimization is as follows: at the
initial iteration, a larger weight is set to ensure that the initial
iteration has a larger particle search speed and a better global
search capability, and when the number of iterations in-
creases, the weight assignment needs to be reduced to slow
down the particle search speed and ensure that the particles
have a better local search capability. Te optimization for-
mula of weight w is as follows:

w � wmax − wmax − wmin( 􏼁∗ sin
iter
ger
∗
π
2

􏼠 􏼡, (9)
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where wmax is the maximum weight, wmin is the minimum
weight, ger is the maximum number of iterations, and iter is
the current number of iterations, 0< iter≤ ger, iter ∈ N∗.

Te learning factor optimization principle is the optimal
value of c1 ranging from 2.5 to 0.5, and the optimal value of c2
ranging from 0.5 to 2.5. Terefore, in the optimal value range,
in order to ensure the global search ability at the beginning of
the iteration, the value of c1 decreases nonlinearly with the
increase of the number of iterations, so that the learning ability
of the individual particle itself is larger at the beginning. At the
same time, let c2 increase gradually with the number of iter-
ations to strengthen the group learning ability in the late it-
eration and avoid the algorithm falling into the local optimum
in the late iteration. Based on this idea, this paper selects the
nonlinear change function constructed by the power function
to improve the learning factor, whose expression is

c1 � 2∗ 1 −
iter
ger

􏼠 􏼡

3
⎛⎝ ⎞⎠ + 0.5,

c2 � 2∗
iter
ger

􏼠 􏼡

3

+ 0.5.

(10)

3.2.3. Algorithm Flow for IPSO Optimization of the Redif-
ference Metric. Te specifc algorithm for IPSO optimization
of the rediference metric taking values is shown in Figure 1.

Step 1. Forecast the railroad passenger volume according to
the selected forecasting method.

Step 2. Use the rediference acceleration rule to process the
predicted value of the railroad passenger trafc, and at this
time, the predicted improved value is a function expression
containing.

Step 3. Initialize the population particle parameters.
According to the constraints, such as the range of particle
parameters, set the initial parameter values.

Step 4. Calculate the particle ftness. With the goal of op-
timal prediction accuracy, the ftness function f(δ), which is
the minimum absolute value of the relative error of pre-
diction for all prediction years, is determined for the
rediference metric optimization. Terefore, the ftness
function is defned as follows:

f(δ) �
1
m

􏽘

m

t�1

Xt − 􏽢Ft(δ)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌

Xt

, (11)

where 􏽢Ft(δ) is the improved value of the rediferential ac-
celeration rule forecast in a period t, m is the total forecast year,
and Xt is the actual value of the passenger trafc in a period t.

Step 5. Compare the particle ftness values of diferent it-
erations to fnd the current optimal particle ftness value and
its position, so as to update the particle search position and
search speed.

Step 6. Determine whether the iteration termination con-
dition of the particle swarm algorithm is satisfed. If satisfed,
the algorithm ends; if not, return to step 4.

Step 7. Output the optimal solution.

4. Forecasting Method Selection

Railroad passenger volume forecasting methods can be di-
vided into linear forecasting and nonlinear forecasting
models [22]. Among the linear forecasting models, time
series forecasting models are represented by ARIMA and the
exponential smoothing method, which have the advantage
of not needing to study the infuence of independent var-
iables (infuencing factors) on forecasting results. Among
the nonlinear forecasting models, the BP neural network has
a better adaptability to nonlinear demand forecasting
problems by virtue of its powerful self-adaptability, self-
learning, and fault tolerance. Terefore, in this paper, the
classical Holt exponential smoothing method and the BP
neural network are chosen as the representatives of linear
and nonlinear forecasting methods for railroad passenger
trafc forecasting.

4.1. Holt Exponential Smoothing Method. Te Holt expo-
nential smoothing method is based on the primary expo-
nential smoothingmethod to forecast the original time series

Start

Forecasted rail passenger traffic

The redifferential acceleration rule processes the predicted values

Particle initialization

Calculating the particle fitness

Update the velocity and position of the particles

Whether the number of iterations or the global
optimal position satisfies the minimum bound

End

No

Yes

Figure 1: Particle swarm algorithm fow.
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based on the smoothed and trend values, which strengthens
the prediction ability of the exponential smoothing method
for trend data [23], and its prediction formula is

Ft+m � St + btm,

St � αXt +(1 − α) St−1 + bt−1( 􏼁,

bt � c St − St−1( 􏼁 +(1 − c)bt−1,

(12)

where Ft+m is the predicted value in the period t+m, St is the
smoothed value in a period t, Xt is the actual value in
a period t, bt is the trend value in a period t,m is the number
of prediction overruns, and α, c is the exponential
smoothing-related parameter [24].

4.2.BPNeuralNetwork. TeBPneural network is amultilayer
feedforward neural network trained according to the error
backpropagation algorithm, which is widely used [25]. Te
topology of the BP neural network is shown in Figure 2, and its
basic idea is the gradient descent method, and the learning
process includes forward propagation and backpropagation. In
the forward propagation process, the railroad passenger pre-
diction factors are passed from the input layer to the implicit
layer as input information, and fnally passed to the output
layer to output the corresponding railroad passenger volume
and training error information [26]. If the output prediction
error is larger than the training target, the error is back-
propagated from the output layer by repeatedly training and
adjusting the weights of wij and wjk until the error is reduced
to an acceptable level or until the maximum number of
learning is performed. At this point, the sample data is input
again to obtain the output value with the minimum error [27].

Tere are many types of activation functions for the BP
neural network prediction, each with its own advantages and
disadvantages. In this paper, we choose the commonly used
tansig function and purelin function as the hidden layer
neuron and output layer neuron activation functions, re-
spectively, whose expressions are [28] as follows:

tan sig(x) �
2

1 + e
− 2x

− 1,

purelin(x) � x.

(13)

5. Railway Passenger Volume Forecast Based on
the Spline Interpolation and IPSO-Gradient
Difference Acceleration Rule

Te combined railroad passenger volume forecasting pro-
cess combining the spline interpolation method and the
rediferential acceleration rule with the Holt exponential
smoothing method and BP neural network forecasting is
shown in Figure 3.

Step 1: the spline interpolation method is used to make
data replacement corrections for the abnormal railroad

passenger volume caused by holidays or major events,
and the corrected railroad passenger volume data series
is formed.
Step 2: based on the corrected railway passenger vol-
ume data series, the BP neural network and the Holt
exponential smoothing method are applied to make
predictions.
Step 3: the adaptation function of the IPSO-optimized
redistribution metric was constructed based on the
prediction results, and the IPSO was applied to solve
the optimal redistribution metric.
Step 4: based on the optimal rediference metric, the
rediference acceleration law of equation (7) was ap-
plied to improve the prediction results of the BP neural
network and Holt exponential smoothing.

6. Case Study

In 2003, Beijing was afected by the SARS epidemic, and the
railroad passenger trafc was “abnormally decreasing”
[29–33]. Terefore, the research uses Beijing railroad pas-
senger trafc from 2000 to 2019 as the research object,
considering the impact of regional GDP, regional resident
population, per capita consumption level, and the number of
tourists. And the research uses the combined prediction
efect of spline interpolation and rediference acceleration
method combined with Holt’s exponential smoothing
method and BP neural network prediction (Table 1).

6.1. Data Preprocessing Based on Spline Interpolation. In the
data series of railroad passenger volume from 2000 to 2019
in Beijing, the railroad passenger volume in 2003 is ex-
cluded, and three times spline interpolation is performed
by calling the spline function with the help of MATLAB,
and its function image is shown in Figure 4, and the in-
terpolation calculates the revised value of the railroad
passenger volume in 2003 as 52.27 million. Te pre-
processing situation of the spline interpolation method for
railroad passenger trafc in Beijing is shown in Figure 5. It

X1

X2

Xn

.

.

.

Y1

Ym

.

.

.

wij wjk

Input layer Implicit layer Output layer

Figure 2: BP neural network’s topology.

Journal of Advanced Transportation 5



can be seen that the overall smoothness of the railroad
passenger volume after the spline interpolation method is
better, which is more consistent with the overall devel-
opment trend of the passenger volume.

6.2. Single Model Prediction Based on Spline Interpolation.
Te railroad passenger volume data from 2000 to 2016 are
used as training samples, the railroad passenger volume
from 2017 to 2019 are used as test samples, and the Holt
exponential smoothing method and BP neural network are
used for forecasting, respectively. In the research process, the
“relative prediction error” is used as the evaluation index of

the model prediction accuracy, which is abbreviated as
“prediction error” for the convenience of presentation.

6.2.1. Holt Exponential Smoothing Prediction. Te results
and prediction errors of Holt exponential smoothing using
SPSS are shown in Figures 6 and 7.

It can be seen that Holt exponential smoothing has
a good prediction efect. After the spline interpolation
method preprocessed the data, the absolute value of the
average ftting prediction error for the training samples was
2.053%, and the absolute value of the average prediction
error for the test samples was 2.160%.

Original data

Spline interpolation substitution correction to form a corrected passenger traffic data series

BP neural network prediction Holt exponential smoothing method

Formation of modified passenger volume data series

IPSO optimization re-differential metric

Re-differential acceleration rule improves the predicted value

Figure 3: Combined prediction process.

Table 1: Basic data related to railroad passenger volume in Beijing.

Year Passenger volume
(million people) GDP (billions of RMB) Resident population

(million people) Consumption level per capita (RMB) Number of tourists
(million people)

2000 4458 3278 1364 9835 10468
2001 4750 3862 1385 10313 11293
2002 5032 4526 1423 12380 11810
2003 4352 5267 1456 13734 8885
2004 5437 6253 1493 15328 12266
2005 5779 7150 1538 16636 12863
2006 6269 8387 1601 19003 13590
2007 6915 10426 1676 21769 14716
2008 7644 11813 1771 24005 14560
2009 8161 12901 1860 26353 16670
2010 8903 14964 1962 29483 18390
2011 9755 17189 2019 32924 21404
2012 10315 19025 2069 36028 23135
2013 11588 21135 2115 40270 25189
2014 12609 22926 2152 43008 26150
2015 12821 24779 2171 46604 27279
2016 13380 27041 2173 50301 28532
2017 13873 29883 2171 55121 29746
2018 14273 33106 2154 61429 31094
2019 14755 35371 2154 67756 32210
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Te prediction efect of the spline interpolation method
is better after the substitution correction of abnormal pas-
senger trafc data. When predicting based on the original
data of Beijing railroad passenger volume, the prediction
error of the passenger volume in 2003 was as high as
16.016%, and the absolute values of the average prediction
errors of its training and testing samples were 5.228% and
5.862%, respectively, which were 2.6 times of the prediction
errors after processing the abnormal passenger volume data
based on the spline interpolation method.

6.2.2. BP Neural Network Prediction. Te prediction process
of the BP neural network is implemented by MATLAB
programming, and the main parameters are set as follows:
the number of training is 1000 times, the hidden layer is 1
layer, and the neurons are set as 1. Te prediction perfor-
mance of the BP neural network is shown in Figures 8 and 9.

Figure 8 shows the variation of prediction error with the
number of iterations for diferent samples, blue is the
training set, red is the test set, and green is the validation set
generated by the system. Te network converges after
14 times of training, and the network error of the validation
set is 0.00917, and the network error of the training and test
sets is much lower than 0.00917, with a better error accuracy.
Figure 9 represents the BP neural network’s ft prediction
goodness and the ft goodness of the training set, validation
set, and the test set and all data are 0.99929, 0.97893, 0.99971,
and 0.99777, respectively, which shows that the network
training efect is very good.

Te absolute values of the predicted values and pre-
diction errors of the BP neural network are shown in Fig-
ures 10 and 11. Figure 10 demonstrates that the predicted
and true values of the BP neural network are better ftted. It
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Figure 4: Spline interpolation function diagram.
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can also be seen from Figure 11 that the spline interpolation
method has a better prediction efect after processing ab-
normal passenger trafc data, and the average absolute value
of prediction error for training and test samples is reduced
by 1.712% and 0.860%, respectively.

6.3. Combined Prediction Efect Based on the Rediferential
Acceleration Law

6.3.1. Simulation Parameter Setting. Te algorithm experi-
ments in this section are conducted in the MATLAB 2019
environment, and the improved particle swarm algorithm
code is written to fnd out the optimal rediference metric.
Te main parameters of the particle swarm algorithm are
initialized as follows: the population size is 30, the maximum
number of iterations is 300, and the speed search interval is
−0.5 to 0.5. To further verify the efect of the nonlinear
change optimization method proposed in this paper on the
superiority-seeking ability and convergence speed of the
particle swarm algorithm, the superiority-seeking situation
and convergence speed of the basic particle swarm algorithm
are compared with those of the basic particle swarm algo-
rithm.Te fxed weight of the basic particle swarm algorithm
is taken as 0.9, and the learning factor is c1 � c2 � 2.

6.3.2. Prediction Results and Analysis

(1) Analysis of IPSO Algorithm Advantage. Te variation of
the ftness values of diferent particle swarm algorithms for
solving the rediference metric with the number of iterations
is shown in Figure 12. From the experimental results, it can
be seen that the improved particle swarm algorithm with
nonlinearly varying weights and learning factors proposed in
this paper has a better fnding ability and convergence speed,
which is refected in the following: the ftness value of the

improved particle swarm algorithm for solving the optimal
heavy diference metric is 0.00640188456, which converges
after the 113th iteration, while the ftness value of the basic
particle swarm algorithm for solving the optimal heavy
diference metric is 0.00640189062, which converges after
the 234th iteration. In contrast, the improved particle swarm
algorithm has a better seeking ability and convergence speed.

(2) Combined Prediction Efect of the IPSO-Heavy Diference
Acceleration Law. Te IPSO-optimized heavy diference
metric is taken as shown in Figure 13, and the optimal heavy
diference metric is solved as 1.9088.

Section 4.2 shows that the prediction accuracy of the
Holt exponential smoothing is better than that of the BP
neural network. Te prediction results of the BP neural
network and Holt exponential smoothing from 2017 to 2019
after processing abnormal passenger trafc data by the spline
interpolation method are improved by the rediference ac-
celeration rule equation (7). To verify the improvement
efect, the prediction results are compared with those of the
average weighted combination approach, i.e.,

Fw � w1Fbp + w2Fholt, (14)

where Fw is the average weighted combination of the pas-
senger trafc forecast, Fbp is the BP neural network forecast,
Fholt is the Holt exponential smoothing forecast, and w1 and
w2 are the weights, w1 � w2 � 0.5.

Te predicted values of the railroad passenger trafc in
Beijing from 2017 to 2019 are shown in Table 2.

Te analysis shows that the improved prediction values
of the rediference acceleration rule have a better prediction
accuracy, which is refected in the following.

After the improvement of the prediction results of the
heavy diference acceleration rule on the BP neural network
and the Holt exponential smoothingmethod, themean value
of the absolute value of the prediction error from 2017 to
2019 is 0.642%, which is 3.320% and 1.518% less than that of
the BP neural network and the Holt exponential smoothing
method, respectively.

Comparing the forecast results of the rediferential ac-
celeration rule with the average weighted combination
forecast results, the absolute value of its average forecast
error of the railroad passenger trafc from 2017 to 2019 is
reduced by 2.419%. In addition, the mean value of the ab-
solute forecast error of the average weighted combination is
3.061%, which is higher than the mean absolute forecast
error of the Holt exponential smoothing method of 2.160%.
Tis also indicates that the direct weighted combination of
multiple model prediction results has some uncertainty, i.e.,
there is no guarantee that its combined prediction efect is
necessarily better than that of a single prediction model. Te
IPSO-rediference acceleration method efectively avoids
this problem.

To further verify the advantage of the IPSO-rediference
acceleration rule over the traditional rediference accelera-
tion rule, the estimated value of the rediference metric is
calculated according to (6). It is known that this method
needs to introduce another prediction method with a worse

Best Validation Performance is 0.0091684 at epoch 14
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prediction accuracy compared to the BP neural network and
the Holt exponential smoothing method. After several ex-
periments, the ARIMA (3,0,1) prediction model was se-
lected, and its prediction results in the SPSS25 environment
are shown in Figure 14. Te traditional rediference accel-
eration method improves the prediction value with the
following idea: the mean value of the prediction value of the
BP neural network, the Holt exponential smoothingmethod,
and the ARIMA (3,0,1) prediction model from 2017 to 2019
is substituted into (6) to estimate the rediferencemetric, and
then the prediction results of the BP neural network and the
Holt exponential smoothing method are improved
according to (7).

Te predicted values of the ARIMA (3,0,1) model from
2017 to 2019 are 143.64 million, 156.93 million, and 168.56
million. Te mean values of the BP neural network, the Holt
exponential smoothing method, and ARIMA (3,0,1)

predicted values from 2017 to 2019 are 148.71 million, 146.13
million, and 156.38 million, respectively. Terefore, the
rediference metric is calculated as

δ �
14871 − 15638
14613 − 14871

� 2.973. (15)

According to (7), the improvement values of the tra-
ditional rediferential acceleration rule on the prediction
results of the BP neural network and the Holt exponential
smoothing method from 2017 to 2019 were calculated as
138.95 million, 144.56 million, and 150.94 million, and the
absolute values of prediction errors were 0.157%, 1.282%,
and 2.296%.

By comparing the calculated results with Table 1, it can
be seen that, after improving the forecasting results of the BP
neural network and the Holt exponential smoothing
method, the mean value of the absolute forecast error from
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2017 to 2019 is 0.642%, which is 1.518% less than the forecast
error of the Holt exponential smoothing method’s “main”
forecasting model.

Te IPSO-rediferential acceleration method has
a higher prediction value improvement accuracy than that
of the traditional rediferential acceleration method, and its
average prediction error is reduced by 0.602% in
absolute value.

7. Conclusion

To address the problem of abnormal railroad passenger
volume data due to holidays or major events and the
uncertainty of weighted combination forecasting, this
paper introduces the spline interpolation method to
make replacement corrections for abnormal railroad
passenger volume and reduce the interference of ab-
normal data on forecasting accuracy. In addition, an
improved particle swarm algorithm is proposed to op-
timize the rediference acceleration rule to improve the
railroad passenger volume forecasting results, and
combine the BP neural network and the Holt exponential
smoothing method to forecast the railroad passenger
volume in Beijing. Te results show that the spline in-
terpolation method has a better prediction efect after the
substitution correction of anomalous data, and the im-
proved particle swarm algorithm also shows a better
fnding ability and convergence speed when solving the
optimal rediference metric. Compared with the

prediction results of the BP neural network, the Holt
exponential smoothing method, the average weighted
combination method, and the traditional rediference
acceleration rule, the prediction accuracy of the IPSO-
rediference acceleration rule to improve the prediction
results is higher. It is worth mentioning that there are
more interpolation methods in the feld of numerical
analysis, such as Newton interpolation and Lagrange
interpolation, and which interpolation method has the
best efect in solving the problem of data anomalies
caused by holidays or major events is the focus of future
research.
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