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Hydrogen energy is a clean, carbon-free, fexible, efcient, and widely used secondary energy source, which is an ideal alternative
to promote the clean and efcient use of traditional fossil fuels. Hydrogen fuel cell bus has the advantages of a high-energy
conversion rate, absolute pollution-free, sufcient raw materials, and convenient flling. Te hybrid power system, composed of
fuel cell and auxiliary energy source, is one of the key technologies to promote the development of hydrogen fuel cell vehicle. Tis
study aims to propose an energy management strategy by analyzing the output characteristics and power allocation of fuel cell and
power battery in the hybrid power mode with fuel cell as the main and battery as the auxiliary. A GM (1, N) power prediction
strategy was proposed and compared with other strategies as an on-of control strategy and logical threshold value strategy in this
study.Te variation curves of the battery SOC and fuel cell output power under two working conditions of CCBC and real vehicle
conditions were analyzed by using these three strategies, when the initial SOC of power battery is 30%, 70%, and 90%, respectively.
Results showed that the power prediction strategy based on GM (1, N) has a better performance in output efciency and fuel
economy when compared to the other two strategies by analyzing the aspects of the battery in the SOC variation and equivalent
hydrogen consumption and the fuel cell in the output power variation and hydrogen consumption.Tis research can be helpful to
provide the suggested solution for energy management of the hybrid power system for hydrogen fuel cell buses.

1. Introduction

Faced with the increasingly severe environmental problems
and energy crisis, hydrogen fuel cell vehicles use hydrogen as
the only fuel, with a high energy conversion rate, no pol-
lution, sufcient raw materials, convenient refueling, and
other advantages, becoming one of the best choices for the
vehicle industry to get rid of energy constraints and achieve
carbon neutrality. Hydrogen fuel cells have some charac-
teristics such as slow dynamic response, soft output char-
acteristics, and external energy supply for cold start, which
need to be controlled and optimized by the fuel cell system
energy management strategies. In order to ensure the safe
and reliable operation of hydrogen fuel cell system and
improve the dynamic response performance, the research of
the hydrogen fuel cell energy management strategy has
become the key link in the process of developing hydrogen

fuel cell vehicles. During the driving process, the energy
management strategy calculates the required power
according to the current working condition and the state of
the vehicle and reasonably controls the coordinated oper-
ation of all components of the fuel cell vehicle to achieve
dynamic power allocation. Te fuel cell vehicle should adopt
the required energy management strategy according to the
actual situation and design objectives, in order to meet the
optimal fuel economy, performance, and the cost re-
quirements of the hybrid electric bus [1–4].

Research studies on the energy management strategy of
fuel cell vehicles have been carried out recently including
rule-based control strategies and optimization-based control
strategies. Te rule-based control strategy is to set a set of
logical rules in advance, according to which the driving state
is judged and the driving power is allocated.Temain design
goal is to make the fuel cell vehicle run at the high efciency
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point or the low fuel consumption point as much as possible.
It can be divided into the deterministic rule strategy and
fuzzy rule strategy according to the certainty of logical rules,
among which the strategy of deterministic rules is the most
commonly used method including the on-of control
strategy and the logical threshold value strategy. Te on-of
control strategy mainly determines the start and stop of fuel
cell and the output power level by the SOC value of battery,
while the logical threshold value strategy is to determine and
control the rational distribution of energy among various
components of the hybrid power system according to the
steady-state efciency map of key components so as to adapt
to diferent states. Peng et al. [5] propose a recalibration
method to improve the performance of the rule-based en-
ergy management through the results calculated by the
dynamic programming algorithm, which reduces the fuel
consumption signifcantly. Te rule-based strategy method
is simple, efective, and practical and is the basis of for-
mulating an advanced energy management strategy. Te
operating points of the fuel cell and power battery system are
determined according to the required power and battery
SOC, and the operating limits of the hybrid power system
components are considered. But this kind of methods has
some limitations as to the rules and threshold values are set
in advance; that is, they cannot be fexibly adapted to all
driving conditions, and the fxed control law leads to the
poor dynamic performance of the system.

To optimize the control objectives, constraint conditions
are set and the lowest energy cost is calculated, based on the
optimal energy management strategy by defning the energy
cost function [6–9]. According to the calculation length,
optimization-based control strategies can be divided into the
global optimal energy management strategy and the in-
stantaneous or local optimal energy management strategy
[10–15]. Te former usually takes the vehicle economy or
power as the design objective and the system variables as the
constraint conditions and then establishes the optimization
model by the optimal control theory and optimization
method to achieve the global optimal design objective. It is
usually used for of-line simulation analysis and vehicle
performance evaluation. By transforming the global opti-
mization problem into a series of instantaneous optimiza-
tion problems, the design objective of the objective function
is changed to ensure the minimum energy consumption at
the current moment, and the energy management optimi-
zation can be carried out according to the real-time state of
the vehicle. Motapon et al. [16, 17] established a hybrid
energy management system of fuel cell, lithium battery, and
supercapacitor on Simulink and compared a variety of
control methods, among which the optimal strategy is de-
termined by comparing the SOC fuctuations, hydrogen
consumption, and the overall efciency. By combining the
weighted coefcients to construct optimization functions for
the net power of fuel cells and the fuel consumption rate, the
global extreme value search (GES) algorithm was proposed
as a real-time optimization strategy for multipeak optimized
surfaces [18]. Song et al. [19] proposed a real-time ap-
proximate optimal energy management strategy based on
the minimum principle of Pontriagin, which provides an

online common state update method for an uncertain
driving cycle, which can control the battery charging state
within a certain range and determine the optimal hydrogen
consumption. However, the global-based optimization
strategy can only solve the energy allocation of hybrid
electric vehicles with a known path and obtain the optimal
energy allocation results under the path, which cannot be
adjusted with the vehicle conditions, and the current vehicle
single-chip microcomputer is difcult to meet the calcula-
tion requirements, as the amount of calculation and storage
is very large when the number of iteration steps increases. In
order to minimize the instantaneous equivalent fuel con-
sumption at each calculation point, the instantaneous op-
timization strategy needs to build an accurate prediction
model, which requires relatively high hardware re-
quirements, and the instantaneous optimal is not necessarily
optimal at the global level.

Based on the current driving condition, the predictive
adaptive strategy calculates and adjusts parameters to adapt
to the changing driving conditions and vehicle conditions in
advance.Te adaptive strategy method needs to calculate the
next time demand parameters based on a large number of
vehicle running data in real time according to a certain
algorithm [20–22], which commonly includes the algorithm
based on the neural network (NN) and the model predictive
control (MPC). Zhang et al. [23] established a fuel cell water
management system model by integrating the stack voltage
model, water balance equation, and water transport process
on the membrane. Te predictive control mechanism based
on the recursive neural network (RNN) optimization was
implemented in the MATLAB/Simulink environment, and
the simulation results show that this method can avoid the
fuctuation of cathode water concentration and prolong the
service life of the fuel cell stack. Ziogou et al. [24] conducted
a set of comparative evaluation experiments to deploy dif-
ferent MPC strategies in an industrial automation system
and found that the fuel cell system was in a stable and
economic environment no matter how the conditions
changed with dynamic models. Te adaptive algorithm
based on optimization can predict the parameters of the next
time point, efectively alleviating the weakness of soft output
characteristics of fuel cells, but it requires a large amount of
calculation and is difcult to be applied in practice at
present. Te algorithm based on neural network, as an
example, requires a large number of experimental samples
for training, but it cannot be accurately predicted with
a small size of sample.

Given previously, researchers have proved diferent
methods to be efective in energy management strategies for
fuel cell vehicles. But these methods mainly focus on
a predetermined set of fxed rules or adaptive rules based on
large data. It becomes difcult to conduct the evaluation of
the efciency of energy management optimization when
facing a small amount of incomplete vehicle motion-related
information provided. Terefore, this study is expected to
propose a new grey model-based power predictive control
strategy model in the hybrid power system of fuel cell,
primarily aiming to improve the fuel economy of the vehicle
under the typical Chinese city bus cycle (CCBC) and real
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vehicle conditions.Temethod presented in this study could
contribute to the improvement of energy management
strategies for hydrogen fuel cell buses.

2. Methodology

2.1. Model Building. Te topology structure of fuel cell and
power battery is selected in this study, controlled by the
following three controllers: battery management system
(BMS), fuel cell control unit (FCU), and vehicle control unit
(VCU). BMS measures the parameters of the power battery,
including SOC, voltage, current, and temperature and then
sends the parameters to the vehicle controller in real time via
CAN signal line. FCU receives sensor parameters connected
to the fuel cell and DC/DC converter, including voltage and
current of each single fuel cell, fow and pressure in the fow
channel, temperature and humidity inside the fuel cell, and
input and output voltages of the DC/DC converter. Te
parameters are transmitted to the vehicle controller in real
time. After receiving the parameters detected by the battery
management system and fuel cell controller, the vehicle
controller determines the parameters by the internal energy
management strategy and sends the commands to BMS and
FCU, which executes the related operations according to the
built-in program.

Te fuel cell system is a nonlinear and strongly coupled
system, especially in the case of high current and high power
so that it is very difcult to accurately describe the behavior
of fuel cells with its obvious nonlinear characteristics. Te
proton exchange membrane fuel cell modeling is the cor-
nerstone of fuel cell bus modeling, and its accuracy directly
afects the accuracy of vehicle modeling. In this study,
a proton exchange membrane fuel cell model was estab-
lished, combining the polarization characteristics of the
equivalent circuit and the empirical formula of the Ballard
9SSL technical manual. Te Simulink block diagram of the
output characteristics of a proton exchange membrane fuel
cell stack is shown in Figure 1. Te input in the proton
exchange membrane fuel cell module is hydrogen and air
fow. It is default that the air fow is sufcient and there is no
oxygen hunger. Ten, the Nernst voltage and the activated
polarization overpotential and the fnal output voltage,
current, and efciency of the fuel cell are calculated, re-
spectively. In this study, the rated power of the hydrogen fuel
cell stack is 42 kW.

As the auxiliary energy source of hydrogen fuel cell bus,
power battery is one of the important components in the
hybrid power system, which plays a key role in “peak-
cutting and valley-flling” power and fuel cell start-up
energy supply. In the Simulink model library, an im-
proved power battery model was built by the equivalent R-
int circuit model by regarding the battery as formed by the
voltage source and internal resistance in series. In this
model, the response time, dynamic and steady-state
characteristics of the battery, the ability to preset the
battery type, initial SOC, standard voltage, and rated ca-
pacity were considered. Current was input based on the
states of charging and discharging. Te current is positive
with power battery charged, while it is negative in the

discharged state. Terefore, when designing the fuel cell
energy management strategy, it is necessary to ensure that
the power battery SOC is within a certain range to avoid
overcharging and overdischarging.

In this study, only the longitudinal dynamics was
considered in vehicle motion modeling, that is, the motion
state of the vehicle along the driving direction. Te external
forces acting on the driving direction of the vehicle are
divided into driving force and driving resistance. Te
longitudinal dynamics model of the vehicle can be de-
scribed according to the balance equation of these forces.
Vehicle driving resistance actually represents the demand
for the power of vehicles. According to diferent driving
states, driving resistance can be divided into steady-state
driving resistance and transient driving resistance. Te
former includes air resistance, rolling resistance, and slope
resistance, while the latter refers to acceleration resistance.
Vehicles are driving on the fat side of the road so that the
road slope is set as 0 and the slope resistance is ignored.Te
driving force module model of the vehicle in Simulink is
shown in Figure 2. Te required power of the vehicle can be
obtained from this driving force model by inputting the
vehicle speed and acceleration curves under diferent
working conditions.

2.2. GM (1, N) Power Prediction Strategy. Grey model (GM)
is a kind of method that describes the evolution mechanism
of uncertain system containing both known and unknown
information, which has the advantages of a small amount of
experimental data input needed, less computation, and high
prediction accuracy. For the fuel cell bus energy manage-
ment strategy, it can be treated as a grey system, which is
composed of known parameters such as measurable speed,
acceleration, steering angle, and some unknown parameters
such as road conditions and emergencies. Terefore, GM is
theoretically selected in this study to design a new energy
management strategy by taking known parameters as de-
pendent variables and the vehicle demand power at the next
moment as an independent variable.

GM (1, N) represents a frst-order grey model with one
dependent variable and N − 1 independent variables. It is
assumed that there are N sets of sequences composed of
non-negative variables xi(i � 1, 2, . . . , N), and each set of
sequences has m initial values:

x
(0)
i � x

(0)
i (1), x

(0)
i (2), . . . x

(0)
i (m) . (1)

A new frst-order cumulative sequence x
(1)
i is calculated

when each value of the initial sequence accumulates all the
values as follows:

x
(1)
i � x

(1)
i (1), x

(1)
i (2), . . . , x

(1)
i (m) , (2)

where

x
(1)
i (t) � 

t

j�1
x

(0)
i (j) t � 1, 2 . . . , m. (3)

Te grey diferential equation of GM (1, N) is defned as
follows:
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where a is the system development parameter and bi is the
driving parameter, representing the infuence degree and the
polarity of the independent variable on the dependent
variable. Te dependent variable increases as the in-
dependent variable increases and vice versa. Te grey dif-
ferential equation can be defned as follows:

x
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where z
(1)
1 (k) is defned as follows:

z
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2
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Te grey parameters of the grey model PN represent the
vector set of system development parameters and driving
parameters, which can be calculated as follows:
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Figure 2: Simulink block diagram of the driving force module model of the vehicle.

Figure 1: Simulink block diagram of the output characteristics of a proton exchange membrane fuel cell stack.
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Ten, the solution of equation (4) can be obtained as
follows:
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Finally, the predicted value of the initial sequence can be
obtained as follows:

x
(0)
1 (k + 1) � x

(1)
1 (k + 1) − x

(1)
1 (k). (10)

Te basic idea of the GM (1, N) is to update the data
series involved in the grey model every time new data in-
formation is obtained so that the established grey model has
the “metabolic” function. At least 4 groups of historical data
are needed to calculate the grey model. In this study, the
historical vehicle demand power, power battery SOC, vehicle
speed, and fuel cell output power are used as state variables
obtained from the hybrid power system of fuel cell bus to
predict the vehicle demand power at the next moment
through this method of metabolism. State variables are,
respectively, taken from three main core components of the
hybrid power system of the fuel cell bus, namely, battery,
vehicle, and fuel cell. Te fuel cell bus energy management
system will allocate the fuel cell and battery output power at
the next moment in advance according to the predicted
vehicle demand power to evaluate the power performance of
the fuel cell output efciency and fuel economy.

Additionally, the other two strategies as the on-of
control strategy and logical threshold value strategy are
also analyzed in this study and compared to the proposed
GM-based strategy to examine their performance in fuel
economy and output efciency.Te on-of control strategy is
selected as a comparison because this strategy is also used in
some fuel cell commercial vehicles currently. It is divided
into fve levels according to the SOC size of the power
battery, and a fxed fuel cell power is set at each level. When
the SOC is less than 60%, the SOC should be increased to an
appropriate range so that the power battery can be charged
as far as possible. When SOC> 90%, the power battery is
sufcient so that only the power battery supplies energy to
the vehicle and the fuel cell will be powered of. When the
SOC is between 60% and 90%, the SOC is set at every 10%
level and the fuel cell power varies with the level. Te logical
threshold energy manage system strategy is also established

for fuel cell hybrid power systems in this study. Te basic
idea of the logical threshold strategy is to properly allocate
the power between fuel cells and battery based on their
steady-state efciency so as to adapt to diferent states and
maximize the system efciency. When the battery SOC is
normal or high, fuel cell will work at a lower power or even
with power of and thus stop working. When SOC is low or
the power required is high, the fuel cell operates at its
maximum power. Moreover, the other states of the fuel cell
power vary with the power demand within the optimal
efciency range.

3. Results and Discussion

Teproposed strategies were analyzed and verifed under the
Chinese urban bus cycle (CCBC) and the actual road
conditions. Te duration of the typical Chinese urban bus
cycle is 1314 seconds, and the total vehicle length is
6.048 km. Te real vehicle operating conditions of a bus line
were measured on the driving route of a hydrogen fuel bus in
Wuhan in China in this study. Compared with CCBC, the
speed and acceleration change more frequently in the real
vehicle condition with longer travel time and driving dis-
tance, as shown in Table 1.

In this study, the on-of control strategy, logical threshold
value strategy, and prediction strategy based onGM (1,N) are,
respectively, simulated in the CCBC and real vehicle working
conditions. Tese three strategies are verifed by comparing
output efciency and fuel economy (e.g., the changes of
battery SOC, fuel cell power variation, and vehicle hydrogen
consumption) with diferent initial SOC under the same
operating conditions. Among them, both the start-stops and
the large variation of power output of the fuel cell will afect
the durability and life of the fuel cell.Te characteristics of the
two working conditions were compared under diferent
working conditions and the same strategy. Te simulation is
completed in a control system development and testing
platform based on MATLAB/Simulink.
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Te variables as the fnal SOC of battery, hydrogen
consumption of fuel cells, equivalent hydrogen consumption
of battery, and fuel economy were used to measure the
energy utilization of diferent strategies. In this study, during
the strategy design process, the SOC of the power battery is
expected to be maintained at an appropriate value, such as
70%, during the operation of the vehicle. Te equivalent

hydrogen consumption of battery is the mass diference of
energy equivalent hydrogen under the fnal SOC of the
power battery and the initial SOC, defned as equation (12).
Te total hydrogen consumption Sum∆H2 is the sum of
hydrogen consumption of the fuel cell F∆H2 and equivalent
hydrogen consumption of battery B∆H2.

B∆H2(g) �
SOCH − SOC0(  × 0.01 × Ebatt × 3600 × 1000

HeatH2
× UH2

×ηcharge×ηDCDC×ηFC

× 100%, (11)

where SOCH is the fnal SOC, SOC0 is the initial SOC, Ebatt is
the battery capacity, HeatH2

is the hydrogen calorifc value,
UH2

is hydrogen utilization, ηcharge is the battery charging
efciency, ηDCDC is the DC/DC converter efciency, and ηFC
is the fuel cell efciency.

Te fuel economy was measured with the on-of control
strategy as the control group (i.e., the economy is set as
100%). Te fuel economy calculation formula of the other
two energy management strategies is expressed as equation
(12).Te smaller the fuel economy is, the lower the hydrogen
consumption is compared with the on-of control strategy.

ηH2
�

mH2

mH2switch
× 100%, (12)

where mH2
is the amount of hydrogen consumed.

3.1. CCBCCondition. Under the CCBC condition, when the
initial SOC of the battery is 70%, it is found that these three
energy management strategies perform diferently, as shown
in Figure 3. It is observed that when compared to the logical
threshold strategy, the GM and the on-of control strategy
can better maintain the SOC of power cells at around 70%
and fuel cells have less power regulation, which is more
conducive to the fuel cell life. Figures 4 and 5 show the
battery SOC changes and fuel cell output power changes
when the initial SOC of the battery is set at 30% and 90%,
corresponding to the performance of the fuel cell energy
management system under the extreme conditions of low
SOC and high SOC. For the 30% initial SOC, the GM and
on-of control strategies can adjust the power of the fuel cell
to a large value, so as to increase the SOC of battery to the
expected level as soon as possible, while meeting the dy-
namic requirements of the vehicle. In contrast, for the 90%
initial SOC, GM and on-of control strategies reduced the
fuel cell power to consume the battery power, thus reducing
the SOC. In addition, in the condition of the 90% initial SOC
with the on-of control strategy, the fuel cell is not started for

a long time in the early stage, and the fuel cell is switched on
and of twice in the late stage, which is not a good choice for
vehicle dynamics and the durability of the fuel cell. Te
logical threshold strategy performed poorly in terms of
maintaining battery SOC and fuel cell durability at the
conditions of initial SOC at 30% and 90%.

Measurements as fnal SOC, fuel cell hydrogen con-
sumption, battery equivalent hydrogen consumption, total
hydrogen consumption, and fuel economy were calculated
under CCBC condition with three energy management
strategies at 30%, 70% and 90% initial SOC, shown in Ta-
ble 2. With 70% initial SOC, highest fuel economy was found
with the GM predicted energy management strategy, in-
dicated by saving 7.17% and 7.47% hydrogen compared with
the logical threshold strategy and on-of control strategy,
respectively. Under low initial SOC condition, efciency was
higher with the GM strategy than the on-of control one but
lower than the logical threshold strategy. While with 90%
initial SOC, fuel economy of the GM strategy is similar to
that of the on-of control strategy, indicated by about 30%
less hydrogen than the logical threshold strategy. Combing
considering the battery SOC variation, fuel cell power
variation, and vehicle hydrogen consumption, the GM
strategy is comparable to the on-of control strategy in
maintenance of SOC and fuel cell running life, and both of
these two are superior to the logical threshold one. In terms
of fuel economy, the GM strategy performs better than the
on-of controlled one.

3.2. Real Vehicle Condition. As to the real vehicle working
condition, battery SOC variation curves and fuel cell output
power variation curves of these three strategies under the
normal, low, and high initial SOC conditions of 70%, 30%,
and 90% battery are shown in Figures 6–8, respectively.
Overall, the results of real vehicle condition are similar to
CCBC condition. Logical threshold strategy cannot maintain
the SOC of battery to the expected value well in real vehicle

Table 1: Comparison of parameters under CCBC and real vehicle condition.

Parameters CCBC condition Real vehicle condition
Driving distance (km) 5.91 16.38
Travel time (s) 1385 2893
Maximum required power (kW) 55.00 58.13
Average demand power (kW) 18.74 20.96
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condition, and the power regulation of fuel cell changes more
dramatically than that in CCBC condition, which is extremely
unfavorable to the running life of fuel cell, while GM and on-
of control strategies perform better in this aspect of fuel cell
output power regulation. Additionally, when the initial SOC
is high at 90%, it was found that fuel cell still stayed of for
a long time with the on-of control strategy.

Table 3 listed the comparison of fuel economy of three
strategies under real vehicle conditions. It can be seen from
Table 3 that, at the 70% initial SOC, GM has the best fuel

economy performance with a reduction of 11.05% and 6.50%
compared correspondingly with the on-of control and
logical threshold strategy. At 30% initial SOC, the value of
fuel economy of the GM strategy (80.06%) is slightly larger
than the logical threshold one (73.65%) but much smaller
than the on-of control one with a reduction of almost 20%.
At 90% initial SOC, fuel economy of the GM strategy is
roughly equivalent to the on-of control one but signifcantly
better than the logical threshold one. Overall, GM shows
good economy among these three strategies.
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Figure 3: Curves of three strategies under CCBC condition with 70% initial SOC. (a) Fuel cell output power variation. (b) Battery SOC
variation.
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Figure 4: Curves of three strategies under CCBC condition with 30% initial SOC. (a) Fuel cell output power variation. (b) Battery SOC
variation.
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Figure 5: Curves of three strategies under CCBC condition with 90% initial SOC. (a) Fuel cell output power variation. (b) Battery SOC
variation.

Table 2: Comparison of fuel economy of three strategies under CCBC condition.

Energy management
strategies SOC0 (%) SOCH (%) F∆H2 (g) B∆H2 (g) Sum∆H2 (g) ηH2 (%)

On-of control strategy
30 49.26 935.69 −195.36 740.32 100
70 69.18 411.70 8.37 420.07 100
90 77.14 167.36 130.39 297.75 100

Logical threshold
30 31.85 492.35 −18.74 473.61 64.0
70 68.13 399.92 18.95 418.87 99.7
90 86.12 352.30 39.38 391.68 131.55

GM (1, N)
30 40.37 684.07 −106.25 577.82 78.05
70 68.06 365.60 23.10 388.70 92.53
90 80.98 211.50 91.50 303.00 101.76
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Figure 6: Curves of three strategies under real vehicle condition with 70% initial SOC. (a) Fuel cell output power variation. (b) Battery SOC
variation.
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Figure 7: Curves of three strategies under real vehicle condition with 30% initial SOC. (a) Fuel cell output power variation. (b) Battery SOC
variation.

Table 3: Comparison of fuel economy of three strategies under real vehicle conditions.

Energy management
strategies SOC0 (%) SOCH (%) F∆H2 (g) B∆H2 (g) Sum∆H2 (g) ηH2 (%)

On-of control strategy
30 57.05 1763.20 −274.38 1488.82 100
70 67.85 1003.31 21.82 1025.14 100
90 68.03 594.77 222.87 817.64 100

Logical threshold
30 30.71 1103.77 −7.19 1096.58 73.65
70 61.17 885.69 89.53 975.22 95.13
90 76.69 787.58 135.07 922.65 112.77

GM (1, N)
30 40.34 1296.38 −104.87 1191.5 80.06
70 60.96 820.13 91.72 911.86 88.95
90 74.16 674.94 160.70 835.64 102.20
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Figure 8: Curves of three strategies under real vehicle condition with 90% initial SOC. (a) Fuel cell output power variation. (b) Battery SOC
variation.
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4. Conclusions

Hydrogen fuel cell energy management strategies play an
important role in improving the dynamic response per-
formance and contributing safe and reliable operation of
hydrogen fuel cell system. Tere are limitations of the
existing energy management startegy such as poor real-
time performance and large amount of calculation. Tis
study proposed an energy management strategy of the
hybrid power system based on GM (1,N) power prediction
which is applicable in the condition of a limited small
amount of experimental data and low requirements on
data distribution. Tree kinds of energy management
strategies including the on-of control strategy, logical
threshold strategy, and GM (1, N) power prediction
strategy were compared under two diferent working
conditions of CCBC and real vehicle with diferent initial
SOC. Among them, the on-of control strategy determines
the system state by battery SOC, while the logical
threshold strategy is based on the vehicle demand power
and battery SOC. All the simulations are completed in
a control system development and testing platform based
on MATLAB/Simulink. Comparisons were mainly made
between three strategies in the aspects of output efciency
and fuel economy by measurements of battery SOC
variation, fuel cell output power variation, the hydrogen
consumption of fuel cell, and equivalent hydrogen con-
sumption of battery. Based on the research results of
CCBC and real vehicle conditions of three diferent values
of initial SOC, the GM strategy shows good performance
in the hybrid power system for hydrogen fuel cell vehicles.
Specifcally, the GM strategy has better fuel economy
when compared with the on-of control strategy and is
more conducive to fuel cell life and vehicle power battery
charging state maintenance when compared with the
logical threshold one. Comprehensive considering the
aspects of vehicle battery, fuel economy, and output ef-
fciency, it is concluded that the GM predictive energy
management strategy performs the best among the three
control strategies in this study, which can contribute
improvement in energy management of the hybrid power
system for hydrogen fuel cell vehicles.
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