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Vehicle and crew scheduling is vital in public transit planning. Conventionally, the issues are handled sequentially as the vehicle
scheduling problem (VSP) and crew scheduling problem (CSP). However, integrating these planning steps ofers additional
fexibility, resulting in improved efciency compared with sequential planning. Given the ever-growing market share of electric
buses, this paper introduces a newmodel for integrated electric VSP and CSP, called EVCSPM.Tis model employs the minimum
cost fow formulations for electric VSP, set partitioning for CSP, and linking constraints. Due to the nonlinear integer property of
EVCSPM, we propose a method that hybrids a matching-based heuristic and integer linear programming solver, GUROBI. Te
numerical results demonstrate the efciency of our methodology, and the integrated model outperforms the sequential model in
real-life scenarios.

1. Introduction

Developing public transit is the fundamental way to
achieve sustainable urban development [1], which has
been a widely discussed topic since the 1960s. Specifcally,
vehicle and crew scheduling are two major planning
problems in public transport scheduling [2]. Tese
problems aim at minimizing the operational costs asso-
ciated with the feet size and crew size required to ensure
timely trips and compliance with labor crew regulations
for efcient vehicle blocks and crew shifts [3]. Typically,
these problems are approached separately, with the ve-
hicle scheduling problem being addressed frst, followed
by the crew scheduling problem [4].

Ball et al. [5] contend that scheduling vehicles in-
dependently of the crew is not ideal for urban trans-
portation, as crew cost typically outweighs vehicle operating
cost. It is well established that integrating planning steps
reveals more options and increases the solution space,
leading to greater efciency gains [6].

Furthermore, public transport operators face challenges
transitioning from conventional diesel to electric vehicles
(EVs) powered by batteries [7]. In recent years, the market
share of EVs has experienced a signifcant increase [8–10].
On the 27th of January 2022, the Ministry of Transport
issued the “14th Five-year Development Plan for Green
Transportation,” which includes a goal of reaching 72% of
EVs in urban public transport and making fully EVs the
mainstream option in the bus market by 2025 [11]. Hence,
we address the electric VSP (EVSP) and CSP simultaneously.
Te combination of these two problems is called the electric
vehicle and crew scheduling problem (EVCSP).

Resource-constrained VSPs, including EVSP, are known
to be NP-hard [12]. In addition, the single-based CSP is also
NP-hard due to complex constraints arising from wage
agreements and internal regulations [13]. Te EVCSP falls
into the category of NP-hard problems. It is considerably
more challenging than the isolated problem [14], and it takes
more time to solve optimally, particularly for real-world and
large-size applications [15].
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Only a few papers tackle the integrated vehicle and crew
scheduling problem (VCSP) [4], and several discussions
concern the electric version (EVCSP). Existing literature on
VCSP (including EVCSP) models and algorithms is sum-
marized in Table 1. To our knowledge, all models proposed
in the literature fall into one of two classes [55]: (i) partial
integrations and (ii) complete integrations that require
decisions to be taken simultaneously.

Some early papers deal with partial integration [33]: (1)
schedule vehicles using a heuristic approach in CSP, (2)
include crew considerations in VSP, and (3) change vehicle
schedules in CSP. Most of the procedures fall under the frst
category and are based on a heuristic procedure proposed by
Ball and Bodin [5]. Te solution procedure is decomposed
into three components, emphasizing the CSP: a piece
construction component, a piece improvement component,
and a shift generation component. Similar heuristic ap-
proaches in the frst category are proposed by Tosini and
Vercellis [23]; Falkner and Ryan [21]; and Patrikalakis and
Xerocostas [22]. All these approaches use a similar set
covering formulations as in Ball et al. [5]. Afterward, the
approach that solves CSP incorporates side constraints for
the vehicles that appear [4]. Scott [18] frst proposed ap-
proaches for the second category by heuristically de-
termining vehicle schedules that account for crew costs
using the linear programming dual of the HASTUS CSP
model. Te third category has far fewer fruits than the frst
two, with Gintner et al. [26] proposing a time-space network
formulation for CSP that allows vehicles to have more
autonomy during the crew scheduling phase, ultimately
leading to selecting the most consistent vehicle schedule that
aligns with the objectives of CSP. We refer to Freling et al.
[28] for an overview of these papers.

Te state-of-the-art complete integration models for
VCSP fall into three main categories [50]: (1) network-fow-
based formulation, (2) constraint-based model, and (3)
maximum covering model. Te earliest and most successful
category is the network-fow-based formulation. Tese
models mainly comprise time-space/multicommodity/
quasi-assignment [2, 4, 38] network fow formulations for
VSP, a set partitioning/covering for CSP, and additional
linking constraints to ensure the compatibility of vehicle and
crew schedules [14]. Freling [29] introduces the frst in-
tegrated VCSP model using quasi-assignment-based for-
mulations, while Huisman [27] provides the initial general
formulations for VCSP by extending the single-depot model
of Freling [29] to themultidepot case.Te second category of
models can refer to Laurent and Hao [53] who present an
integrated model based on constraint satisfaction that is
intuitive and natural [3]. Prata et al. [56–58] propose the
maximal covering model under the third category, which
generates potential blocks, shifts directly over the timetabled
trips, and then covers all trips with available resources
(vehicles and crews). For an overview of complete in-
tegration, we can refer to Steinzen et al. [42].

To the best of our knowledge, only two papers address
the issue of EVCSP: Perumal et al. [7] and Sistig and Sauer
[34]. Perumal et al. [7] modify the mathematical model
proposed by Friberg and Haase [20] to explain VCSP as a set

partitioning problem by adding additional constraints that
link vehicle and crew schedules.Tey incorporate the crucial
constraints of EVs, including limited driving range and
lengthy recharging times [60, 61], into the VCSP, thereby
increasing operational complexity. Teir research suggests
resolving EVCSP using a branch-and-price heuristics
method coupled with an adaptive large neighborhood search
(ALNS). However, the model referred to by Perumal et al. [7]
is partially integrated and only considers a constant driving
range for EVs. Yet, the actual driving range can be infu-
enced by various factors such as air density, driving speed,
air conditioning usage, and complex road surfaces [11].
Ten, Sistig and Sauer [34] avoid this faw, and the integrated
model they refer to is initially proposed by Freling [29]. Tis
paper aims at an innovative, low-complexity model for the
integrated issue and advocates for energy consumption and
recharging strategies that are more practical to include in the
scheduling process.

Te minimum cost fow (MCF) is a common type of
network fow that can be extended in various ways [62]. Tis
paper presents a complete integration model for EVCSP,
which is based on the MCF. Specifcally, the model involves
MCF formulations for EVSP, set partitioning for CSP, and
linking constraints that guarantee compatibility of EV and
crew schedules. Te outcomes of MCF can be useful for
addressing various network-related issues, including max-
imum fow, assignment, shortest path, transshipment, and
transportation problems [63]. Successful integration re-
quires a practical design of the key MCF components.

Furthermore, it is imperative to customize EVs’ energy
consumption and charging strategy for accurate modeling. In
practice, EVs spend signifcant time at multiple intermediate
stops, waiting at red lights, and navigating through trafc
jams.Tus, we divide the EV operation into prevailing driving
and standstill. Fontana [64] demonstrates that the energy
consumption of an EV is modeled using engineering prin-
ciples and supported by analytics. We utilize the mentioned
model to calculate the EV energy consumption of prevailing
driving and standstill states. Typically, EV charging strategies
include battery swaps, slow recharge, and fast recharge
[60, 61]. Te current mainstream strategy in bus operation
enterprises is to perform slow recharge at night and fast
recharge during daily operations [11].

Te contributions of this research are fvefold: (a) A
novel EVCSP model based on MCF is proposed with an
integrated design for nodes, directed arcs, cost, and con-
straints; (b) the exact minimum feet size for VCSP is de-
rived, and furthermore, the lower bound of both feet and
crew sizes for EVCSP is discussed since minimizing feet and
crew sizes are the primary task; (c) time compatibility and
energy compatibility of any two spells or trips are defned for
arc generation; (d) an approach hybrids a matching-based
heuristic method, and integer linear programming (ILP)
solver is derived for our integrated model; and (e) a series of
numerical examples are provided to illustrate the perfor-
mance of the model and the approach developed.

Te remainder of the paper is structured as follows.
Section 2 elaborates on the concepts related to EVCSP.
Section 3 suggests an integrated design for the problem
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based on MCF. Section 4 presents the EVCSP model and
provides some statements. Section 5 presents the hybrid
heuristic method for the model. Section 6 displays the
numerical experimental results and sensitivity analyses
based on a realistic dataset. Finally, Section 7 provides
concluding remarks and suggests future work.

2. Electric Vehicle and Crew
Scheduling Problem

Te EV and crew Scheduling can be clarifed more clearly by
breaking it into subproblems and giving an integrated de-
scription. We initially establish the concepts by introducing
the following terminologies [1, 65]:

Trip: A trip refers to the task unit, which includes a start
time at the departure point, an end time at the arrival
point, and a duration known as trip time.
Block: A block is a vehicle’s task to start from a depot,
followed by a sequence of trips, and ends at the depot.
Relief opportunity (RO): RO is a time/location pair
where crews can be relieved. Te time is a relief time,
and the location is a relief point. EVs use only some
ROs to relieve crews. Crews are required to take relief at
specifc relief points, usually determined by public
transport companies. Depending on the circumstances,
the crew’s movement between these relief points can be
organized by the transportation enterprise or the crew
itself.
Piece: A piece is a work done between two consecutive
ROs during which crews do not have an RO.
Spell: A spell consists of multiple consecutive pieces
within a vehicle block, all handled by a single crew
without relief from other crews.
Shift: A shift refers to the assignment of multiple spells
to a single crew. A crew’s task starts from a depot,
followed by several spells, and ends at the depot. Shifts
encompass split, straight, and tripper shifts. Te split
shift has a long length and a long break, while the
tripper shift has a short length but no break. Te
straight shift has a short break.
Idle time: Idle time refers to the waiting time between
two consecutive trips.
Deadhead: Deadhead is the empty movement between
any two consecutive trips of a vehicle.

2.1. Electric Vehicle Scheduling Problem. Compared to the
traditional VSP for fueled vehicles, the EVSP is more in-
tricate because an EV’s battery capacity is restricted, re-
quiring specifc recharging points that involve
a prolonged time.

Te EVSP involves generating several blocks and
assigning each to an EV. Te blocks are constructed by
organizing the EV’s daily work, starting from a pull-out from
a depot, followed by a sequence of trips, and ending at a pull-
in to the same depot. Te objective is to minimize feet size

and variable operating costs, which include trip times, idle
times, and deadheads [66]. Te optimization is subject to
three constraints:

(a) Each trip can only be assigned to one EV
(b) Each EV must begin and end its daily work with

a pull-out from and pull-in to the same depot,
respectively

(c) Two consecutive trips for each EVmust be time- and
energy-compatible

Figure 1 depicts the EVSP in a time-space network. Te
trips comprise three departure (or arrival) points, namely P1,
P2, and P3. D represents the set of depots, and R represents
the set of recharge points. Tere are four types of arcs in the
network: a pull-out arc connects a depot to a trip, a pull-in
arc connects a trip to a depot, a trip-link arc connects two
trips, and a recharge-link arc connects a trip to another trip
through a visit to a hidden recharge point. An EV has to
temporarily return to a depot, also known as a depot return
when the gap between two consecutive trips is signifcant.
Maintaining the EV’s energy during scheduling via
recharging is imperative.

2.2. Crew Scheduling Problem. Crew scheduling aims to
create a feasible schedule (several shifts) to cover all tasks
within a single day of vehicles (all blocks). Te objectives
of CSP are twofold: minimize both the crew size and the
total wage costs while adhering to the following
constraints:

(a) Each trip is assigned to a single shift
(b) Each crew’s relief occurs at the specifed RO
(c) Each shiftmust confrm all operational requirements

and labor laws, known as a legal shift

Te labor laws pertaining to the CSP are intricate and
multifaceted. Below, we provide a summary of typical
constraints that restrict the efcacy of shifts:

(1) Te length of a spell must not exceed the stipulated
upper limit

(2) Te length of a shift should not surpass the maxi-
mum length designated for the respective shift type

(3) Te working hours for a shift must fall within the
minimum and maximum limits specifed for the
corresponding shift type

(4) Te driving time during a shift should not exceed the
minimum andmaximum driving time allowances set
for the respective shift type

(5) During a straight shift, meal breaks must be taken at
the designated time and location

(6) For split shifts, check-in and check-out times
must not occur earlier than the earliest check-in
time nor later than the latest check-out time
prescribed

Figure 2 details the composition of three 2-spell shifts
pertaining to some EV work.

4 Journal of Advanced Transportation



2.3. Integrated Electric Vehicle and Crew Scheduling Problem.
EVCSP aims to generate a feasible schedule for EVs and
crews to cover all tasks, i.e., all trips.Te objectives of EVCSP
are to minimize feet size and crew size, deadheading time,
idle time, and wage costs. Te crews are permitted to carry
out crossovers at relief points. Te schedule is subject to
complex constraints [67]. In particular, the following uni-
versal constraints must be satisfed:

(a) Each trip must be covered by only one EV
(b) Each EV must be handled by only one crew si-

multaneously, but another crew can replace the crew
(c) Each EVmust start its frst trip from a depot and end

its daily work there
(d) Te connection of any two consecutive EV trips

must be compatible regarding time and energy
(e) Each crew’s relief must be carried out at the

specifed RO
(f ) Each shift must comply with all operational con-

straints and labor laws

Tis paper is dedicated to addressing the single depot
EVCSP, where EVs are responsible for both pull-out and
pull-in operations at a single depot. Figure 3 illustrates the

EV blocks and crew shifts simultaneously from integrated EV
and crew scheduling for executing the timetabled trips as
shown in Figure 4.

2.4. Related Assertions of Fleet Size and Crew Size. Let T� {1,
2, . . ., n} denote the set of timetabled trips. Tis section
introduces the notions related to time compatibility.

Defnition 1 (Θ). Let ts
i and te

i denote the start and end time
of trip i, and DHij refers to the deadheading time from trip i
to trip j. Bertossi et al. [68] defne the compatibility iΘj of
any two trips, i and j, as

T
e
i + DHij ≤T

s
j. (1)

Otherwise, trip i is time incompatible with trip j (iΘj).

Defnition 2 (Incompatible set). If ∃U ⊂ T, ∍iΘj, ∀i, j ∈ U,
then U is an incompatible set.

Defnition 3 (Incompatible degree, ID). Suppose U is an
incompatible set of T, then the number of trips in U is the
incompatible degree, i.e., ID(U) � |U|.

D

P1

R
time

P2

P3

pull out/in
depot return

trip
recharge-link

deadhead
idle

Figure 1: A time-space network fow for the EVSP.

0635 0655 0755 0845 0950 1045

0830 0910 0945 1100 1115 1130

0610 0725 0900 1005 1040
b3

b2

b1

adopt RO
RO
spell

piece

shif 2
shif 1

break
recharge
shif 3

Figure 2: Illustration of the composition of 2-spell shifts with the EV blocks b1, b2, and b3.
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Defnition 4 (Maximum incompatible degree, MID). MID
represents the largest ID among all incompatible sets of T,
i.e., MID(T) � max ID(U) ∣ ∀in compatible setU of T .

By referring to the decomposition theorem [69], we
derive the theoretical minimum feet size (TMF) for
the VCSP.

Theorem 6. Let T be the set of timetabled trips. Ten, the
TMF for the VCSP is equal to MID(T).

Proof. It is reasonable to assume that the set T, equipped
with the time compatibility relation, forms a partially
ordered set (poset). For a poset P, elements a and b are
comparable only if either a ≤ b or b ≤ a; otherwise, they are
noncomparable. A subset S of P is called a chain if every
two elements in S are comparable. A subset S of P is
independent if every two elements in S are non-
comparable. For the VCSP, we defne a trip as an element
in the poset and use the time compatibility of trips to
establish the comparability relation. Ten, a block cor-
responds to a chain. Dilworth’s decomposition theorem
states that the minimum number of chains partitioning

a poset P equals the maximal number of independent
elements. Consequently, the TMF for the VCSP is
equivalent to MID(T). Teorem 6 is true. □

Corollary 7. For the EVCSP, MID(T) provides a lower
bound for the feet size.

Proof. Since EVs have limited battery capacity, we need to
consider both the nodes’ time and energy compatibility (see
Section 3.3). As a result, its feet size is not less than that
of VCSP. □

Proposition 8. Te EVCSP requires a crew size that is no less
than L�W/(S-A-B-C), where W is the total working time
needed for timetabled trips, S is the maximum length of the
spread over for a normal shift stipulated in the labor laws, and
A and B denote the time allowances for crews to sign on and
sign of at depot respectively, while C denotes the specifed
minimum meal break.

Proof. Te daily working time of a crew cannot exceed S-A-
B-C. Hence, Proposition 8 is straightforwardly correct. □

108 11B1 2 3 6
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11 13

Timeb1

b2

b3

b4

Blocks
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7 11

1

2
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Figure 3: EV schedules b1, b2, b3, b4. Crew schedules s1, s2, s3, s4, s5. R is the 30min recharge of the EV. B is the legal 30min break that the
crew has to avoid working blocks of more than 4 h. Te crew’s working time cannot be up to 8 h.

1 2 3 4 75 6 8 9 1110 12Trips (A-B)
ST 6:15 7:35 8:05 10:159:35 10:10 11:05 12:05 12:1512:10 13:058:15

1 2 53 4 6 7 98 10 12 13Trips (B-A)
ST 6:35 7:15 9:10 9:15 10:05 11:05 11:1511:10 12:05 13:15 13:208:35
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Figure 4: Te list of timetabled trips involves two departure (or arrival) points, A and B. A-B and B-A are two directions of the trips. Te
second line is the timetable for each trip. Te trip time of each trip is 1 h. Te deadheading time from A to B (or B to A) is 1 h.
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3. Integrated Design for Electric Vehicle and
Crew Scheduling Based on Minimum
Cost Flow

In graph theory, MCF is a network with direct arcs and
nodes. It requires a least-cost path starting from a given
node, followed by several nodes connected by directed arcs,
and ending at a specifed node.

Let G(N, A) be a directed network consisting of the arc
cost cij and capacity (upper bound, uij, and lower bound, lij)
associated with every arc (i, j) belonging to A. Each node
i ∈ N possesses several resources bi. Te MCF model
(MCFM) can be formulated as follows:

(MCFM) min f(x) � 
(i,j)∈A

cij · xij, (2)

s.t lij ≤xij ≤ uij, ∀(i, j) ∈ A, (3)


j:(i,j)∈A

xij � 
j:(j,i)∈A

xji � b(i), ∀i ∈ N,
(4)

xij ≥ 0 and integer, ∀(i, j) ∈ A. (5)

Te objective is to minimize the total cost, with the
capacity constraint and conservation of fows represented by
(3) and (4), respectively. If arc (i, j) is selected, xij> 0;
otherwise, xij � 0. We now develop an integrated design for
EVSP and CSP based on the MCF.

3.1. Integrated Design for EVCSP. We design four critical
elements to transform EVCSP into an MCF problem: nodes,
directed arcs, cost, and constraints.

Incorporating both the EV and crew constraints, along
with their associated limitations, into the EVCSP model
presents signifcant complexity, and thus, building the
model directly becomes difcult. As a result, we employ
a design based on a set of predetermined potential shifts,
which act as the precondition for the integrated EVCSP
model (EVCSPM).

Statement 9. Te potential shifts are legal, i.e., each potential
shift complies with various labor laws, and all its spells are
time-compatible.

3.1.1. Design of the Nodes. Suppose T is the set of timetabled
trips, D is the set of depots, andW is the set of feasible spells.
We defne two types of nodes.

(1) Te depot node d, d ∈ D.
(2) Te spell node w, w ∈W. Te related nodes for w

represent one or more feasible spell nodes in the same
potential shift.

Statement 10. Defning the shift as a node is infeasible.
If the shifts are defned as nodes, EVCSP can be illus-

trated in Figure 5. However, it is not feasible since the cost of
the shift nodes needs to be defned in EVCSPM, which
becomes a set partitioning CSP model and is incapable of
handling EVSP.

3.1.2. Design of the Directed Arcs. Given the existence of two
types of nodes, fve directed arcs follow:

(1) A pull-out arc connects a depot to a spell.
(2) A pull-in arc connects a spell to a depot.
(3) A spell-link arc connects two spells.
(4) A recharge-link arc connects a spell to another spell

through a hidden recharge point.
(5) A depot-return arc connects two spells with a tem-

porary depot stop if the time gap between the
consecutive spells is large enough (e.g., 3 h). An EV
does not recharge in a depot-return arc.

Te spell node consists of multiple trips connected by
trip-link arcs. We defne the trip-link arc as an implicit arc,
while the pull-out, pull-in, spell-link, and recharge-link arcs
are explicit.

A spell is feasible if all implicit arcs within it are time- and
energy-compatible. An explicit arc is also feasible, provided
that its compatibility is met (see Section 4.3 for the defnition
of arc compatibility).

3.1.3. Design of the Cost. We present the arc cost and shift
cost below. Te arc cost represents the connection cost
between consecutive nodes, which comprises deadheading
time, idle time, and recharge cost (if recharging is required).
Te shift cost includes the trip connection cost within each
spell included in the shift and the total wage cost.

Specifcally, the arc cost Cij between nodes i and j is
defned as follows:

Cij �

DHij, if (i, j) is a pull − out arc, i ∈ D, j ∈ T,

DHij, if(i, j) is a pull − in arc, i ∈ T, j ∈ D,

DHij + IDij, if(i, j) is a spell − link arc, i, j ∈ T,

DHir + DHrj + IDirj + Cr, if (i, j) is a recharge − link arc, i, j ∈ T, r ∈ R,

DHid + DHdj, if (i, j) is a depot − return arc, i, j ∈ T, d ∈ D,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)
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where R denotes the set of recharge points and Cr represents
the fxed recharge cost. DHij is the deadheading time between
the arrival point of trip i and the departure point of trip j,
DHir (DHid) is the deadheading time between the arrival
point of trip i and a recharge point r (depot d), DHrj (DHdj) is
the deadheading time between a recharge point r (depot d)
and the departure point of trip j, IDij stands for idle time for
a spell-link arc (i, j), and IDirj denotes the idle time for
recharge-link arc(i, j). IDij and IDirj are given as follows:

IDij � t
s
j − t

e
i − DHij, (7)

IDirj � t
s
j − t

e
i − DHir − DHrj − T

rt
, (8)

where te
i represents the end time of trip i, ts

j is the start time of
trip j, and Trt is the recharging time.

Te shift cost Cs of shift s is defned as follows:

Cs � 
t∈s

Ct + h(s), (9)

where Ct represents the trip connection cost of spell t in-
cluded in s, comprising the idle time and deadheading time
between adjacent trips. Te total wage cost of s is represented
by h(s).

For a viable integrated schedule, both Cij and Ct con-
stitute elements of the vehicle schedule cost, whereas h(s)
contributes to the crew schedule cost.

Statement 11. Adding the fxed trip cost to the arc and shift
costs is unnecessary.

Since a feasible schedule must cover all the timetabled
trips, the trip cost remains constant regardless of the selected
schedule.

3.1.4. Constraints on the Paths. To satisfy the complex
constraints associated with EVCSP for a chosen path, we
impose the following constraints on the EV fow: constraint
(1) ensures the path’s integrity, while constraints (2) and (3)
aim to create integrated schedules, di, dj ∈ D.

(1) Each path must start from a source node di, followed
by a sequence of feasible nodes connected by directed
arcs, ending at a sink node dj. i� j, when the path
needs to return to the home depot

(2) Each node in a selected path can be covered by only
one selected shift

(3) Te selected paths and shifts should cover each
timetabled trip precisely once

3.2. Compatibility of Arcs. Creating explicit arcs, including
pull-out, pull-in, spell-link, and recharge-link arcs, is crucial
to EVCSP, while forming implicit arcs, i.e., trip-link arcs,
serves as the foundation for the spell node. An arc is present
only if it satisfes both time and energy compatibility.

3.2.1. Time Compatibility. Two consecutive trips, i and j,
within a spell are considered time-compatible if formula (1) is
satisfed. Tis defnition can be extended to spell link. Suppose
the last trip in spell p is denoted as trip i, and the frst trip in spell
q is denoted as trip j. If formula (1) is met, the spell-link arc (p,
q) is time-compatible. Similarly, the recharge-link arc (p, q) is
time-compatible if formula (10) is satisfed

T
e
i + DHir + DHrj ≤T

s
j, (10)

where DHir represents the deadheading time from the arrival
point of trip i to the recharge point r and DHrj denotes the
deadheading time from r to the departure point of trip j.

3.2.2. Energy Compatibility. Te energy consumption for
executing trip i is denoted by ei, and the EV energy left before
serving trip i is denoted by es

i . If trip-link arc(i, j) exists and is
selected in a spell, then es

j � es
i − ei − DEij, where DEij rep-

resents the deadhead energy consumption from the arrival
point of trip i to the departure point of trip j.

Te energy consumption for executing spell p is denoted
by Ep, and the EV energy left before serving spell p is Es

p. Te
energy left after serving spell p is noted as Ee

p, which is equal
to Es

p − Ep. If a spell-link arc (p, q) exists and is selected, then
Es

q � Es
p − Ep − DEpq, where DEpq signifes the deadhead

energy consumption from the arrival point of the last trip in
p to the departure point of the frst trip in q.

We set a threshold, Emin, to avoid EV breakdown during
the spell (trip) serving. For two consecutive trips, i and j, in
a spell, only those that are time-compatible can be evaluated
for energy compatibility. Te trip-link arc (i, j) exists if the
following formula (11) is satisfed.

e
e
i − DEij − ej − DEjr ≥Emin i.e., e

e
j − DEjr ≥Emin , (11)

where DEjr is the deadhead energy consumption from the
arrival point of trip j to r.

Similarly, for two spells, p and q, we can only discuss their
energy compatibility if they are time-compatible. Let us
assume that p and q are time-compatible for a trip link. Te
spell-link arc (p, q) exists if they are energy-compatible,
which defned as

D D

trip 1 trip 2 trip m trip m+1 trip n

trip 1′ trip 2′ trip m′ trip m′+1 trip n′

shif
break

pull out/in

Figure 5: Te shift-node-based network fow for the EVCSP.
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E
e
p − DEpq − Eq − DEqr ≥Emin i.e., E

e
q − DEqr ≥Emin ,

(12)

where DEqr is the deadhead energy consumption from the
arrival point of the last trip in q to r. Assume that spells p and
q are time-compatible for recharge link. If formula (12) is not
fulflled but conforms to formula (13) represented below,
a recharge-link arc (p, q) exists

E
e
p − DEpr ≥Emin, (13)

where DEqr signifes the deadhead energy consumption from
the arrival point of the last trip in q to r. In all cases, the EV
can reach the recharging station before reaching Emin.

3.3. Recharging and Discharging of EV Batteries. Given the
limitation of EV battery capacity, it is crucial to develop
efective recharging strategies and monitor the EV’s energy
consumption.

3.3.1. Energy Consumption of an EV. We calculate the en-
ergy consumption during the trip and deadhead while
considering the states of prevailing driving and standstill.

Urban EVs in the bus market are generally required to
operate at a relatively stable speed. Fontana [64] demon-
strates that the net energy consumption linked to acceler-
ation is almost zero along a specifc path under certain
simplifying assumptions. In calculating the prevailing
driving energy consumption, we applied the following
formula proposed by Fontana [64], which accounts for
various factors, including air density, driving speed, air
conditioning usage, and complex road surfaces.

f(v) �
1
η

ρCωAfv
2

2
+ μmg cos α + mg sin α⎛⎝ ⎞⎠ +

Pacc

v
.

(14)

Te formula consistently measures the energy con-
sumption per unit distance under the driving speed, v(m/s).
Within the formula, the symbol η represents the efciency
parameter, ρ (kg/m3) is the air density, Cω is the EV’s drag
coefcient, Af (m2) refers to the frontal area, μ represents the
friction coefcient, m (kg) is the EV’s mass, g(m/s2) is the
gravitational constant, and α(radians) measures the road
angle, whereas Pacc(W) represents the energy consumption
used up by accessory loads, including air conditioners,
headlights, and EV management systems.

Proposition 12. EV’s per-distance energy consumption f(v)

is minimized if v �
�����������
ηPacc/ρCωAf

3


.

Proof. Letf′(v) be the frst derivative off(v) with respect to
v. f′(v) � ρCωAfv/η − Pacc/v2. If f′(v) � 0, (ρCωAf/η)v−

Pacc/v2 � 0, v �
�����������
ηPacc/ρCωAf

3


. If v ∈ 0,
�����������
ηPacc/ρCωAf

3


,

f′(v)< 0, then f(v) steadily decreases in the interval. If

v ∈ (
�����������
ηPacc/ρCωAf

3


, +∞), f′(v)> 0, then f(v) steadily

increasing. Terefore, f(v) is minimized at v ������������
ηPacc/ρCωAf

3


.
Tang et al. [70] set the parameters as ρ� 1.2 kg/m3,

Cω � 0.29, Af � 2.27m2, η� 0.9, g � 9.8m/s2, α� 0, and
μ� 0.012. Te air conditioner consumes 7000W of power
Pacc if turned on and 2000W otherwise. Let mEV denote the
weight of the EV, cp denote the passenger capacity, and wavg
denote the average adult weight.Ten, the total weight of the
EV under the crew-only scenario is m � mEV + wavg,
whereas the total weight under the fully loaded scenario is
m � mEV + cpwavg. Proposition 12 shows that in the absence
of air conditioning, the function for the EV’s energy con-
sumption per unit distance f(v) is minimized when
v � 13.16m/s ≈ 47km/h, while in the presence of air con-
ditioning, it is minimized when v � 19.98m/s ≈ 72km/h.
However, in practice, the speed of EVs is often limited to
25∼40 km/h for safety reasons. Terefore, we set
v � 40km/h.

Te energy consumption of an EV during a standstill is
approximately equal to Pacc.

LetDi andDij be the fxed distances traveled for trip i and
deadhead from i to j (i, j ∈ T∪D∪R), respectively. Te
energy consumption ei and eij for trip i and deadhead from i
to j, respectively, can be calculated as follows:

ei � Pacc × Ti −
Di

v
  + f(v)m�mEV+cpwavg

× Di,

eij � Pacc × DHij −
Dij

v
  + f(v)m�mEV+wavg

× Dij,

(15)

where Ti is the trip time taken for trip i. □

3.3.2. Recharging Strategy. We employ the current main-
stream recharge strategy, which involves slow recharging at
night and fast recharging during daily operations. Prior to
initiating daily operations, the EVs undergo full charging.

For the recharge-link arc(p, q) to exist, spells p and q
must be time-compatible for the recharge link, Ee

p − DEpq −

Eq − DEqr <Emin and Ee
p − DEpr ≥Emin, which taking into

consideration the EV energy left after serving spell p (Ee
p), the

energy consumption of spell q (Eq), and the deadhead energy
consumptions (DEpq, DEqr, and DEpr).

Assuming the EV battery capacity is denoted as Efull
(kW), the fast-recharge power as Pf (kW), and the recharge
time as Trt (min). Let the updated EV energy after recharging
at recharge point r be denoted as E, which is given by

E �
E

e
p − DEpr + Pf · T

rt
, if E

e
p − DEpr + Pf · T

rt ≤Efull,

Efull, else.

⎧⎨

⎩

(16)

Tus, the EV energy left before serving spell q is
Es

q � E − DErq.
Te determination of whether the connection arc be-

tween spells complies with the energy constraint cannot be
made in advance. It can only be ascertained once the EV’s
completed spells are known during the scheduling process.
Tis will indicate whether the EV can execute subsequent
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spells using either the spell-link arc or the recharge-link arc.
If the remaining energy of an EV cannot support the exe-
cution of a spell during the scheduling process, then the spell
will not be considered for selection. However, the spell may
still be selected if the EV goes to the recharge point for
recharging, and the recharge link between the spell and the
last spell currently selected by the EV is compatible in terms
of time.

4. Integrated Model for Electric Vehicle and
Crew Scheduling

As described in Section 3, the EVCSP involves identifying
the optimal sequence of feasible nodes connected by directed
arcs to cover all tasks at minimum cost. Each path must
originate from and terminate at a node within the depot set
D. Te sequence of intermediate nodes must be feasible and
connected by directed arcs. Table 2 lists the symbols used in
EVCSPM, where di, dj ∈ D, wi, wj ∈W, and ti ∈ T.

Te EVCSPM is formulated below based on the ex-
pressions and symbols.

(EVCSPM) min 

di,wj( ∈PO

Cdi,wj
xdi,wj

+ 

wi,wj( ∈SL∪RL∪DR

Cwi,wj
xwi,wj

+ 

wi,dj( ∈PI

Cwi,dj
xwi,dj

+ 
s∈S

Csys, (17)

s.t 

wj: wi,wj( ∈SL∪RL∪DR

xwi,wj
+ 

dj: wi,dj( ∈PI

xwi,dj
� 

s∈S
λwi

s ys, ∀wi ∈W,
(18)



wj: wj,wi( ∈SL∪RL∪DR

xwj,wi
+ 

dj: dj,wi( ∈PO

xdj,wi
� 

s∈S
λwi

s ys, ∀wi ∈W,
(19)


s∈S

λwi

s ys ≤ 1, ∀wi ∈W, (20)



wj: di,wj( ∈PO

xdi,wj
− 

wk: wk,di( )∈PI

xwk,di
� 0, ∀di ∈ D,

(21)


s∈S

c
ti

s ys � 1, ∀ti ∈ T, (22)

E
e
wj

� 

di: di,wj( ∈PO

Efull − DEdi,wj
− Ej  · xdi,wj

+ 

wi: wi,wj( ∈SL

E
e
wi

− DEwi,wj
− Ej  · xwi,wj

+ 

wi: wi,wj( ∈RL

min Efull − DEr,wj
− Ej, E

e
wi

− DEwi,r
+ Pf · T

rt
− DEr,wj

− Ej  · xwi,wj

+ 

wi: wi,wj( ∈DR

E
e
wi

− DEwi,dk
− DEdk,wi

− Ej  · xwi,wj
, ∀wj ∈W, dk ∈ D,

(23)

E
e
wi
≥Emin + DEwi,r

, if 

dj: dj,wi( ∈PO

xdj,wi
+ 

wj: wj,wi( ∈SL∪RL∪DR

xwj,wi
> 0, ∀wi ∈W,

(24)

ys ∈ 0, 1{ }, ∀s ∈ S, (25)

xwi,wj
∈ 0, 1{ }, ∀ wi, wj  ∈ SL∪RL∪DR, (26)

xdi,wj
∈ 0, 1{ }, ∀ di, wj  ∈ PO, (27)

xwi,dj
∈ 0, 1{ }, ∀ wi, dj  ∈ PI. (28)
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Te decision variable xij takes a value of 1 if the arc (i, j) is
selected. Similarly, ys takes a value of 1 if the shift s is selected
and 0 otherwise. Formula (17) aims to minimize the total
cost comprising operating and wage costs. Tis is achieved
through the cost defnitions in formulas (6)–(9). Formulas
(18)–(20) represent the conservation of fows, which ensures

that each selected spell node is covered by only one EV.
Formula (21) represents the conservation of depots, which
ensures an equal feet size to pull-out from and pull-in to
a depot. Formula (22) represents the constraint of trips,
which ensures that each trip is covered by only one crew.
Formula (23) represents the energy state transition of EVs.
Formula (24) represents the remaining energy constraint of
EVs, which must always be kept above Emin. Finally, for-
mulas (25)–(28) represent the value constraints of the de-
cision variables. We have assessed the feasibility of the
EVCSPM by solving an instance for which the optimal
schedule is known in advance, using the GUROBI solver.

Research on EVCSP is extremely limited. Our model’s
complexity is compared to the only two EVCSP models,
EVCSPM-1 [7] and EVCSPM-2 [34], using two indicators:
the number of variables and constraints. Table 3 displays the
results, where B represents the set of blocks and S represents
the set of shifts, |D| � p, |W| � q, |S| � m, |T| � n, |B| � r.

In Table 3, the inequality n2 +m+ 4n< 2pq+ q2 +
m<< r+m holds. Te EVCSPM-2 has the fewest decision
variables compared to other models, while the EVCSPM
model maintains a reasonable number of variables. In
practice, the feasibility of spells is restricted by various labor
regulations. Consequently, 5q+ p+ n<< n2 + 2n< 2n+ n2.
As a result, the EVCSPM imposes the fewest constraints.
Overall, the EVCSPM demonstrates a low level of
complexity.

Efcient resource utilization is the main objective of
scheduling.

Statement 13. To limit the feet and crew size, substitute
formula (17) with (29), where Cveh and Ccrew refer to the
fxed cost of EV and crew, respectively, while α, β ∈ (0, +∞)

represent adjustment parameters.



di,wj( ∈PO

Cdi,wj
+ αCveh xdi,wj

+ 

wi,wj( ∈SL∪RL∪DR

Cwi,wj
xwi,wj

+ 

wi,dj( ∈PI

Cwi,dj
xwi,dj

+ 
s∈S

Cs + βCcrew( ys. (29)

Choosing a pull-out arc represents selecting an empty
EV that must be utilized. Consequently, if a pull-out arc is
chosen as part of the path, a signifcant enough cost of
αCveh is added as a penalty that could reduce the feet size.
Similarly, selecting a shift s requires a crew to be available.

Terefore, if a shift s is chosen as part of the path, a cost of
βCcrew is added as a penalty that could reduce the
crew size.

Typically, an EV requires depart from and return to the
same depot.

Table 2: Sets, parameters, and variables of the EVCSPM.

Sets
T Set of timetabled trips
S Set of shifts
W Set of spells
D Set of depots
PO Set of pull-out arcs
PI Set of pull-in arcs
SL Set of spell-link arc
RL Set of recharge-link arc
DR Set of depot-return arcs
A Set of arcs A � PO∪PI∪ SL∪RL∪DR
Parameters
Cs Cost of the shift s
Cdi,wj

Arc cost from di towj

Cwi,wj
Arc cost from wi to wj

Cwi,dj
Arc cost from wi to dj

Trt Recharge time
Pf Fast-recharge power
Emin Energy threshold
Ej Energy consumption of wj

Edi,wj
Energy consumption from di to wj

Efull Total EV battery capacity
DEwi,wj

Deadhead energy consumption from wi to wj

DEr,wj
Deadhead energy consumption from r to wj

DEwi,r
Deadhead energy consumption from wi to r

Variables
xwi.wj

�1, if the arc from wi to wj is selected; �0, otherwise
xdi.wj

�1, if the arc from di to wj is selected; �0, otherwise
xwi.dj

�1, if the arc from wi to dj is selected; �0, otherwise
ys �1, if shift s is selected; �0, otherwise
Ee

wi
EV energy left after serving wi

Others
λwi

s �1, if shift s contains spell wi; �0, otherwise
c

ti
s �1, if shift s contains trip ti; �0, otherwise

Table 3: Te number of variables and constraints for the EVCSP
models.

Models Variables Constraints
EVCSPM q2 + 2pq+m 5q+ p+ n
EVCSPM-1 r+m n2 + 2n
EVCSPM-2 n2 +m+ 4n 2n2 + 13n
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Statement 14. Assuming that each path must cover a max-
imum of two spells (constrained by formula (30)), the

subsequent formula (31) ensures that the path returns to the
home depot.



wl: wl,wi( )∈SL∪RL∪DR

xwl,wi
� 

wk: wj,wk( ∈SL∪RL∪DR

xwj,wk
� 0, ∀xwi,wj

� 1,
(30)

xdk,wi
− xwj,dk

� 0,∀xwi,wj
� 1, dk ∈ D. (31)

5. Solution Method

Tis section proposes a hybrid approach for the EVCSP that
integrates both the heuristic method and ILP. Te funda-
mental approach is compiling the potential shifts using
a matching-based heuristic and subsequently solving EVCSP
iteratively with an ILP solver named GUROBI.

Te heuristic method, employing a matching-based
approach, generates shift set to comply with a range of la-
bor regulations and restrains the crew size through a set of
“soft constraints” represented as flter conditions. Te
heuristic methodology comprises three steps: tier-
partitioning, spell-constructing, and shift-generating. Al-
gorithm 1 of the tier-partitioning step splits the timetabled
trips T� {1, 2, . . ., n} into several nonoverlapping in-
compatible sets labeled as S0, S1, . . ., SK, with T arranged in
ascending order by departure time. Here, Si � {j|jϵT &
tier(j)� i}, with tier(j) representing the tier number for trip j,
i� 0, 1, . . ., K.

We construct the spells with partitioned trip tiers S0, S1,
. . ., SK. However, generating all feasible spells can be chal-
lenging when solving realistic EVCSP. Tus, to address this
issue, we use Algorithm 2 to fnd the spells led by each trip of
each tier in turn. Specifcally, the algorithm applies the
following restrictions: (1) the spell comprises l pieces (spell_l)
where the linking arcs are the edges of the maximum car-
dinality matching between adjacent tiers, p≤ l≤ q, and (2)
the feasible length of the spell is limited to [len_Min,
len_Max], as specifed in labor regulations. Here, spell_S
represents the set of spells, and len_spell corresponds to the
spell’s length, defned as the time interval between the end
time of the preceding trip and the start time of the initial trip
within the shift.

Te shift-generating Algorithm 3 generates shift set
referred to as PS.Considering labor regulations, Algorithm 3
restraints the minimum and maximum break and work
times. Here, break_MinStr and break_MaxStr denote the
minimum and maximum break times, respectively. Simi-
larly, work_Min and work_Max represent the minimum and
maximumwork times, where the work duration is calculated
as the diference between the shift’s time span and the break
time. sTi and eTi signify the start and end times of spelli, and
the twij indicates the work time of a straight shift (i, j).

Each straight shift generated by Algorithm 3 consists of
two spells. PS is constructed to include all tripper shifts to
ensure that they cover all timetabled trips. Each tripper shift

in PS only comprises one spell. Te schedule-producing
Algorithm 4 updates the optimal integrated schedule by
circularly solving the EVCSP subproblem, where F repre-
sents the iteration threshold, #shift represents the number of
shifts, and EVCSP_shift_S′ is the EVCSP with the potential
shifts set shift_S′.

Te framework of the hybrid approach is illustrated in
Figure 6, where T is the timetabled trips.

6. Experiments and Results

A series of experiments are conducted based on a case study
of bus route 2 in Xiaogan, Hubei, China (XGR2), which
operates pure EVs. Te XGR2 route spans 12.7 km and has
30 stops, servicing 270 trips daily. Te EVs maintain
a consistent departure interval of 5∼8min throughout the
day. Te EVs used are of the pure EV type XML6105, with
a weight of 11,000 kg, rated capacity for 40 passengers, and
battery capacity of 140 kWh. Te average weight of an adult
passenger is 62 kg. Te fast- and slow-recharge power is
160 kW and 60 kW, respectively. We obtain eight variant
instances (T1∼T8) from XGR2 to test our method and
model. Te distribution of timetabled trips for each instance
is illustrated in Figure 7.

In Section 6.1, we implement orthogonal experiments
to determine the optimal parameter settings for our hy-
brid heuristic method and EVCSPM. In Section 6.2, we
compare our method with GUROBI via comparative
experiments. Subsequently, we test the performance of
EVCSPM versus the sequential model in Section 6.3.
Lastly, we conduct a sensitivity analysis on the parameters
in Section 6.4.

6.1. Experiments for Optimal Parameter Settings. Table 4
displays the guidelines for work assignments for various shift
types in the test instances. #spell indicates the number of
spells. A 1-spell shift unequivocally consists of only one spell,
whereas a 2-spell shift includes two consecutive spellswith an
intervening break.

We assigned a cost of 1,000 for the utilization of each EV
or crew, denoted as Cveh �Ccrew � 1,000. Additionally, there
is a small variable cost of 1 for every minute an EV operates
outside the depot and a cost of 0.1 for each minute, the crew
works. Te fxed recharge cost, Cr, is set at 15, recharge time
Trt at 30min, and energy threshold Emin at 10 kW. EVCSPM
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relies on four crucial parameters: coefcients α and β in
equation (29), and p and q in Algorithm 2 line 10.We use the
Taguchi orthogonal method with orthogonal table L9(34) to
evaluate the most appropriate parameter settings. Te se-
lected levels are shown in Table 5. We ran tests on T1 and T2
to evaluate the performance. Table 6 lists the test results, with
cost representing the total operating cost of the EV and the
crew working time.

Based on Table 6, the range analysis results are shown in
Table 7, where Rf, Rcr, Rfcr, and Rc are the extremum dif-
ferences (EDs) corresponding to the feet size, crew size, feet
and crew size, and cost, respectively.

Table 7 indicates the minimum feet sizes for T1 in terms
of α, β, p, and q are f1α � f2α � f3α � 19.3, f1β � f2β �

f3β � 19.33, f1p � f2p � 19, and f1q � f2q � 19,

(1) T⟵ {1,2,3, . . ., n}, {tier(1), tier(2), . . ., tier(n)}⟵ {0, 0, . . ., 0), i⟵ 1
(2) while i< n+ 1 do
(3) j⟵ i+ 1
(4) while j< n+ 1 do
(5) if iΘj or iΘj then tier(j)� tier(i) + 1
(6) j⟵ j+ 1
(7) end while
(8) i� i+ 1
(9) end while
(10) return {tier(1), tier(2), . . ., tier(n)}

ALGORITHM 1: Tier-partitioning.

(1) S0, S1, . . ., SK, spell S⟵∅, t⟵ 0, l⟵ 0
(2) while t<K do
(3) maximum cardinality matching for St and St+1
(4) t⟵ t+ 1
(5) end while
(6) t⟵ 0
(7) while t<K do
(8) for each jϵSt do
(9) select the matched edges to construct all executable spells led by j
(10) if len_Min≤ len_spell≤ len_Max && p≤ l≤ q then spell_S⟵ spell_S∪ {spell}
(11) end for
(12) t� t+ 1
(13) end while
(14) return spell_S

ALGORITHM 2: Spell-constructing.

(1) spell S, nS⟵ |spell S|, PS⟵∅, i⟵ 1
(2) while i< nS do
(3) j⟵ i+ 1
(4) while j< nS+ 1 do
(5) tij⟵ sTj − eTi

(6) if break_MinStr≤ tij≤ break_MaxStr, work_Min≤ twij≤work_Max, & ValidStraight (i, j)� �TRUE
(7) then PS⟵PS∪Straight (i, j)
(8) j⟵ j+ 1
(9) end while
(10) end while
(11) return PS

ALGORITHM 3: Shift-generating.
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(1) PS, i⟵ 1, F, n, SC⟵∅
(2) while i< F do
(3) call GUROBI to fnd a minimal #shift crew schedule shift_S for the CSP with PS as the potential shifts
(4) randomly selecting n shifts from PS and incorporating them into shift_S to create shift S′

(5) call GUROBI to fnd an integrated schedule SC′ for the EVCSP shift S′

(6) if fit(SC) > fit(SC′)

(7) then SC⟵ SC′

(8) aim at the blocks in SC′, construct a new shift set to extend to PS
(9) i⟵ i+ 1
(10) end while
(11) return SC

ALGORITHM 4: Schedule-producing.

Potential shifts compiling
--matching based heuristic

Schedule-producing

Trip-partitioning

Spell-construcing

Shift-generating

Algorithm 1
--partition T by trip incompatibility

Algorithm 2
--construct spells by matching

Algorithm 3
--generate shifts with labor regulations

Algorithm 4--circularly solve the EVCSP sub-problem

Figure 6: Te framework of the hybrid heuristic.
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Figure 7: Distribution of service trips over the day for instances T1∼T8. #service trips are the number of simultaneous service trips.

Table 4: Work rules for 1-spell and 2-spell shifts.

1-spell 2-spell
Minimum Maximum Minimum Maximum

#spell 1 1 2 2
Shift length 45 270 45 540
Spell 45 270 45 270
Break time 0 0 30 60
Work time 45 270 45 450
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respectively, and the minimum feet sizes for T2 are
f2α � 19.7, f2β � 19.7, f1p � 18.3, and f2q � f3q � 19.7,
respectively. Te optimal combination for feet size is

α2β2p1q2.Te EDs hold Rfp ≥Rfq >Rfα � Rfβ. Accordingly,
p has the most signifcant efect on feet size. Similarly, the
optimal combination for crew size is α1β3p1 (or p2) q3. Te

Table 5: Tree levels for each of the three factors.

Levels α β p q
1 1 1 1 4
2 2 2 2 5
3 3 3 3 6

Table 6: Results of the orthogonal test proposed by the hybrid heuristic method on solving EVCSPM for optimal parameter settings
(instances: T1∼T2).

No. α β p q
Fleet size Crew size Fleet + crew

size Cost

T1 T2 T1 T2 T1 T2 T1 T2
1 1 1 1 1 19 19 40 38 59 57 4736 4858
2 1 2 2 2 19 18 39 37 58 55 4281 4213
3 1 3 3 3 20 23 40 42 60 65 4437 4146
4 2 1 2 3 19 18 39 37 58 55 4251 4231
5 2 2 3 1 20 23 43 45 63 68 4714 4514
6 2 3 1 2 19 18 39 37 58 55 4281 4213
7 3 1 3 2 20 23 41 42 61 65 4200 4128
8 3 2 1 3 19 18 39 37 58 55 4251 4231
9 3 3 2 1 19 19 40 38 59 57 4736 4858

Table 7: Results of the range analysis for optimal parameter settings (instances: T1∼T2).

Item ED
T1 T2

α β p q α β p q

Fleet size

f1 58 58 57 58 60 60 55 61
f2 58 58 57 58 59 59 59 59
f3 58 58 60 58 60 60 69 59
f1 19.3 19.3 19 19 20 20 18.3 20.3
f2 19.3 19.3 19 19 19.7 19.7 19.7 19.7
f3 19.3 19.3 20 20 20 20 23 19.7
Rf 0 0 1 1 0.3 0.3 4.7 0.6

Crew size

cr1 119 120 118 123 117 117 112 121
cr2 121 121 118 119 119 119 112 116
cr3 120 119 124 118 117 117 129 116
cr1 39.7 40 39.3 41 39 39 37.3 40.3
cr2 40.3 40.3 39.3 39.7 39.7 39.7 37.3 38.7
cr3 40 39.7 41.3 39.3 39 39 43 38.7
Rcr 0.6 0.6 2 1.7 0.7 0.7 5.7 1.6

Fleet + crew size

fcr1 177 178 175 181 177 177 167 182
fcr2 179 179 175 177 178 178 171 175
fcr3 178 177 184 176 177 177 198 175
fcr1 59 59.3 58.3 60.3 59 59 55.7 60.7
fcr2 59.7 59.7 58.3 59 59.3 59.3 57 58.3
fcr3 59.3 59 61.3 58.7 59 59 66 58.3
Rfcr 0.7 0.7 3 1.6 0.3 0.3 10.3 2.4

Cost

c1 13454 13187 13268 14186 13217 13217 13302 14230
c2 13246 13246 13268 12762 12958 12958 13302 12554
c3 13187 14354 13351 12939 13217 13217 12788 12608
c1 4484.7 4395.7 4422.7 4728.7 4405.7 4405.7 4434 4743.3
c2 4415.3 4415.3 4422.7 4254 4319.3 4319.3 4434 4184.7
c3 4395.7 4484.7 4450.3 4313 4405.7 4405.7 4262.7 4202.7
Rc 89 89 7.6 474.7 86.4 86.4 171.3 558.6
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parameters afect crew size in order: (main) p⟶ q⟶ α(β)
(minor). Te optimal combination for feet + crew size is
α3β1p1q3. Te parameters afect the feet + crew size in order:
(main) p⟶ q⟶ α(β) (minor). Te optimal combination
for the cost of T1 is α3β1p1 (or p2) q2, while that of T2 is
α2β2p3q2. Te parameters afect the cost in order: (main)
q⟶ p⟶ α (β) (minor). Prioritizing the minimization of
feet + crew size, it is evident that p1(or p2) q3 is the most
competitive option. α and β have a marginal infuence on all
four items. Tus, we select α2 and β2 based on their higher
frequency of occurrence.Te optimal factor level is α2β2p2q3,
which implies α� 2, β� 2, p� 2, and q� 6.

6.2. Experiments on Hybrid Heuristic Method and GUROBI.
Tis section aims to verify the efectiveness of the proposed
heuristic method by comparing it to GUROBI using
problems T1∼T8. GUROBI solves the EVCSP with PS
generated by Algorithms 1–3 as the potential shifts. Te
results are presented in Table 8, where #recharge refers to the
number of recharges and the relative percentage deviations
(RPDs) over the schedule produced by GUROBI are
provided.

Table 8 shows that GUROBI cannot solve problems
T1∼T6. Te sizes of the feet and crew and the number of
recharges generated by the hybrid heuristic method for T7
and T8 are the same as those produced by GUROBI. Te
average RPD in terms of cost for T7 and T8 is only 0.3%, but
the average time taken by the heuristic method is only one-
sixth of GUROBI’s.Terefore, we employ this method, as the
results produced are sufciently good and efcient to
evaluate EVCSPM.

6.3. Experiments on EVCSPM and Two-Stage Sequential
Model. Te section compares the proposed EVCSPM with
the two-stage sequential model (TSM). TSM comprises the
EVSP model, followed by the CSP model. We formulate the
EVSP model by incorporating EV energy state transfer and
energy threshold constraints into the traditional VSP model
[71]. We adopt the classic set covering model [65] for crew
scheduling.

Ideally, the same algorithm should be used to evaluate
the performance of both models, but our heuristic method is
tailored to EVCSPM and not easily adaptable to TSM. To
ensure fairness to TSM, we solve it by sequentially pro-
cessing the EVSP and CSPmodels with GUROBI. Moreover,
because of the NP-hard property of EVCSPM and the
limitations imposed by GUROBI’s problem-solving capa-
bilities, the energy constraint of EVSP is disregarded during
the scheduling process for TSM. As a result, TSM can only
provide a lower bound for EVSP’s optimal EV schedule. We
enumerate all feasible spells with the generated EV schedule
and then generate potential shifts for the succeeding CSP
model using Algorithm 3.

Te comparison of schedules for problems T1∼T8 is
conducted using EVCSPM with the heuristic approach and
TSMwith GUROBI. Table 9 presents the relevant data on the
number of tiers for timetabled trips and the resulting spells
and shifts for both models. Specifcally, #tier indicates the

count of tiers, while #spell_i (i� 2, 3, 4, 5, 6) signifes the
count of spell_i.Te counts of spells (#spell) and shifts (#shift)
overall are also included in the table. Table 10 presents
additional details on the resulting schedules for bothmodels.
Te RPDs, computed over the schedule proposed by TSM,
are also included.

Table 9 shows that EVCSPM produces an average of
2322.75 spells and 132599.75 shifts, while TSM generates
an average of 654.5 spells and 13696.63 shifts. Te po-
tential shifts generated by TSM are only one-tenth of
those generated by EVCSPM. Tis diference may be
explained by the obtained EV schedule limiting the
construction of TSM’s potential shifts. Te results in
Table 10 indicate that EVCSPM and TSM exhibit similar
performance in terms of the number of recharges. Both
models propose schedules with the same feet size for
problems T1∼T2 and T4∼T8. However, for T3, the
schedule obtained by EVCSPM has a feet size of three
greater than that of TSM. Overall, TSM outperforms
EVCSPM in terms of feet size. For crew size, both models
propose schedules with the same crew size for problems
T7-T8. However, for problems T1–T6, EVCSPM out-
performs TSM regarding crew size, with RPDs ranging
from −2.5% to −5.1%. Regarding feet + crew size, the
schedule obtained by EVCSPM surpasses TSM only for
T3, with a positive RPD of 3.6%, while the average RPD is
−1.3%. EVCSPM also outperforms TSM in terms of
feet + crew size. For cost, EVCSPM outperforms TSM in
terms of cost only for T6, with a positive RPD of 3.4%.
However, the average RPD for cost is −8.7%. Finally, the
average elapsed time for solving EVCSPM is 96.78s, while
TSM requires 2371.75s, even without considering the
energy constraint. Terefore, EVCSPM outperforms TSM
regarding crew size, feet + crew size, cost, and
elapsed time.

To gain a deeper understanding of the performance of
EVCSPM and TSM, we illustrate the schedules pertaining
to feet size, crew size, feet + crew size, and cost in
Figure 8.

Te results illustrated in Figure 8 indicate EVCSPM’s
superior performance across the three subgraphs, except
subgraph (a), as evidenced by the positioning of the
EVCSPM polylines below corresponding TSM polylines. It
has been confrmed that, in terms of crew size, feet + crew
size, and cost, EVCSPM outperforms TSM. Given the pri-
ority of minimizing feet and crew size, we assert that
EVCSPM is generally superior to TSM in EV and crew
scheduling.

6.4. Sensitivity Analysis. Tis section conducts a sensitivity
analysis of EVCSPM by examining the impact of critical
parameters on feet size, crew size, number of EV recharges,
and cost. Specifcally, we investigate the efects of battery
capacity Efull, recharging time, and recharging power in
equation (16) on these performances while considering the
infuence of coefcients α and β in equation (29). Te aim is
to provide a comprehensive understanding of the sensitivity
of the EVCSPM model.

16 Journal of Advanced Transportation



Table 8: Experimental results of EVCSPM produced by GUROBI and the hybrid heuristic method (T1∼T8).

Problem #trip Method
Item

Fleet size Crew size Fleet + crew size Cost #recharge Elapse time
(s)

T1 279
GUROBI — — — — — —
Heuristic 19 39 58 4308 5 81.33
RPD — — — — — —

T2 273
GUROBI — — — — — —
Heuristic 18 37 55 4143 4 233.51
RPD — — — — — —

T3 279
GUROBI — — — — — —
Heuristic 21 37 58 4422.3 5 157.93
RPD — — — — — —

T4 280
GUROBI — — — — — —
Heuristic 18 37 55 4272.5 5 77.37
RPD — — — — — —

T5 270
GUROBI — — — — — —
Heuristic 18 37 55 4133.5 5 75.2
RPD — — — — — —

T6 280
GUROBI — — — — — —
Heuristic 19 38 57 4376.7 6 102.51
RPD — — — — — —

T7 60
GUROBI 17 17 34 666.4 0 1520.9
Heuristic 17 17 34 681.3 0 21.7
RPD 0% 0% 0% 2.2% 0% —

T8 60
GUROBI 17 17 34 536 0 1247.1
Heuristic 17 17 34 552.7 0 24.67
RPD 0% 0% 0% 3.1% 0% —

Avg. (T7∼T8) 222.63
GUROBI 17 17 34 601.2 0 1384
Heuristic 17 17 34 617 0 23.19
RPD 0% 0% 0% 2.6% 0% —

Table 9: Spells and potential shifts of EVCSPM and two-stage sequential models.

Problem Model
Item

#tier #spell #spell_2 #spell_3 #spell_4 #spell_5 #spell_6 #shift

T1 EVCSPM 19 2457 357 474 630 768 228 117979
TSM — 820 260 241 211 99 9 17185

T2 EVCSPM 19 4698 505 697 928 1136 1432 307850
TSM — 826 255 237 212 114 8 17215

T3 EVCSPM 19 2813 482 608 771 779 173 171998
TSM — 882 261 241 219 128 33 20028

T4 EVCSPM 19 2402 356 460 605 705 276 118834
TSM — 885 262 244 222 133 24 20084

T5 EVCSPM 20 2822 361 512 732 962 255 157576
TSM — 821 252 234 211 110 14 16990

T6 EVCSPM 19 3078 377 521 750 1007 423 186162
TSM — 841 260 240 211 109 21 17888

T7 EVCSPM 4 158 76 70 12 0 0 179
TSM — 79 43 26 10 0 0 89

T8 EVCSPM 4 154 75 65 13 1 0 220
TSM — 82 43 26 12 1 0 94

Avg. EVCSPM 15.38 2322.75 323.63 425.88 555.13 669.75 348.38 132599.75
TSM — 654.5 204.5 186.13 163.5 86.75 13.63 13696.63
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Table 10: Schedules generated by EVCSPM and two-stage sequential models.

Problem Model
Item

Fleet size Crew size Fleet + crew size Cost #recharge Elapse time
(s)

T1
EVCSPM 19 39 58 4308 5 81.33
TSM 19 40 59 4638.3 5 55.7
RPD 0% −2.5% −1.7% −7.1% 0% —

T2
EVCSPM 18 37 55 4143 4 233.51
TSM 18 39 57 4469.7 4 3027.37
RPD 0% −5.1% −3.5% −7.3% 0% —

T3
EVCSPM 21 37 58 4422.3 5 157.93
TSM 18 38 56 4660.1 5 21.51
RPD 16.7% −2.6% 3.6% −5.1% 0% —

T4
EVCSPM 18 37 55 4272.5 5 77.37
TSM 18 39 57 4343.4 5 6859.42
RPD 0% −5.1% −3.5% −1.6% 0% —

T5
EVCSPM 18 37 55 4133.5 5 75.2
TSM 18 38 56 4358.7 5 82.31
RPD 0% −2.6% −1.8% −5.2% 0% —

T6
EVCSPM 19 38 57 4376.7 6 102.51
TSM 19 40 59 4233.9 6 8856.52
RPD 0% −5% −3.4% 3.4% 0% —

T7
EVCSPM 17 17 34 666.4 0 21.7
TSM 17 17 34 882.8 0 30.65
RPD 0% 0% 0% −24.5% 0% —

T8
EVCSPM 17 17 34 536 0 24.67
TSM 17 17 34 692 0 40.53
RPD 0% 0% 0% −22.5% 0% —

Avg. (T7∼T8)
EVCSPM 18.38 32.38 50.75 3357.3 0 96.78
TSM 18 33.5 51.5 3534.86 0 2371.75
RPD 2.1% −2.9% −1.3% −8.7% 0% —
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Figure 8: Continued.

18 Journal of Advanced Transportation



Te impact of coefcients α and β on EVCSPM regarding
feet size and crew size is determined by analyzing T7 with
various values of α and β in the [0, 0.06] range. Te result is
illustrated in Figure 9.

Figure 9 shows that the crew size declines as the value
of either α or β increases. Tis suggests that the feet size
required decreases as α or β becomes larger. When α is
held constant, the graph reveals a high absolute slope
value for the frst surface at β values between 0 and 0.02.
Tis denotes that alterations in β within the given interval
signifcantly infuence crew size. Conversely, for α values
between 0.02 and 0.06, the frst surface displays
smoothness, and its slope is zero when beta values exceed
0.03. Consequently, within the range of β≥ 0.02, any
changes made to β basically have no impact on the crew
size. Similarly, the second surface displays continuous
steepness between 0 and 0.04 for α and β, hence implying
that alterations made to both α and β in the given interval
have a considerable efect on feet size. However, when α,
β≥ 0.04, the graph takes a straight line form, indicating
that changes made to α and β are incapable of revising the
feet size. To sum up, α perturbs the feet size, while β
afects both the feet and crew sizes. Nonetheless, these
infuences vanish when α, β≥ 0.02, which results in the
feet size and crew size remaining at 17.

Te impact of battery capacity Efull on the feet size, crew
size, and the number of recharges is analyzed by conducting
tests on T1 under fast recharge with varying Efull
120∼160 kWh, as depicted in Figure 10.

Figure 10 shows that the crew size always remains at 39,
regardless of the increase in Efull. Te changes in Efull do not
impact the crew size. Moreover, when Efull ≥130 kWh, the
feet size remains constant at 19, while it slightly fuctuates
between 19 and 20 in the range of 120∼130 kWh. Te efect
of changes in Efull on the feet size decreases as the capacity
takes a smaller value (120∼130 kWh), and this efect com-
pletely vanishes when Efull≥ 130. Additionally, along with
the increase in Efull, #recharge shows a consistent downward
trend.Te larger the battery capacity, the fewer recharges are
required. #recharge has a relatively slow decline within ei-
ther 120∼135 or 140∼160 kWh. However, the number of

recharges sharply shrinks from 11 to 5 with an increase in
Efull from 135 to 140 kWh. Terefore, the changes in Efull
signifcantly infuence the number of recharges, especially
when 135≤ Efull≤ 140 kWh. Consequently, it can be inferred
that the number of recharges is susceptible to any changes in
Efull, while the feet size and crew size remain insensitive. It is
worth noting that EVCSP degenerates into VCSP when
Efull≥ 160 kWh.

Finally, we investigate the impact of recharge power and
recharge time on feet size, crew size, and the number of
recharges. To do so, we conduct tests on T1 with various
recharge times under Efull � 140 kWh, fast-recharge power of
160 kW, and slow-recharge power of 60 kW. We present the
fndings in Figures 11 and 12.

From Figures 11 and 12, the feet and crew sizes re-
main at 19 and 39, respectively, indicating that they are
not infuenced by recharging power and time. Te feet
size displays a decreasing pattern with an increase in
recharging time, irrespective of recharging power,
whereby fast-recharge power 160 kW or slow-recharge
power 60 kW is utilized. Te higher the recharging
power, the lower the feet size required. For fast-recharge
power 160 kW, the feet size fuctuates by a maximum of
two every 5 min, remaining at 9, 5, and 3 during the time
intervals [10, 15], [25, 35], and [50, 60], respectively.
Similarly, for slow-recharge power 60 kW, the feet size
varies by a maximum of two every 5min, remaining at 3
and 1 during the time intervals [50, 60] and [65, 80],
respectively. Under the same recharging time, the feet
size remains identical between the two recharging powers,
indicating its sensitivity to recharging time and in-
sensitivity to recharging power. However, the cost in-
creases proportionally with an increase in recharging
time, irrespective of the recharging power used, whether
60 or 160 kW. Te cost increases with an increase in
recharging power. For the same recharging time, the cost
diference between the two recharge powers is negligible,
particularly when 30 ≤Trt≤40min, indicating that the cost
is generally insensitive to recharging time. In conclusion,
changes in recharging power and time merely infuence
the frequency of EV recharges.
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Figure 8: Results produced by EVCSPM and TSM regarding feet size, crew size, feet + crew size, and cost.
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7. Conclusions

Tis paper proposes a complete integrated model, namely
EVCSPM, for the electric vehicle (EV) and crew scheduling.
EVCSPM is derived based on minimum cost fow. For
modeling, we integrate design nodes, directed arcs, cost and
constraints, and time and energy compatibility of nodes. A
case study has been reported on the real instance of bus route
2 of Xiaogan in Hubei, China (XGR2).

As for comparing EVCSPM with the two-stage se-
quential model (TSM), it involves the EV scheduling
model frst and then followed by the crew scheduling
model. Based on several problem instances derived from
XGR2, EVCSPM outperforms TSM regarding crew size,
feet + crew size, and cost. Te average RPDs of crew size,
feet + crew size, and cost are −2.9%, −1.3%, and −8.7%,
respectively. Additionally, the average solving time of
EVCSPM is approximately one-twentieth of TSM, even
the latter overlooks EV energy constraints. Te integrated
model outperforms the sequential model as it possesses
additional fexibility.

None of the integer linear programming (ILP) solvers
can be directly used to solve the integrated model since it is
the integer nonlinear caused by EV energy constraints and
NP-hard for even both sequential subproblems. Terefore,
this paper develops a hybrid method that comprises
a matching-based heuristic and GUROBI for EVCSPM. Our
method approaches the theoretical optimum, but the elapsed
time is reduced to 1/60 compared to the ILP solver. Future
work involves further exploration of the proposed method
and its ability to efciently overcome larger real-life
instances.
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