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Due to the rapid increase in the use of electric vehicles and instability in energy supply, the application of vehicle-to-grid (V2G)
technology has gained attention in the freight transportation sector. V2G has the potential to increase the efciency of power grid
and make additional profts by utilizing surplus power from electric vehicle batteries. Tis paper proposes an optimization model
for electric trucks (ETs) to provide operational decision-making support for the freight transportation sector. Te objective of the
model is to minimize the total net cost, which includes charging cost, discharging reward, and time penalties, while considering
changes in ET charging cost and the system marginal price. Furthermore, we conduct sensitivity analysis in the vehicle routing
problem with soft time windows using ETs in the V2G system.

1. Introduction

In recent years, global sales of electric vehicles (EV) have
rapidly increased, and several new start-up companies have
emerged to produce them. EVs are viewed as a way to reduce
greenhouse gas emissions that contribute to climate change,
and with fuctuating gas prices due to various factors, it is
reasonable to expect that fossil fuel-powered cars will
eventually be replaced by EVs in the near future. Te
widespread adoption of EVs can have a substantial efect on
the power system. Previous research has demonstrated that,
in the absence of efective battery management systems, EVs
could account for a signifcant portion of the overall demand
[1], exacerbate the diferences in demand between of-peak
and peak hours, and ultimately increase the need for
ramping, which may impact the stability and reliability of
power networks [2]. However, the implementation of time-
of-use (TOU) pricing policies or government incentive
policies can encourage EV owners to avoid charging their
vehicles during peak hours and instead utilize the batteries of
their EVs as energy storage to supply power to the grid
during those times. In this study, we consider that future

plug-in connectors for EVs will be equipped with com-
munication capabilities that allow for seamless communi-
cation among the battery management system, the power
grid, and charging stations located at diferent places like
homes and workplaces. Tis will enable the full potential of
vehicle-to-grid (V2G) technology to be realized. V2G
technology shows great potential as a means of utilizing EVs
to store surplus energy from renewable energy sources
(RESs) in their battery packs and then feed it back into the
grid during peak energy demand hours. Te utilization of
V2G could lead to a substantial improvement in the ef-
ciency of integrating renewable energy at a large scale.
Furthermore, V2G is currently in the process of developing
and approaching commercialization of ancillary services,
such as grid frequency and voltage regulation management
systems [3].

Compared to electric passenger cars, electric trucks (ETs)
can have a more signifcant impact on reducing greenhouse
gas emissions because trucks are generally larger and heavier
and travel longer distances, consuming more fuel and
emitting more greenhouse gases. Amazon, which is the top
logistics company in the United States, is launching a new
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delivery service that uses electric vans [4]. Additionally,
the United States Post Ofce (USPS) has declared that they
intend to replace 40% of newly acquired postal delivery
trucks with EVs [5], and they anticipate a further surge in
the use of EVs [6]. One of the challenges of using ETs is
that their batteries may not provide the same range as
diesel trucks [7]. However, advancements in battery
technology with respect to charging, capacity, and cost are
expected, which will make it economically viable to not
rely on gas [8]. Additionally, in contrast to passenger cars
which are often randomly parked and without a set
schedule, logistics company ETs are typically instructed to
park in predetermined zones for specifed durations. Tis
established operational pattern allows for accurate pre-
dictions of the amount and timing of power needed to
charge electric trucks, enabling the scheduling of dis-
charges in advance. By factoring peak and of-peak pe-
riods, the charging and discharging schedule can be
optimized, leading to economic advantages and enhanced
system stability. Additionally, it is worth noting that ETs
generally possess larger battery capacities compared to
electric passenger vehicles. As a result, the implementa-
tion of V2G technology is expected to be more efective
with ETs than with electric passenger vehicles.

Employing V2G technology to sell electricity stored in
the battery during peak hours and charging the battery
during of-peak hours can yield signifcant economic ben-
efts. However, logistics companies cannot rely solely on
batteries to generate power for sales; they must ensure that
sufcient power is supplied for transportation purposes as
well. Moreover, due to the slow charging and discharging
times, V2G application is limited by the requirement of
sufcient time for charging and supplying power to the grid.
In order to optimize the fnancial gains through V2G using
ETs, it is essential to identify the appropriate truck routes
that take into account both the locations of charging stations
and the amount of electricity that can be supplied to the grid.
In this study, we address the electric vehicle routing problem
(EVRP) to maximize profts obtained from V2G operations
with given delivery schedules.

Te vehicle routing problem (VRP) has been the subject
of extensive research since Dantzig and Ramser [9] frst
proposed the VRP as an extension of the traveling salesman
problem (TSP). Te VRP involves the assignment of geo-
graphically dispersed customers with associated demands to
vehicles, such that the demands are met and the total dis-
tance travelled by the feet is minimized. Each vehicle’s route
should begin and end at the depot. Tere are diferent types
of VRPs, depending on the specifc requirements and
constraints of the problem. Te common VRPs include the
capacitated VRP (CVRP), VRP with time windows
(VRPTW), multidepot VRP (MDVRP), and VRP with
pickup and delivery (VRPPD). In the CVRP, a group of
vehicles with restricted capacity is tasked with delivering
goods to a predetermined set of customers while minimizing
the overall distance travelled [9]. Building upon the CVRP,
the VRPTW incorporates a particular time window during
which each customer can be attended to [10]. Similarly, the
MDVRP considers the locations of the customers in relation

to their assigned depot from which the vehicles must deliver
goods [11]. Additionally, the vehicle routing problem with
pickup and delivery (VRPPD) takes into account the vehicles
that must collect goods from certain customers and trans-
port them to other customers [12]. Te main focus of our
study is on VRP with soft time window (VRPSTW) [13],
a variation of VRPTW that allows for the violation of time
window restrictions at a certain cost in penalties.

In contrast to using fossil-fueled vehicles in the con-
ventional VRP, EVRP faces certain limitations related to the
batteries [14]. In recent works, Erdem [15] presents a heu-
ristic strategy to create an efective decision-making
framework for routing electric trucks, handling the trans-
portation of milk with diverse qualities from producers.
Meanwhile, Amiri et al. [16] explore a biobjective pro-
gramming model focus on simultaneously minimizing
transportation expenses and greenhouse gas (GHG)
emissions. Tey consider a combination of ET and diesel
trucks. Teir computational results reveal that a slight
increase in transportation costs leads to a signifcant re-
duction in GHG emissions. While the majority of related
studies concentrate on identifying the best alternative for
a particular setting, the primary objective of our research is
to explore the economic advantages and disadvantages of
V2G technology when applied to ETs. We believe that the
fndings could ofer valuable insights for the formulation
of economic policies aimed at fostering the integration of
V2G technology in ETs.

In a recent comprehensive review paper, Sabet and
Farooq [17] conducted a thorough evaluation of multiple
adaptations and specifc instances of the green vehicle
routing problem (GVRP) aimed at resolving challenges
concerning charging, pickup, delivery, and energy usage.
Teir analysis highlighted the prevalence of metaheuristic
techniques in most studies, with limited attention given to
emerging machine learning approaches. Tey suggest a fu-
ture direction wherein not only machine learning but also
reinforcement learning [18], distributed systems, the In-
ternet of Vehicles (IoV), and innovative fuel technologies
play signifcant roles in advancing GVRP research. Fur-
thermore, to enhance the economic viability of electric
vehicles, a strategy involving the utilization of V2G tech-
nology can be examined as a means of generating additional
revenue [19]. Te key contributions of this research include
the following: (1) developing an optimization model for
EVRPs considering V2G operations; (2) providing opera-
tional decision-making support for the logistics feld in order
to increase revenue in a system of V2G; and (3) analyzing
changes in various environmental factors related to the V2G
technology. Te remaining part of the paper proceeds as
follows. In Section 2, we frst defne our problem with the
general assumptions. Next, a new mixed integer pro-
gramming (MIP) model is formulated with the objective of
minimizing total costs. Section 3 introduces charging and
discharging rate system in South Korea. Also, we perform
two simulations with the proposed model to explore the
possibilities of applying V2G technology to the logistics feld.
Lastly, Section 4 provides conclusions and future research
topics.
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2. Model Presentation

In this section, we present the electric vehicle routing
problem with soft time windows (EVRPSTW) in a system of
V2G. Te objective of the problem is to fnd a delivery route
such that a set of customers are served for a given time frame
and the total net cost including charging cost, discharging
reward, and time penalty is minimized. Te following as-
sumptions are considered:

(a) A single depot dispatches ETs to handle a set of
customers

(b) ETs can be charged and discharged only at depot in
time intervals

(c) ETs can wait for charging or discharging at the depot
when the charging cost is high or the discharging
reward is low

(d) ETs can be discharged as much as the remaining
battery level after the completion of scheduled de-
livery, and they are fully charged at the lowest
electricity rate for next-day delivery

(e) Hourly charging cost, hourly discharging reward,
and delivery information including customer loca-
tions and time windows are given in advance

(f) Customers can be served early or late with some
penalty cost

(g) Te energy consumption rate is constant
(h) Te charging and discharging rate are the same
(i) Each ET has a limited battery capacity and the time

required to fully charge the battery is the same

Considering a time frame T, we examine EVRPSTW
within the context of V2G operations during a discretized
time interval t on a complete directed graph G � (V0,N+1, E),
where V0,N+1 � v0, v1, . . . , vN, vN+1  is the set of all
nodes and E � (vi, vj)|for some vi, vj ∈ V0,N+1  is the set of
edges. Te nodes include three types of nodes, i.e., v0 � vN+1
is the depot node, D is the set of dummy nodes for charging
and discharging at depot, and V � v1, . . . , vN  is the set of
customers. For convenience, we introduce two additional
node sets, V0 and VN+1, in our formulation. V0 is the set of
nodes including customers, dummy nodes, and depot 0.
Similarly, VN+1 is the set of nodes including customers,
dummy nodes, and depot N + 1. Each customer has a service
time si, a time window [ei, li], and a soft time window [ei

′, li′].
For any given (vi, vj) ∈ E, Assumption (f) implies that travel
time between nodes vi and vj is tij and the charging time
required for travel is fij. Lastly, from Assumptions (g) and
(h), if the K homogenous ETs are charged/discharged δ

period per charging/discharging unit, C is denoted as time
intervals to fully charge the battery from 0, then the battery
capacity is C/δ. Note that ETs wait until the start of next time
interval before charging and discharging begin at depot
because the time interval is discretized as |T|.

For a given time frame T, we propose a MIP model that
determines the optimal charging, discharging, and delivery
times for a feet of K ETs to minimize the total cost including
charging cost, discharging reward, and time penalty. Te
mathematical model considers the following parameters and
decision variables:

Parameters:

ei Earliest arrival time of service at customer i

ei
′ Flexible earliest allowable arrival time of service at
customer i

li Latest arrival time of service at customer i

li′ Flexible latest allowable arrival time of service at
customer i

rc
t Electric charging cost in period t per charging unit

rc
min Lowest electric charging cost per charging unit

rd
t Electric discharging reward in period t per
discharging unit
pe Earliness penalty per one unit of time
pl Tardiness penalty per one unit of time

Decision variables:

xijk Binary decision variable indicating if edge (vi, vj) is
travelled by ET k

yik Binary decision variable indicating if ET k is
charged (�1) or discharged (�0) at node vi

αikt Binary decision variable indicating if ET k is
charged at node vi in time interval t

βikt Binary decision variable indicating if ET k is dis-
charged at node vi in time interval t

τik Continuous decision variable specifying the arrival
time of ET k at node vi

τe
ik Continuous decision variable specifying the earliest
arrival time of ET k at node vi

τl
ik Continuous decision variable specifying the tardi-
ness arrival time of ET k at node vi

bik Continuous decision variable specifying the time to
drive with the remaining battery level on arrival at
node vi

Te proposed model is formulated as follows:

min 
k∈K



i∈ v0{ }∪D


t∈T
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s.t. 
k∈K


j∈VN+1 ,i≠j

xijk � 1, ∀i ∈ V, (2)
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k∈K



j∈D∪ vN+1{ },i≠j

xijk � 0, ∀i ∈ v0 ∪D,
(3)


i∈V0

xiN+1k � 1, ∀k ∈ K, (4)


j∈VN+1 ,i≠j

xijk − 
j∈V0 ,i≠j

xjik � 0, ∀i ∈ V∪D,∀k ∈ K, (5)

τik + tij + si xijk − M 1 − xijk ≤ τjk, ∀i ∈V0,∀j ∈VN+1, i≠ j,∀k ∈ K, (6)


t∈T

αikt ≤ |T|yik, ∀i ∈ v0, vN+1 ∪D,∀k ∈ K, (7)


t∈T

βikt ≤ |T| 1 − yik( , ∀i ∈ v0, vN+1 ∪D, ∀k ∈ K, (8)

τik − tδ ≤M 1 − αikt − βikt( , ∀i ∈ D∪ vN+1 ,∀t ∈ T,∀k ∈ K, (9)

(t + 1)δ αikt + βikt(  + tijxijk − M 1 − xijk ≤ τjk, ∀i ∈ v0 ∪D,∀j ∈VN+1, i≠ j,∀t ∈ T, ∀k ∈ K, (10)

ei
′ 

j∈VN+1

xijk ≤ τik ≤ li′ 
j∈VN+1

xijk, ∀i ∈ V, i≠ j,∀k ∈ K,
(11)

ei 
j∈VN+1

xijk − τik ≤ τ
e
ik, ∀i ∈ V, i≠ j,∀k ∈ K,

(12)

τik − li 
j∈VN+1

xijk ≤ τ
l
ik, ∀i ∈ V, i≠ j,∀k ∈ K, (13)

bjk ≤ bik − fijxijk + M 1 − xijk , ∀i ∈ V, ∀j ∈VN+1, i≠ j,∀k ∈ K, (14)

bjk ≤ bik + 
t∈T

δαikt − 
t∈T

δβikt − fijxijk + M 1 − xijk , ∀i ∈ v0, vN+1 ∪D, ∀j ∈VN+1, i≠ j,∀k ∈ K, (15)


t∈T

δαikt ≤C − bik, ∀i ∈V0,N+1,∀k ∈ K, (16)


t∈T

δβikt ≤ bik, ∀i ∈V0,N+1,∀k ∈ K, (17)

0≤ bjk ≤C 
i∈V0

xijk, ∀j ∈V0,N+1, i≠ j,∀k ∈ K, (18)

bv0k � C, ∀k ∈ K, (19)

xijk, yik, αikt, βikt ∈ 0, 1{ }, ∀i ∈V0,N+1,∀j ∈V0,N+1, i≠ j,∀t ∈ T, ∀k ∈ K, (20)

0≤ τii, τ
e
ik, τl

ik, ∀i ∈ V, ∀t ∈ T, ∀k ∈ K. (21)

Te objective of the proposed model, as stated in (1), is to
minimize the total cost which consists of four parts; the frst
and second terms are the charging cost and discharging
reward, respectively, the third and fourth terms are the time
window penalty, and the last term is the fully charging cost at

the remaining battery level after delivery is completed. Te
set of constraints (2)–(5) guarantee that each ET starts for
delivery at depot v0, serves one customer once, stops by
dummy nodes if necessary, and then comes back to depot
vN+1. Delivery and service time are calculated in the set of
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constraint (6) when ETs are neither charged nor dis-
charged. Te set of constraints (7) and (8) ensure that ETs
can be only either charged or discharged at depot during
delivery. If they are either charged or discharged, the
corresponding time is calculated by the set of constraints
(9) and (10). Te set of constraints (11)–(13) consider soft
time windows for customers. Te set of constraints
(14)–(19) consider ETs’ battery level. First, after ETs serve
customer vi, they can reach other nodes vj located within
the charging time required to travel between vi and vj, i.e.,
fij, in the set of constraints (14). Next, if ETs arrive at
depot, the set of constraints (15) deal with ETs’ charging
and discharging options. Also, the set of constraints
(16)–(18) ensure that ETs can be charged or discharged
within the battery capacity, the remaining battery level, or
the battery level above 0. Lastly, all ETs are dispatched at
fully charged battery level at depot in the set of constraints
(19). Te set of constraints (20) and (21) defne the do-
mains of the decision variables.

3. Simulation Results

In this section, two simulations are performed using the
proposed model to explore the benefts of implementing
V2G technology in the logistics industry and to assess the
efectiveness of V2G in a changing environment in the
future. Te frst simulation involves comparing a V2G
system that enables charging and discharging ETs with
a general ET delivery system without V2G technology
under dynamic electricity prices. In the second simulation,
three sensitivity analyses are performed to examine the
impact of charging cost, discharging reward, and battery
capacity on the objective function of the proposed model in
the V2G system.

To investigate the practicality and advantages of utilizing
ETs for ancillary services in V2G systems, we perform
simulations using the Porter II Electric, a commercial ET
ofered by Hyundai Motors [20]. Tis ET features a battery
capacity of around 60 kWh and has a range of up to 211 km
on a single charge. With a 100-kW fast charger, it takes
approximately one hour to reach full charge, though this
may vary depending on the battery’s condition and the type
of charging used. For simplicity in the simulation, we assume
that the discharge rate is equal to the charge rate, as no
ofcial information is provided on this matter. Additionally,
we suppose that a logistics company operates two ETs, using
them for less than 200 hours per month. As per Table 1, we
employ the high-voltage electric vehicle charging cost for
service providers, which was announced by KEPCO in July
2022 [21]. Finally, if we assume that the logistics company
sells electricity to KEPCO, we can estimate the electric
discharging reward based on the system marginal price data
provided by the Electric Power Statistics Information System
[22]. As the monthly price fuctuation is signifcant, as il-
lustrated in Figure 1, we consider fve scenarios in our
simulations that capture the hourly price trends: (1) January
and February, (2) March, April, and May, (3) June, July, and
August, (4) September and October, and (5) November and
December.

Due to the NP-hard nature of our problem, the com-
putational time required increases exponentially with the
number of nodes, including the depot, customers, and
dummy nodes. We execute all scenarios on a PC with an
Intel Xeon Gold 3.1GHz processor and 128GB RAM. Our
simulations are implemented in Python 3.8 using IBM ILOG
CPLEX 20.1 with the default options for MIP problems to
solve the problems. Note that the CPLEX solver is an op-
timization software package provided by IBM ILOG [23].
Given the complexity of the problem, the CPLEX solver is
unable to fnd optimal solutions within the provided 3,600-
second time window, so we ofer near-optimal feasible so-
lutions instead. Te locations of a single depot and ffteen
customers are depicted in Figure 2, where the expected
delivery time within a 24-hour time window is denoted by
the square brackets next to the customers.

3.1. Comparison of V2G and Non-V2G Systems. Table 2
presents the result of comparing the total net costs with and
without the V2G system. Note that the term “discharging
reward” refers to the proft earned by selling electricity, while
“night cost” denotes the full charging cost at the lowest rate
after all assigned deliveries are completed. Five scenarios
were executed using two ETs to process the same customer
delivery requests.Te highest total net cost was KRW9,882.3
(about USD 7.41) in January and February, while the lowest
was KRW 5,018.5 (about USD 3.76) in September and
October. Note that the current exchange rate is about
1 KRW� 0.00075 USD. Except for January and February, the
V2G system typically results in lower overall operating costs.
Our study does not consider the reduced battery lifespan
that can result from frequent charging and discharging.
Terefore, in the case of March to August, where the relative
diference is small, it is challenging to assert that the V2G
system’s impact is signifcant when factoring in the ET’s
battery replacement cost. Moreover, the diference between
the charging cost and the discharging reward has a con-
siderable efect on the benefts of the V2G system. From
November to February, the charging cost remains un-
changed. However, due to the relatively higher system
marginal price in November and December than in January
and February, ETs are frequently discharged during delivery,
demonstrating the signifcant beneft of the V2G system.
Lastly, since the night cost is comparable in all scenarios, this
implies that the battery is charged and discharged as fre-
quently as possible during delivery, and full charging is
completed after delivery. If the battery capacity is increased,
this result is expected to further enhance the V2G system’s
advantage. We will verify this assumption in the subsequent
simulation.

In Figure 3, two delivery routes are displayed for No-
vember and December that show the largest cost diference
between the V2G and non-V2G systems. Notably, the de-
livery routes are completely distinct from one another.
Although the ETs violate the customer’s time windows, they
are repeatedly charged and discharged at the depot to sell
electricity under the V2G system. If the battery capacity was
increased, it is anticipated that the V2G system’s advantage
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would grow since the ETs would save travel time between the
depot and customers. We will verify this expectation in the
next simulations. Additionally, the delivery route of the V2G
system is much more complex than that of the non-V2G
system. Terefore, since our EVRPSTW model in V2G
presents a highly complex problem, we ofer near-optimal
feasible solutions within a 3,600-second time window. It is
believed that more efcient delivery routes and charging/
discharging schedules exist.

3.2. Sensitivity Analysis. Te V2G system’s advantage varies
depending on the diference between charging cost and
discharging reward, with some cases providing signifcant
advantages while others ofer none at all. Additionally,
battery capacity plays a crucial role in determining the total
net cost when there is a signifcant diference between
charging cost and discharging reward. Tus, the subsequent
simulations aim to investigate the impact of battery capacity,
charging cost, and discharging reward on the total net cost.

Figure 4 illustrates how increasing battery capacity can
have a signifcant impact on the total net cost, except for
January and February when the V2G system provides no
advantage. Te doubling of battery capacity signifcantly
reduces the total net cost for logistics companies, allowing
them to earn profts through the V2G system. For example,
the V2G system can earn about KRW 9,500 in September
and October, as the large battery capacity is efciently
utilized to charge and discharge in the substantial diference
between charging cost and discharging reward.

Furthermore, the efect of varying charging cost on the
total net cost is presented in Figure 5. As the charging cost
increases, the total net cost also increases overall. A sig-
nifcant change in the total net cost is observed in September
to December, where frequent charging and discharging
occur in the V2G system. Tus, an electricity usage-based
discount contract could be considered to reduce charging
costs and overcome this issue.

Next, Figure 6 demonstrates the impact of varying
discharging reward on the total net cost. When the dis-
charging reward increases by 10% in January and February,
the total net cost decreases slightly since one of the ETs sells
electricity at the beginning of delivery. On the other hand, as
shown in Table 1, the charging cost is highest from July to
August. Consequently, the more discharging occurs, the

Table 1: ET charging cost by KEPCO as of 1st of July 2022 (unit: KRW/kWh).

Month
Jun, Jul, Aug Mar, Apr, May, Sep, Oct Jan, Feb, Nov, Dec

Time Cost Time Cost Time Cost
Light demand 23: 00∼09: 00 63.0 23: 00∼09: 00 53.4 23: 00∼09: 00 72.6

Medium demand
09: 00∼10: 00

103.1
09: 00∼10: 00

64.2
09: 00∼10: 00

91.612: 00∼13: 00 12: 00∼13: 00 12: 00∼17: 00
17: 00∼23: 00 17: 00∼23: 00 20: 00∼22: 00

Maximum demand
10: 00∼12: 00

124.4
10: 00∼12: 00

68.1
10: 00∼12: 00

105.613: 00∼17: 00 13: 00∼17: 00 17: 00∼20: 00
22: 00∼23: 00
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Figure 1: Monthly system marginal price in the year of 2021 (unit:
KRW/kWh).
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(a) (b)

Figure 3: Comparison of routes between (a) V2G and (b) non-V2G systems for November and December.
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Figure 4: Comparison of the total cost when the battery capacity of ETs increases twice.

Table 2: Comparison of charging cost, discharging reward, time penalty, night cost, and total cost in fve scenarios (unit: KRW).

Month Charging cost Discharging reward Time penalty Night cost Total net cost Relative diference (%)

Jan, Feb V2G 2,960.0 0.0 588.0 6,334.3 9,882.3 0.00Non-V2G 2,960.0 — 588.0 6,334.3 9,882.3

Mar, Apr, May V2G 4,672.5 −3,944.0 328.0 5,213.2 6,269.7 7.49Non-V2G 1,335.0 — 102.0 5,340.0 6,777.0

Jun, Jul, Aug V2G 4,725.0 −3,181.1 588.0 5,906.2 8,038.1 5.02Non-V2G 1,575.0 — 588.0 6,300.0 8,463.0

Sep, Oct V2G 12,746.3 −12,825.3 198.0 4,899.5 5,018.5 25.95Non-V2G 1,335.0 — 102.0 5,340.0 6,777.0

Nov, Dec V2G 14,130.0 −16,843.6 1,728.0 7,087.6 6,102.0 38.25Non-V2G 2,960.0 — 588.0 6,334.3 9,882.3
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more charging takes place, leading to a signifcant increase in
the charging cost. As a result, the total net cost slightly rises
when the discharging reward increases by 10% in July to
August. Te months of September and October, which

exhibit a more signifcant diference between charging cost
and discharging reward, are the ones that beneft the most
from the variation in discharging reward.Terefore, it can be
concluded that the diference between charging cost and
discharging reward is one of the most important factors for
logistics companies to consider when utilizing the V2G
system.

Lastly, Figure 7 describes how the total net cost changes
as the charging cost changes given a discharging reward. We
conduct each simulation with one charging cost, increased
by 20 from 60 to 120, and one discharging reward, increased
by 20 from 80 to 140, in a 24-hour time window. First, as the
charging cost increases, the total net cost increases gradually
because ETs should be fully charged with the high charging
cost at night when all deliveries are completed. Note that the
total net cost does not increase consistently due to the
consideration of delivery routes and time penalties. Fur-
thermore, when the charging cost is low, the V2G system
provides great advantages, especially given a high dis-
charging reward. However, the total costs converge around
KRW 21,000 as the charging cost increases. In other words,
as the charging cost rises, the total net cost increases
gradually. When the charging cost is expensive, there is no
signifcant diference in the total net cost, regardless of
whether the discharging reward is high or low. Note that
when the charging cost is 80, the reason why the total net
cost of the discharging reward 100 is slightly higher than that
of the reward 80 is because of the discretized time problem
and near-optimal feasible solutions. Consequently, to obtain
the benefts ofered by the V2G system, the crucial factor is to
achieve economical charging during nighttime while also
considering the potential for optimizing the discharge
schedule to maximize rewards.

4. Conclusion

With the rise in sales of electric vehicles and growing interest
in V2G systems, companies involved in transportation and
logistics that operate a feet of ETs now have the potential to
boost their profts by utilizing the batteries of these vehicles

Jan, Feb
Mar, Apr, May

Jun, Jul, Aug

Sep, Oct

Nov, Dec

0.9*Discharging Reward
1.0*Discharging Reward
1.1*Discharging Reward

0

2

4

6

8

10

To
ta

l N
et

 C
os

t (
U

ni
t: 

1,
00

0 
KR

W
)

Figure 6: Comparison of the total cost when discharging reward is
changed.
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Figure 7: Relationship between the total net cost and charging
costs when a discharging reward is given (unit: KRW).
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Figure 5: Comparison of the total cost when charging cost is
changed.
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for V2G systems. In this study, we explore the possible uses
of V2G systems within logistics companies that operate ETs.
Managing batteries efciently is crucial in a logistics com-
pany’s V2G system to ensure that it does not interfere with
the primary goal of transportation. Terefore, companies
using ETs can reap additional fnancial benefts by utilizing
their batteries for V2G systems to store excess energy during
periods of low demand, which can be sold for a proft during
periods of high demand. Tis study involves developing an
optimization model for EVRPs that integrates V2G opera-
tions, which is intended to ofer decision-making support to
logistics operations and enhance revenues in V2G systems.
As evidenced by the outcomes of our simulation, the benefts
arising from employing V2G systems are subject to the
infuence of various factors such as battery capacity,
charging cost, and discharging cost. To stimulate the ac-
ceptance of V2G systems within the logistics sector, a range
of subsidy policies may be considered, particularly based on
electricity trading rates. Additionally, we conduct a sensi-
tivity analysis to explore the efects of diferent environ-
mental factors associated with V2G systems.

Based on the simulation results, we suggest the following
approaches for efectively commercializing ETs that in-
corporate V2G technology in the logistics industry. Firstly,
although strategic planning contributes to minimizing travel
time between customers and depots, considering the ad-
vantages of V2G systems can change the routes of ETs to
increase profts by trading stored electricity within the ETs.
As battery technology improves and its capacity grows, there
will be less need to travel for charging and discharging.
However, it may take some time for battery technology to
mature enough to increase battery capacity. To address this,
we suggest that logistics companies set up additional
charging and discharging facilities close to major customer
locations to minimize wasted travel time and maximize
long-term benefts for V2G technology in the logistics feld.
In downtown areas where space is scarce, companies can
consider sharing their facilities with customers. Secondly,
operational planning can leverage hourly diferences be-
tween charging costs and discharging rewards. Based on
simulation results from the frst (January and February) and
ffth (November and December) scenarios, we found that
pricing diferences play a signifcant role in determining
whether discharging occurs. To take advantage of this, time
windows for customers can be adjusted so that ETs are
charged when charging costs are low, and ETs are discharged
when discharging rewards are high. Tis operational ap-
proach can help optimize the use of V2G technology in the
logistics feld.

Our current development has some limitations which
present opportunities for interesting future research. Te
primary limitation is the computational burden that restricts
the efectiveness of our approach in solving large-scale
problems. Due to the complexity of the EVRPSTW prob-
lem in a system of V2G, the CPLEX solver cannot fnd op-
timal solutions within a time of 3,600 seconds. To overcome
this limitation, Markov decision processes (MDP) can be
considered tomodel the operations of ETs’ batteries instead of
relying on theMIPmodel for fnding optimal routes. Lin et al.

provide [24] an end-to-end deep reinforcement learning (RL)
framework to solve the EVRPSTW problem without the
context of V2G operations and show that their model can
efciently solve larger problems. Approximation methods for
MDP problems such as RL techniques can be applied to
address the EVRPwith V2G operations. Another limitation of
our approach is that it does not consider the fuctuation of
electricity and delivery demands. We assume that the power
supplied by ETs is incapable of signifcantly impacting de-
mand; consequently, all power generated by ETs is accepted.
However, energy storage systems (ESS) are utilized to store
energy during low-demand periods and supply energy during
peak times, while logistics companies often need to transport
goods during peak times. Terefore, uncertain delivery de-
mand could afect their profts. For a more realistic V2G
environment, we need to incorporate additional restrictions
into our model.

Lastly, it is worthwhile to note that V2G systems serve not
only economic purposes but also play a critical role in sta-
bilizing load fuctuations. With the rise in renewable energy-
generated power, managing the disparity between power
supply and demand becomes imperative. In this context, V2G
stands as a potential solution for mitigating this imbalance.
Terefore, to address the diverse objectives of V2G systems, it
is possible to consider the demand leveling efect in addition
to cost minimization. Furthermore, when environmental
concerns take priority over economic gains, proftability
might not be the primary focus. In such cases, to meet en-
vironmental objectives, strategies such as subsidy policies may
need to be employed to steer the goal, and the economic
optimization methodology employed in this study can serve
as a benchmark to aid in formulating subsidy policies.
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