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Local roads have numerous blind spots caused by complex geometry, obstacles, and narrow width. Tus, conventional proactive
countermeasures, such as passive trafc signs and convex mirrors, have not always been efective in preventing local road
collisions. In this paper, we present a novel proactive two-step approach for trafc safety on local roads, comprised of detection of
pedestrian-to-vehicle and vehicle-to-vehicle collision risks and warning systems. First, using video surveillance and radars to
eliminate blind spots, the system detects road objects, predicts their trajectories and reachable areas, and identifes a potential risk
situation. Second, it provides road users such as vehicles and pedestrians with warnings through LED variable message signs,
which allows them to react efectively in risky situations. We have applied the system to two local road sites in South Korea,
including a university campus in Seoul City and an apartment complex in Daejeon City. Te detecting system has been validated
using a confusion matrix. We have assessed the warning efect through a before-and-after study and found that the proposed
system contributed to the improvement of trafc safety at the case study site in that trafc conficts decreased by 55–62%.

1. Introduction

According to the global status report on road safety pub-
lished by World Health Organization, the annual number of
road trafc fatalities reached 1.35 million in 2016, and there
have been approximately 1.3 million every year since [1, 2].
More than 50% of all road trafc fatalities occur among
vulnerable road users, including pedestrians, bikers, and
motorcyclists. Annually, between 20 and 50 million people
have nonfatal injuries, with many developing disabilities as a
result. Individuals, their families, and nations as a whole
incur signifcant economic losses due to road trafc acci-
dents. Te average cost of road trafc accidents is 3% of a
country’s gross domestic product.

For the efcient and efective implementation of trafc
safety measures, adequate trafc safety management is

essential. Recently, pedestrian safety has emerged as a global
public health priority, as pedestrians are exposed to a variety
of threats and are prone to sustaining severe injuries in trafc
accidents. Since pedestrian trafc is concentrated on local
roads, pedestrian safety control on local roads is particularly
important. However, due to numerous blind spots on local
roads caused by complex geometry, obstacles, and narrow
width, it is difcult for road users to accurately estimate their
current safety situations. A blind spot is defned as the spatial
area outside of a person’s peripheral vision, and it restricts
drivers and passengers from seeing objects and other pe-
destrians moving. Tis is one of the main reasons that
traditional proactive countermeasures, such as trafc signs
and convex mirrors, have not always been efective to
prevent local road collisions. To overcome this issue, an
advanced proactive countermeasure is required that can
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eliminate blind spots and provide accurate safety infor-
mation in advance to local road users, including pedestrians.

Proactive near miss accident warning technologies have
received much attention in the past decade, and numerous
sensor-based algorithms have been developed for a better
understanding of current safety situations. Tese algorithms
recognize objects, estimate their trajectories, and assess
whether a collision risk exists; based on surrogate safety
measures (SSMs) derived from trafc conficts, they estimate
the collision risk of particular trafc scenarios using mi-
croscopic trafc parameters such as vehicle speed, acceler-
ation, time headway, and space headway. Depending on how
the collision risk is evaluated, the algorithms can be cate-
gorized into two groups.

Te frst group of algorithms uses deep learning methods
to detect hazardous situations; after training with prior data
categorized as risk situations by SSMs, algorithms predict
whether a current circumstance is risky or not. For instance,
gated recurrent unit and long-short term memory (LSTM)
approaches were used to forecast the likelihood of a collision
at a signalized intersection [3, 4]. For unsignalized cross-
walks, another LSTM-based collision risk area estimation
method was proposed [5].

Te second group of algorithms applies SSMs to notice
the presence of potentially hazardous scenarios based on the
overlap of expected object trajectories. Recent years have
witnessed a surge of scholarly works examining SSM practices
and/or trafc conficts, such as [6–8]. SSMs, including time-
to-collision (TTC) and post encroachment time, have been
extensively utilized to assess trafc safety performance and
identify potential accident hazards. For example, Son et al.
developed an algorithm to detect the risk of collisions between
trucks and pedestrians [9]. Using microscopic simulations,
the authors established a road network, and the algorithmwas
then validated using a confusion matrix. Moreover, Zhang
et al. proposed a novel multipedestrian collision risk as-
sessment approach that consists of collision checking, motion
prediction, and collision risk assessment modules, and Wu
et al. developed a crash warning system for bicycle lane areas
at intersections utilizing connected vehicle technology
[10, 11]. Ke et al. presented an approach to automatically
detect near collisions between vehicles and pedestrians using
onboard monocular vision and a moving background [12].
According to the extant literature, collision detection and/or
prevention systems are mostly vehicle-integrated; recent
studies have reviewed the threat assessment methods for such
systems [13–15].

However, to the best of our knowledge, few algorithms
have been developed specifcally for local roads with blind
spots. Moreover, no study has implemented and assessed the
safety impacts of their proposed algorithms in real-world
practice. In this paper, we present a novel proactive two-step
approach for trafc safety on local roads, comprised of de-
tection of pedestrian-to-vehicle and vehicle-to-vehicle colli-
sion risks and warning systems. We implemented video and
radar equipment to eliminate blind spots at a target local road
site. In addition to the detection system, we implemented
LED Variable Message Signs (LED-VMS) for providing road
users such as vehicles and pedestrians with warning

information, which allows them to react efectively in risky
situations. We have validated the complete form of a safety
countermeasure, including detection and warning systems
through implementing it on real-world local road sites in
South Korea, including a university campus in Seoul City and
an apartment complex in Daejeon City.We have validated the
system using a confusionmatrix and assessed the trafc safety
efect through a before-and-after (BA) study.

Te remainder of this paper is structured as follows: the
system description section provides an overview of the
proposed system’s architecture. Next, we elaborate on the
case study sites. Te evaluation results section describes the
process and outcomes of the analysis. In the last section, we
present the conclusion with future research directions.

2. System Description

In this section, we describe how the proposed system works.
Te system consists of four steps: (1) object detection and
perspective transformation; (2) trajectory and reachable area
prediction; (3) collision risk determination; and (4) collision
risk warning.

2.1. Object Detection and Perspective Transformation. In this
step, object detection and perspective transformation are
conducted. First, for object detection, we use a video sur-
veillance system and radar devices. We develop the object-
detecting algorithm based on You Only Look Once (YOLO)
v5, which is the latest deep-learning method and has been
used for real-time video-based detection [16, 17]. Te de-
veloped detecting algorithm is diferent from the YOLO
algorithm in terms of how data is processed and analyzed.
Te size of input/output image data is not fxed but rather
optimized based on hardware usage. In addition, input data
are not processed in random order but in a frst-in-frst-out
order so that image analysis proceeds without a bottleneck,
as illustrated in Figure 1. Moreover, the data to be analyzed
are processed as metadata that is compressed image infor-
mation. It can improve detection accuracy and computing
speed without image quality and pixel loss.

Our proposed object-detecting algorithm was com-
pared to the diferent versions of YOLO, including
YOLOv4 TRT, YOLOv4 Darknet, and YOLOv5m. Tey
are considered to be superior to other traditional
detecting methods, such as single-shot detection and
convolutional neural network algorithms, in terms of high
accuracy and computational speed [18–20]. Figure 2 il-
lustrates object-detecting performance for the existing
YOLO algorithms and the proposed method with respect
to the mean average precision (mAP) and frames per
second (FPS), commonly used to evaluate the accuracy
and computing speed of detecting methods [21, 22]. Te
proposed detection algorithm has higher accuracy than
YOLOv5m, but their computing speeds are comparable.
In terms of both mAP and FPS, the proposed algorithm
outperforms the rest detection algorithms. Consequently,
based on the aforementioned comparison results, it can be
concluded that the proposed system is superior to
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traditional detecting methods. Moreover, radar devices
are employed when video-based detection is unavailable,
such as in extreme weather conditions. From the video
and radar equipment, the location, speed, and type of the
object can be precisely calculated. Second, a perspective
transformation is performed. We calculate the objects’
overhead coordinates from the raw data collected from the
sensors’ perspective. Terefore, we use a perspective
transformation matrix in the Open CV library, which is a
computer vision tool [23]. Te transformation procedure
is depicted in Figure 3.

2.2. Trajectory and Reachable Area Prediction. Tis step is to
predict the future locations of the detected objects. First, we
identify whether an objective’s prior trajectory is straight or
curved, depending on the degree of curvature of the current
trajectory. If it is larger than a predetermined threshold θset
[radians], we consider the trajectory to be curved. Te time
frame index is denoted k, and the current frame is k � 0. Te
negative and positive k values mean the prior and future

time points, respectively. Te degree of curvature θn [ra-
dians] at the time frame n is calculated using the following
equation:

θn � 
i�1,...

θn−i · ωi, (1)

where i is the backward of the time frame index and ωi is a
predetermined weight factor such that ωi >ωi′ for all i< i′.

If |θ0 |< θset, an object will move straight. Te object’s
future location is determined based on the expected moving
distance calculated by the following equation:

dn � tn − t0( v0

∀n ∈ 1, . . . , T
future

 ,
(2)

where dn is the expectedmoving distance [meters] between the
object’s center positions at the current and future time points t0
and tn, respectively; v0 is the estimated current velocity; and
Tfuture is the prediction time frame horizon. If |θ0 |≥ θset, the
future location at the time point tn is determined based on the
location at the time point tn−1, v0, and θn−1.
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Figure 1: Data processing method: (a) random order process method and (b) frst-in-frst-out order process method (proposed system).
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Figure 2: Object detecting performance comparison: (a) mean average precision (mAP) and (b) frames per second (FPS).
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Considering the actual size and uncertain future
movement of objects, we set the reachable area of an object at
k � n as a rectangle and an ellipse for vehicles and pedes-
trians, respectively. Te vehicles’ rectangular lengths, lmajor
[meters] and lminor [meters], are determined by the fol-
lowing equation based on a previous study [24]:

lmajor � max 0.61dn − 1.06,5.0 ,

lminor � max 0.57dn + 0.96,2.5 .
(3)

A pedestrian’s future location is stochastically defned by
an ellipse [25]. Te ellipse major axis length, rmajor [meters],
and minor axis length, rminor [meters], are empirically es-
timated by pedestrian trajectory data collected from video
surveillance systems on local roads in Korea, as illustrated in
Figure 4(a) [24]. Pedestrian trajectories were plotted every
second for fve seconds. It was found that the length of the
major axis and minor axis varied depending on dn. From
plotted trajectories, rmajor was linearly modeled, as illustrated
in Figure 4(b). For rminor , trajectories were plotted mostly
within two meters. Te estimated ellipse axis lengths are
calculated using the following equation [24]:

rmajor � max 1.6dn − 0.89,1.0 ,

rminor �

2.0, dn ≥ 3.0( ,

1
3
dn + 1.0, dn < 3.0( .

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

2.3. Collision Risk Determination. If a risk is defned based
solely on proximity, we do not account for other factors
possibly important for risk identifcation, such as speed, di-
rection, and future location uncertainty. Tus, we defne the
collision risk between two objects when their reachable areas
overlap, which are obtained based on not only proximity but
also the other factors since it has been proven to reduce false
negative or positive cases [24]. As illustrated in Figure 5, the
proposed system detects pedestrian-to-vehicle and vehicle-to-
vehicle collision risks. Pedestrian-to-pedestrian collision risks
are excluded since it is associated with relatively low severity,
and pedestrians can evade a pedestrian-to-pedestrian collision
promptly. Tus, the system does not consider the overlap of
pedestrians’ reachable areas.

To reduce the computational burden for calculation be-
tween multiple objects on roads, a following three-step al-
gorithm is used, as illustrated in Figure 6. In the frst step, we
set the maximum detection distance for each object, as shown
in Figure 6(a). If a distance from the object (object A in
Figure 6(a)) to another is greater than themaximumdetection
distance (e.g., thirty meters), we exclude the objects. Second,
as depicted in Figure 6(b), we exclude situations when the
future trajectories of two objects intersect outside local roads
or when the time diference between the two objects’ arrival
times to the intersecting point exceeds a predetermined
threshold (e.g., two seconds). Last, we check if the reachable
areas of two objects (not their trajectories) overlap in 0.25-
second increments starting from one second earlier than the
earlier time between the predicted arrival times of two objects
at the trajectory intersection. If there is an overlap three times
or more consecutively, we consider the situation a collision
risk and defne TTC as the time when the two reachable areas
frst overlap, as shown in Figure 6(c).

2.4. Collision Risk Warning. If a risk situation is identifed
and its predicted TTC is shorter than a predefned threshold,
such as four seconds, a warning message is displayed on the
LED-VMS, as depicted in Figure 7. TTC threshold is ob-
tained as the total summation of the perception-reaction
time [26], a safety margin time, and the time for the vehicle
stopping distance. As shown in Figure 7, a warning message
indicating “Stop” is provided.Te LED-VMS is normally of,
but when a risk situation occurs, it provides warning in-
formation until the risk situation is over. Te LED-VMS is
installed mainly in locations where they can be seen directly
in the direction of vehicle and pedestrian routes, allowing
drivers and pedestrians to get warning information easily.

3. Case Study Sites

We implemented the proposed system to two local road
networks, a university campus in Seoul City and an apartment
complex in Daejeon City, South Korea. First, we selected one
site on the university campus for system verifcation, as shown
in Figure 8, and we validated the system using a confusion
matrix before the evaluation. Second, we selected two pairs of
experimental and control sites in the apartment complex in
Daejeon City for a BA study. Te sites of each pair are as-
sociated with similar environmental and trafc conditions
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(x2, y2)

(x′0, y′0)

(x′3, y′3) (x′2, y′2)
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Figure 3: Perspective transformation: (a) coordinates from video surveillance systems and (b) overhead perspective coordinates.
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[27, 28]. Te proposed system was implemented and operated
at experimental sites but not at control sites. Since the ex-
perimental and control sites are located within the same
apartment complex, population characteristics and temporal
trafc patterns on local roads can be similar between the ex-
perimental and control sites.Te experimental and control sites
of pair A have parking lots and underground parking en-
trances, and the experimental and control sites of pair B have
roadside parking lots, as shown in Figure 9.

4. Evaluation Results

4.1.ConfusionMatrix. We use a confusion matrix approach
to validate the performance of the implemented system, as
shown in Table 1. True positive (TP) and true negative (TN)
indicate that both predicted and actual situations are risky

and not risky, respectively. False positive (FP) indicates that
the actual situation is not risky, whereas the predicted
situation is. On the other hand, false negative (FN) indi-
cates the opposite situation to FP. Using the four measures,
we calculate three metrics that indicate the system’s per-
formance using equations (5)–(7). Accuracy is the most
intuitive measure, indicating how precisely a system
classifes situations. Te true positive rate (TPR), com-
monly known as recall (or sensitivity), is the proportion of
real-risk situations correctly predicted. It indicates how
accurately the system classifes risky situations. On the
other hand, the false positive rate (FPR) indicates incor-
rectly predicted no-risk situations among actual no-risk
situations. If the FPR is high, it indicates that false alarms
can occur despite the absence of potential risk situations.

Accuracy �
TP + TN

TP + TN + FP + FN
, (5)

True Positive Rate (TPR) � Recall (or Sensitivity) �
TP

TP + FN
, (6)

Vehicle reachable area

Pedestrian reachable area

Overlap of predicted reachable
area

(a) (b)

Figure 5: Collision risk defnition of the proposed system.Te system detects collision risks of pedestrian-to-vehicle and vehicle-to-vehicle
as in (a), whereas the system does not account for pedestrian-to-pedestrian collision risks as in (b).
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Figure 4: Pedestrian future reachable area: (a) estimated ellipse major and minor axes from plotted pedestrian trajectory data and (b)
modeled rmajor according to dn.
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Figure 6:Tree-stepmethod to identify risky situations. (a) Two objects are excluded as the distances from object A exceed thirtymeters. (b)
Intersecting points (blue dots) are excluded since the point is outside local roads or the time diference in arrival times to the point exceeds
two seconds. (c) If reachable areas overlap three times consecutively, the situation is considered to be a collision risk, and TTC is defned as
the time when the two reachable areas frst overlap.
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False Positive Rate (FPR) � 1 − Specificity �
FP

FP + TN
. (7)

We collected data on risk and normal situations from the
sensors implemented on the university campus in Seoul
City. We have tested the model’s performance under two
diferent weather conditions, clear and rainy, and two
lighting conditions, day and night. For example, photos of
one application site under clear and rainy weather are shown
in Figure 10.Te data collection period for clear weather was
from July 8, 2022, to July 11, 2022, for forty-eight hours. Te
same amount of time data was collected on rainy weather

fromAugust 1, 2022, to August 2, 2022.Te sample numbers
including both risk and no-risk situations were 162 and 135
for the clear and rainy weather periods, respectively, and the
sample numbers for day and night conditions are 235 and
62, respectively. Table 2 presents the system verifcation
results for weather and lighting conditions. Under clear
weather, accuracy, TPR, and FPR were found to be 80.9%,
76.1%, and 15.4%, whereas, under rainy weather, they were
80.0%, 77.4%, and 18.3%, respectively.

No risk situation

A collision risk 
happens

A collision risk 
ends

Risk situation

(a) (b)

Figure 7: LED-VMS provides warning information about collision risks. (a) In a normal situation, LED-VMS is of. (b) In a risk situation,
LED-VMS is turned on until the risk situation is over.

Site for 
validation

(a)

(b)

Figure 8: System application (Seoul campus): (a) map of the site for validation and (b) image recorded by a video surveillance camera on
Seoul campus.
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Te fndings confrmed that the performance of the
system particularly for local roads is comparable to that of
other systems for other kinds of roads in terms of overall

performance [3, 4, 9]. However, there was a diference be-
tween day and night. In the nighttime, accuracy and TPRwere
lower than in the daytime, while FPR was higher than in the

Experimental
site A

Control 
site A

Control 
site B

Experimental
site B

(a)

(b)

(c)

(d) (e)

Figure 9: System application at the apartment complex in Daejeon City. (a) Map of two site pairs; (b, c) parking lot and underground
parking entrance (experimental and control sites A); (d, e) roadside parking lot (experimental and control sites B).
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daytime. It implies that the lighting condition can afect the
system’s performance [29], and improving the performance
even at nighttime remains a future work. For the comparison
of clear and rainy weather, there was no discernible diference
between sunny and wet conditions in terms of either accuracy
or TPR. However, the FPR was marginally higher under wet
conditions than in dry conditions. Tis implies that there is a
greater likelihood of false alarms occurring while it is raining,
since wet circumstances can limit vision and image clarity,
hence lowering the precision of object recognition and tra-
jectory prediction [30]. In addition, small errors measured by
the sensors (video surveillance camera and radar) can
compromise the object detection and trajectory prediction
process. Tus, the model could erroneously categorize a no-
risk situation as risky.

4.2. Before-and-After Study. Before-and-after safety inves-
tigation is an essential element of road safety improvement
schemes that strive to quantify the potential benefts of a

certain technical approach. Typical BA studies exploit his-
torical collision data to evaluate the changes in collision
frequency and/or severity attributable to safety interventions
[31]. Several collision-based BA studies have adopted the
empirical and the full Bayes methods [32–35].

Nonetheless, due to the rarity and randomness of crashes,
statistically reliable safety evaluations require extended pe-
riods of collision data before and after the implementation of
safety measures, particularly in the case of local road colli-
sions.Terefore, the use of collisions in BA studies may raise a
moral confict of waiting for “collisions” to occur before
attempting to prevent them. Moreover, the use of crash data
has usually been limited by sample size and under-reporting
[36]. For that reason, using crash data is considered a reactive
analysis method as opposed to a proactive one.

Hence, in this study, we used trafc conficts to conduct a
BA study. Trafc confict-based analysis provides insight
into the failure mechanism of trafc accidents with a
marginal social cost [37]. Additionally, it does not require a
long observation period. In July of 2022, we collected trafc

Table 1: Confusion matrix.

Classifcation Actual situation
Risk No risk

Predicted situation Risk True positive (TP) False positive (FP)
No risk False negative (FN) True negative (TN)

(a) (b)

Figure 10: Application site (a campus in Seoul city) under diferent weather conditions: (a) clear weather and (b) rainy weather.

Table 2: System verifcation results under diferent weather and lightning conditions.

Site Weather (number of samples) Accuracy (%) TPR (%) FPR (%)

University campus in Seoul city

Clear (162) 80.9 76.1 15.4
Rainy (135) 80.0 77.4 18.3
Day (235) 82.6 78.2 14.2
Night (62) 72.6 69.6 25.6

Clear-day (133) 82.7 77.6 13.3
Clear-night (29) 72.4 69.2 25.0
Rainy-day (102) 82.4 79.1 15.3
Rainy-night (33) 72.7 70.0 26.1

Total (297) 80.4 76.6 16.8
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confict data from the surveillance systems installed at two
pairs of experimental and control sites; the sample sizes for
pairs A and B were 253 and 597, respectively, which are
statistically reliable based on the method proposed by
[38, 39]. Te observed trafc confict frequencies at indi-
vidual sites are shown in Figure 11. Te fgure shows that,
for all experimental sites, the confict frequency was sub-
stantially reduced, whereas, for all control sites, the number
of trafc conficts did not difer in the before-and-after
period.

To statistically analyze the efect, we adopted the odds
ratio (OR) method [27, 40–42]. Tis method is usually
employed to systematically compare the efects on experi-
mental sites and control sites. By using the OR method, we
can explain before-and-after temporal changes in trafc
conficts and exclude factors unrelated to safety interven-
tions [42]. Te OR indicator for pair j, ORj, can be cal-
culated as in the following equation:

ORj �
E
After
j /EBefore

j

C
After
j /CBefore

j

, (8)

where EBefore
j and EAfter

j represent the number of trafc
conficts in before-and-after experimental periods at the

experimental site of pair j and CBefore
j and CAfter

j are those
numbers for before and after the experimental periods at the
control site of pair j. In this study, before-and-after ex-
periments correspond to whether or not LED-VMS pro-
vided road users with warning information. A value of OR
smaller than one shows that the experiment is efective while
OR values greater than one show a negative efect. When OR
equaled one, all changes are attributable to factors unrelated
to the experiment. To intuitively examine the efect, we
calculated the treatment efect (TE) for a pair j using the
following equation:

TEj � ORj − 1, (9)

where TEj represents the change in the frequency of trafc
conficts at the experimental site of pair j after the imple-
mentation of the proposed system, considering the change in
the frequency of trafc conficts at the control site of pair j.
We can calculate the percentage of reduction in trafc
conficts as 100(%) × TE. Negative values of TE mean a
reduction in conficts—in other words, a safety improve-
ment. On the contrary, positive values of TE indicate an
increase in conficts and, thus, a safety deterioration. Table 3
shows the values of OR and TE. Both A and B experimental
sites showed negative TE.
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Figure 11: Number of trafc conficts in before-and-after periods: (a) experimental and control sites A (parking lot and underground
parking entrance) and (b) experimental and control sites B (roadside parking lot).
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We integrated the individual ORs using a weighted
average to estimate the total OR. In addition, we assessed the
statistical signifcance of the calculated ORs by testing the
following hypothesis: OR is equal to one (null hypothesis).
We proceeded by converting OR to a logarithmic form. OR
is always positive because the number of trafc conficts
cannot be negative. Tis observation led to the generaliza-
tion that OR should follow a lognormal distribution. A
standard error (SE) of ln(ORj) for an individual site pair can
be estimated as in the following equation:

SEj �

�������������������������
1

E
After
j

+
1

E
Before
j

+
1

C
After
j

+
1

C
Before
j



, (10)

where SEj is a standard error in site pair j. In addition, we
assumed that weights are inversely proportional to the
variance of individual OR. A weight factor to calculate total
OR can be calculated as in the following equation:

wj �
1
SE2

j

�
1

EAfter
j

+
1

EBefore
j

+
1

CAfter
j

+
1

CBefore
j

⎛⎝ ⎞⎠

− 1

, (11)

where wj is a weight factor in the site pair j. Te total OR for
two site pairs can be calculated as in the following equation:

ln(OR) �


n
j�1 wjln ORj 


n
j�1 wj

. (12)

Te test statistic z asymptotically follows a standard
normal distribution. It can be calculated as in the following
equation:

z � ln(OR)

�������


n

j�1wj



∼ N(0, 1). (13)

We reject the null hypothesis if the tail probability of the
probability density function is smaller than the signifcance
level of 0.05. Te statistical signifcance result of the safety
efect is presented in Table 4. Experimental sites A and B
showed 62.4% and 55.0% reductions in trafc conficts,
considering control sites A and B. Te number of conficts
decreased by 57.3% overall. All of the results were found to
be statistically signifcant. It is, therefore, implied that the
proposed system improved trafc safety at all experimental
sites.

In experimental site A, confict reduction was approx-
imately 62.4%, which is greater than that in experimental site
B, where confict reduction was approximately 55.0%. It

suggests that the efect is greater at experimental site A than
at experimental site B.Tis is presumably due to the location
of LED-VMS at both sites. At experimental site A, the LED-
VMS is located in front of the underground parking exit.
However, at experimental site B, the LED-VMS is located on
the roadside. Vehicles exiting the underground parking lot
in experimental site A can see the LED-VMS signal more
clearly than vehicles in experimental site B, which can have
an impact on driver reaction time.

5. Conclusions

In this study, we present a novel proactive two-step ap-
proach for trafc safety on local roads, comprised of de-
tection and warning. First, using video surveillance and
radars to eliminate blind spots, the system detects objects
and predicts their trajectories and reachable areas; the
system then uses time-to-collision to identify potential risk
scenarios based on the overlap of predicted reachable areas.
Second, the system provides LED-VMS-based warnings that
enable road users, such as drivers and pedestrians, to re-
spond efectively in specifc circumstances.

We installed and operated the proposed system on a
university campus and an apartment complex in South
Korea. First, we validated the system’s performance using a
confusion matrix; the system was accurate 80% of the time,
and 77% of collision risks were successfully detected by the
system, whereas 17% were false alarms. Second, we assessed
the trafc safety efect through a BA study. We chose two
pairs of experimental and control sites with trafc and
geometry comparable. Te proposed system signifcantly
reduced trafc conficts and improved trafc safety, as the
results indicated a decrease in trafc conficts ranging from
55% to 62% across various locations.

Te fndings from this research are encouraging, and
further work needs to be carried out to improve safety on local
roads. We are aware that our research may have some limi-
tations. Local roads are difcult to standardize like highways or
higher road hierarchies than local roads, and implementing the
proposed system on various local road sites requires a high

Table 3: Odds ratio and treatment efect at site pairs A and B.

Site Period Confict frequency Odds ratio (OR) Treatment efect (TE)

Experimental site A Before 61

0.376 −0.624After 24

Control site A Before 64
After 67

Experimental site B Before 149

0.450 −0.550After 64

Control site B Before 154
After 147

Table 4: Trafc confict reduction (safety efect).

Experimental site Confict reduction (%) p value
A 62.4 0.0005
B 55.0 1.168× 10− 5

Total 57.3 4.852× 10− 8
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amount of budget.Tus, we do not intend to estimate standard
crash modifcation factors for the proposed system on local
roads through a BA study. Instead, we focus on two sites in the
context of a case study to derive practical insights from sta-
tistically proven site-specifc data analysis results. Currently,
this research consortium is planning to extend the number of
testing sites in the next few years to improve the generality of
the proposed system’s potential benefts. In the future, we will,
therefore, be able to collect and examine a higher number of
samples from newly exploited sites to conduct a meta-analysis
for an objective measurement of the integrated quantitative
evidence. Second, warning information from LED-VMS alone
may not be sufcient for pedestrians using smartphones while
walking. Audible alerts would be more suitable for such in-
stances. Tus, we will install multiple heterogeneous warning
systems that will be used to provide road users with risk in-
formation. In addition, we are planning to further optimize the
accuracy and efectiveness of the system by considering confict
severity assessment, to give diferent levels of warnings (for
instance, when the risk is low, only LED-VMS is used, whereas
when the risk is high, both LED-VMS and an audible warning
are sent). Te system can have multiple warning thresholds to
classify the level of risk situations.
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