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As one of the key algorithms in supporting AV (autonomous vehicle) to complete the LC (lane changing) maneuver, the LTP (LC
trajectory planning) algorithm generates safe and efcient LC trajectory for the AV. Tis paper proposes a novel dynamic LTP
algorithm based on the quintic polynomial curve. Tis algorithm is capable of adjusting LC trajectory according to the state
changes of the surrounding driving environment.Te formulation of our proposed algorithmmainly consists the underlying form
of trajectory equation, the optimization objective function, the corresponding constrains, and the SQP (sequential quadratic
programming) algorithm. For each planning step, the time-based quintic polynomial function is introduced to model the
trajectory equation. Te problem of solving the parameters of the corresponding equation is then transformed into an opti-
mization problem, which takes driver’s safety, comfort, and efciency into account. After that, the SQP algorithm is employed to
solve this optimization problem. Finally, both numerical simulation and feld-data validation are used to verify the efectiveness of
our proposed algorithm. We anticipate that the research could provide certain valuable insights for developing more reliable LC
algorithms for AVs.

1. Introduction

Numerous research studies indicate that the advent of AVs
(autonomous vehicles) could signifcantly enhance trafc
safety, improve trafc efciency, alleviate trafc congestion,
and reduce fuel consumption [1–8]. California, as the frst
city to formulate regulations for road testing of AVs, has
attracted world’s top companies to conduct research, de-
velopment, and road testing of AVs. Te 2020 autonomous
driving road test data released by DMV [9] showed that
Waymo and Crusie have conducted nearly 630,000 and
770,000 miles of testing. Te corresponding MPI (miles per
intervention, the average number of miles traveled between
every two manual interventions) is about 0.033 and 0.035,
respectively. It is foreseeable that high-level AV will soon
appear in daily life.

One of the indispensable components of autonomous
vehicle technology is the lateral maneuver research, which is

a challenging undertaking that requires the exploration of
solution spaces to achieve optimal safety, mobility, and
environmental factors [10]. Generally speaking, the research
on lateral maneuver research can be roughly divided into
modeling the decision-making process of LC [4, 11, 12], the
impact of LC on surroundings [13], the duration of LC
[14–16], and the LC trajectory planning [1–5, 7, 8, 17–19].
Since this paper concentrates on LTP (LC trajectory plan-
ning), we will mainly focus on reviewing the literature which
are closely related to our research theme. Te LTP (LC
trajectory planning) algorithm is one of the most important
algorithms in supporting the autonomous vehicle to com-
plete the LC maneuver. When the AV has decided and is
about to execute LC maneuver, AV needs to specify an LC
trajectory in advance and then drive along this trajectory
until it arrives the center line in the target lane. As shown in
Figure 1, the center position of the autonomous vehicle at
each time step forms the entire shape of the LC trajectory.
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Te LTP algorithm is employed to address several questions
related to this reference trajectory as follows: (1) what is the
mathematical equation form of the LC trajectory curve? (2)
what factors should we consider to obtain the corresponding
parameters? and (3) how to control the vehicle to accurately
track the planned trajectory?

Over the past decades, a considerable amount of eforts
has been made. Existing research on LTP could be mainly
divided into the analytical method [1–8], artifcial potential
feld method [2, 4, 5], and data-driven method [18, 19]. Te
analytical method sets the trajectory equation in advance,
takes the needs of the LC vehicle as the optimization ob-
jective, and solves the optimal lane-changing trajectory
[1–5, 7, 8, 16]. Te data-driven method usually refers to the
method of using the machine learning or deep learning
algorithm, which aims to extract LC dynamics from massive
data instead of describing the nature of things [18, 19].
Recently, many scholars have tried to introduce the artifcial
potential feld into the LTP algorithm.Te artifcial potential
feld method regards the various elements of driving envi-
ronment, such as road edges, static obstacles, and moving
obstacles as a potential energy feld [2, 4, 5]. Te vehicle tries
to fnd a trajectory with the lowest total potential feld. Tis
paper will focus on reviewing and employing the frst
method since it has high reliability and fexibility without
being limited by various situations [20].

If we adopt the analytical method, the approximate curve
equation of LC trajectory has to be determined in the frst
place. Up to now, the most commonly used mathematical
equations are the quintic polynomial equation [1, 21, 22],
cubic polynomial equation [17], sine (cosine and trapezoi-
dal) curve equation [23], etc. After determining the curve
equation, the problem of determining the values of corre-
sponding parameters are generally transformed into an
optimization problem, which usually takes driving comfort,
driving efciency, and driving safety into account. Sub-
sequently, the optimization algorithm (i.e., sequential qua-
dratic programming [24], the interior-point algorithm
[1, 25], etc.) is introduced to solve this optimization prob-
lem. After that, we could acquire the mathematical equation
of the LC trajectory of the autonomous vehicle, and the
autonomous vehicle will then drive along with this trajectory
until it arrives at the center line of the target lane.

Based on the vehicle-to-vehicle communication, the
dynamic automated LC maneuver algorithm was proposed
[1], which is composed of the trajectory planning algorithm
and the trajectory tracking algorithm. Te time-based
quintic polynomial function is introduced to model the
reference trajectory, which satisfes the safety, comfort, and
efciency of the automated vehicle. Finally, simulation and
experiments results demonstrate the efectiveness of the

proposed algorithm. Using the same mathematics equation,
Bai et al. [21] introduced the quintic polynomial function to
model the accelerated lane-changing characteristics, which
considers the collaboration with the following vehicle in the
target lane. Furthermore, Bai et al. [21] established the
rectangular collision boundary of the subject vehicle so as to
analyze the possible collision points. Finally, this algorithm
is verifed under diferent accelerated lane-changing sce-
narios. Yue et al. [22] introduced the time-based quintic
polynomial function for the implementation of trajectory
planning and develops a robust tube-based model predictive
control method for an underactuated tractor-trailer vehicle
system.

In order to satisfy diferent drivers’ personalized LC
needs, Huang et al. [25] incorporated personalized driving
style into the automated LC trajectory planning algorithm.
Te time-based quintic polynomial function is also in-
troduced to model the LC trajectory. Simulation results
demonstrate that the driving style adaptive LC trajectory
model can meet the driver’s personalized LC needs very well.
On the other hand, in order to develop the cooperative LTP
algorithm, a multivehicle cooperative automated LTP al-
gorithm is proposed in Luo et al. [24]. Due to the in-
volvement of multiple cars at the same time, the cooperative
safety spacing model is proposed to guarantee and improve
the safety of the vehicles. Diferent from previous research,
the prediction of the states of surrounding vehicles is in-
tegrated into the LTP algorithm so as to reduce the risk of
possible collisions [3]. Te collision area of the preceding
vehicle is defned to tolerate the disturbances and un-
certainties. Tereafter, the generated trajectory is not
allowed to cross the collision area and thus obtaining the
fnal optimal trajectory. Although the abovementioned re-
search have provided valuable insights into developing the
LTP algorithm, these existing studies all share a common
faw. Te algorithms adopted in these studies could all be
viewed as the SLTP (static LTP) algorithm [17], which fails to
react to the changes of the states of surroundings vehicles.
Te AV plans the LC trajectory only once, which is based on
the state of surroundings before the execution of LC.
Nevertheless, in the actual driving environment, the states of
the surrounding vehicles may change randomly (i.e., sud-
denly accelerates or decelerates), and if the AV drives along
with the original LC trajectory, there may be a trafc ac-
cident or even death or injury [17]. In order to bridge this
research gap, the DLTP (dynamic LTP) algorithm is pro-
posed by Yang et al. [17], which is capable of replanning the
LC trajectory at certain frequency. Te results demonstrate
that the proposed DLTP algorithm provide safer trajectory
for AV than the traditional SLTP algorithm.

Although existing studies have achieved signifcant re-
sults, these algorithms cannot adapt to changes in the
surrounding environment. If the speed of surrounding ve-
hicles changes greatly during the LC process, it is difcult to
adjust the trajectory planned by itself in real time, which is
accompanied by greater driving risks. To address this gap,
this paper proposes a novel DLTP algorithm based on the
quintic polynomial function. Compared with the cubic
polynomial function, this kind of polynomial function is

S3
S4

S2
S1

y

x

Sego

(x (t), y (t))

Starting

Ending

ν

θ

Figure 1:Te schematic diagram of LC of the autonomous vehicle.
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a more general equation and has been widely used in the
existing literature [1, 22, 24]. Te formulation of our pro-
posed algorithm mainly consists the underlying form of
trajectory equation, the optimization objective function of
the trajectory, the constrains of the vehicle, and the SQP
algorithm. Finally, both numerical simulation and feld-data
validation are designed to verify the efectiveness of the
proposed algorithm. Te subsequent sections of this paper
are organized as follows. Section 2 presents the structure of
the proposed LTP algorithm. Section 3 presents the nu-
merical simulations on the proposed algorithm. Te feld-
data validation of our proposed algorithm is presented in
Section 4. Te summary of this paper is provided in
Section 5.

2. Model Framework

A typical LC schematic involves fve vehicles, including the
ego vehicle and the surrounding four vehicles. For the
convenience of subsequent discussion, we denote these
vehicles as Sego, S1, S2, S3, and S4. Te typical LC process is
divided into two regions as shown in Figure 2. (1) Prepa-
ration region: when the AV has decided to perform LC, it
will still drive forward until there is a safe gap distance in the
target lane. (2) Execution region: when the AV is about to
execute LC, it will gradually move from the current lane to
the target lane (from the starting point to the ending point as
shown in Figure 2). Tis paper mainly focuses on the second
region, and the LC decision-making process is beyond the
research scope of this study. Te input of this algorithm is
the real-time state of surrounding vehicles, and the output is
the state of the ego vehicle. For each planning step, the time-
based quintic polynomial function is introduced to model
the trajectory equation. Te problem of solving the pa-
rameters of the corresponding equation is then transformed

into an optimization problem, which takes driver’s safety,
comfort, and efciency into account. After that, the SQP
algorithm is employed to solve this optimization problem.

2.1.Modeling theLCTrajectory. Teparameter planning step
size tpss is introduced for replanning the LC trajectory every
tpss second interval, thus enabling the AV to adjust its LC
trajectory in real time proactively. For the kth planning step,
the time-based quintic polynomial function is introduced,
which exhibits better performance in ftting the LC trajec-
tory and has been widely used in the existing studies [1, 25].
Te longitudinal and lateral trajectory with respect to time is
defned as follows:

xk(t) � a0,k + a1,kt + a2,kt
2

+ a3,kt
3

+ a4,kt
4

+ a5,kt
5
,

yk(t) � b0,k + b1,kt + b2,kt
2

+ b3,kt
3

+ b4,kt
4

+ b5,kt
5
,

θk(t) � artan
_yk(t)

_xk(t)
 ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where xk(t), yk(t), and θk(t) denote the longitudinal posi-
tion, lateral position, and course angle of the ego vehicle.
ai,k, i � 0, 1, ..., 5 and bj,k, j � 0, 1, ..., 5 are the corresponding
coefcients.

At the frst planning step, it is reasonable to assume that
the velocity and acceleration of AV are desired to be zero at
the start and end position in the lateral direction. Also, we
assume the ego vehicle has the same speed at the starting and
ending point in the longitudinal direction. Tereafter, we
could simplify the equation (1) and obtain the trajectory at
the frst planning step.

x1(t) � _x tini( t − _x tini( tfin,1 − xfin,1  6
t

tfin,1
 

5

− 15
t

tfin,1
 

4

+ 10
t

tfin,1
 

3
⎡⎣ ⎤⎦,

y1(t) � 6D0
t

tfin,1
 

5

− 15D0
t

tfin,1
 

4

+ 10D0
t

tfin,1
 

3

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where tini denotes the initial time of LC, _x(tini) denotes the
initial speed, and D0 denotes the lateral distance. It can be
found that the simplifed formula contains only two un-
known parameters, namely, tfin,1 and xfin,1, which refer to the
fnal lane change duration and lateral move distance left after
the frst planning step. As for the other planning steps, it is
also reasonable for us to assume that the position and speed
should be continuous at the intersection of the adjacent LC
trajectory curves. Note that since the starting and ending
state of the vehicle could be obtained, the trajectory formula
at any planning step can be reduced to only two parameters
(tfin,k and xfin,k).

2.2.OptimizationObjective Function. TeAV needs to make
driver feel comfortable during the process of LC, so the
acceleration of the AV should change smoothly rather than
abruptly. Hence, we introduce the variable, jerk, to serve as
a measure of driver’s comfort/discomfort, which is defned
as the rate of acceleration change. As mentioned above, for
the kth planning step, the trajectory formula could be re-
duced to contain only two parameters, i.e., tfin,k and xfin,k.
Te corresponding formula of comfort cost function
Jcomfort

k (tfin,k, xfin,k) is presented in equation (3), which is
composed of longitudinal and lateral comfort parts. Te
numerator is the sum of the discomfort felt by the driver
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within the remaining LC duration, and the denominator is
the product of the maximum acceleration and jerk of the
AV.

J
comfort
k tfin,k, xfin,k  �


tfin,k

tini+(k−1)tpss
jx,k(t)

2dt

jx,max ∗ ax,max
+


tfin,k

tini+(k−1)tpss
jy,k(t)

2dt

jy,max ∗ ay,max
, (3)

where k � 1, 2, 3, ..., m denotes the current planning step. m

denotes the total planning steps. jx,k and jy,k denote the
longitudinal and lateral jerks of the AV. jx,max and jy,max
denote the maximum and minimum jerks. ax,max and ay,max
denote the maximum and minimum accelerations.

On the other hand, the AV hopes to complete the LC
maneuver as soon as possible to minimize the impact of LC
on surroundings or avoid excessive occupation of the sur-
rounding road resources. At the initial point of trajectory
planning, the lateral movement distance D0 is known, while
the longitudinal movement distance will vary with the pa-
rameters of the trajectory curve. Hence, we introduce the
ratio of the longitudinal movement distance and lateral
movement distance as a measure of LC efciency of the
autonomous vehicle. Te higher the ratio, the lower the
efciency of the AV to complete the LC.

Te formula of efciency cost function
J
efficiency
k (tfin,k, xfin,k) is given in the following equation,
which is composed of the remaining longitudinal and lateral
distance of the autonomous vehicle.

J
efficiency
k tfin,k, xfin,k  �

xfin,k − xk−1 tpss 

D0 − yk−1 tpss 
, (4)

where xk−1(tpss) and yk−1(tpss) indicate the longitudinal and
lateral positions of the previous planning step.
xfin,k − xk−1(tpss) denotes the remaining longitudinal dis-
tance. D0 − yk−1(tpss) denotes the remaining lateral distance.

Terefore, we defne Jtotalk (tfin,k, xfin,k) as the total cost
function of the AV at the kth planning step.

J
total
k tfin,k, xfin,k  � ω1 ∗ J

comfort
k tfin,k, xfin,k 

+ ω2 ∗ J
efficiency
k tfin,k, xfin,k ,

(5)

where ω1 and ω2 are the corresponding weight coefcients,
which refect the tradeof between the comfort and ef-
ciency part. It is worth noting that these two values may
vary diferently among drivers and driving environments.
Diferent settings for these two values may lead to diferent
optimal objective values. If there are no surrounding ve-
hicles, we could choose a higher value of ω1. When the
trafc is in a congested state, to avoid the excessive in-
fuence of LC behavior on trafc fow, we could choose
a larger value of ω2.

For the kth planning step, we transform the problem of
solving these coefcients into an optimization problem. Te
AV needs to minimize the discomfort and inefciency for
the current trajectory planning step.

min J
total
k t
∗
fin,k, x

∗
fin,k  � ω1 ∗ J

comfort
k t

∗
fin,k, x

∗
fin,k 

+ ω2 ∗ J
efficiency
k t

∗
fin,k, x

∗
fin,k ,

(6)

where t∗fin,k and x∗fin,k are optimal corresponding parameters
when the total cost function is the lowest.Te corresponding
constrains will be elaborated in the next subsection.
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Figure 2: Te schematic diagram of DLTP of the autonomous vehicle.
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2.3. Constrains for the Vehicle. When solving this optimi-
zation problem, it is inevitable to consider the corresponding
constraints: speed constraint, stability and comfort con-
straints, and safety constraint.

(1) Speed constraint: the speed of the AV should not
exceed the maximum speed but should be greater
than the minimum speed. Te formula of the speed
constraint is given in the following equation:

vmin ≤
�����������

_x(t)
2

+ _y(t)
2



≤ vmax. (7)

where vmin represents the minimum speed limit and
vmax represents the maximum speed limit.

(2) Stability and comfort constraints: the acceleration
and the jerk should be within the reasonable range.
Te corresponding constraint formula is given in the
following equation:

amin ≤ €x (t)≤ amax, amin ≤ €y(t)≤ amax, jmin ≤x(t)≤ jmax, jmin ≤y(t)≤ jmax, (8)

where amin, amax, jmin, and jmax denote themaximum
acceleration, minimum acceleration, minimum jerk,
and maximum jerk, respectively.

(3) Safety constraint: the AV must not collide with
surrounding vehicles at any time. Te defnition of
the collision boundary area is shown in Figure 3. Te
la, lb, Ca, and Cb are defned as the vehicle length,
vehicle width, ellipse long radius, and ellipse short
radius, respectively.

Taking the starting point as the origin of coordinates,
suppose at time t, let Pj(t) � (xj(t), yj(t)), j � Sego,

S1, S2, S3, S4 denotes the center position of the vehicle j. Te
real-time boundary of the collision area of each vehicle is
defned as Gj(x, y).

M
2

C
2
a

+
N

2

C
2
b

� 1,

M � x − xj(t) ∗ cos θj − y − yj(t) ∗ sin θj,

N � x − xj(t) ∗ sin θj + y − yj(t) ∗ cos θj.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

It is worth noting that the four corners of the smallest
circumscribed rectangle of the vehicle outline should fall on
the ellipse or within the ellipse.

la
2

C
2
a

+
lb
2

C
2
b

≤ 4. (10)

We assume that GSego
(x, y) and GS1

(x, y) represent the
collision boundary of vehicle Sego and S1, respectively. Also,
the two closet points are (x1, y1) and (x2, y2). Te point
(x1, y1) is on the GSego

(x, y) curve and the point (x2, y2) is
on the GS1

(x, y) curve. Te minimum distance d
S1
Sego

could be
derived through Lagrange multiplier as shown as follows.

L x1, y1, x2, y2, λ1, λ2(  � d
S1
Sego

2 + λ1GSego
x1, y1( 

+ λ2GS1
x2, y2( ,

(11)

where d
S1
Sego

2 � (x1 − x2)
2 + (y1 − y2)

2. λ1 and λ2 are
Lagrange multipliers. When the distance between two points
is the shortest, we need to meet the following formulas:

zL

zx1
� 2 x1 − x2(  + λ1

GSego
x1, y1( 

zx1
� 0,

zL

zx2
� 2 x2 − x1(  + λ2

GS1
x2, y2( 

zx2
� 0,

zL

zy1
� 2 y1 − y2(  + λ1

GSego
x1, y1( 

zy1
� 0,

zL

zy2
� 2 y2 − y1(  + λ2

GS1
x2, y2( 

zy2
� 0,

GSego
x1, y1(  � 0, GS1

x2, y2(  � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(12)

Trough solving the abovementioned six equations, the
value of the abovementioned six variables could be obtained.
Tus, the real-time minimum distance between Sego and S1
can be calculated. Te real-time minimum distance between
two collision boundary ellipses should be greater than the
corresponding threshold MSS0 (the minimum safe space).
Te reason for setting this threshold is to avoid collision if an
emergency situation occurs. If the value MSS0 is too small, it
is difcult for the ego vehicle to cope with unexpected sit-
uations; otherwise, the efciency of LC may be afected.

2.4. SQP Algorithm. To fnd the solution of the above-
mentioned optimization objective function, we introduce
the SQP algorithm. Te idea of the SQP algorithm is to
transform the nonlinear optimization problem with equality
and inequality constraints into a quadratic programming
problem. Te optimization problem of general nonlinear
constraints can be expressed as follows:

min
x∈R

f(x),

s.t.
ci(x) � 0,

cj(x)≥ 0,

⎧⎨

⎩

(13)

where f(x) refers to the equation (5) and x denotes the
corresponding variables. ci(x) denotes the equality con-
straints, and cj(x) denotes the inequality constraints.
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After the initial point is given, the Lagrange equation of
the objective optimization function is approximated qua-
dratically and then the subproblem of quadratic pro-
gramming is obtained as follows:

min
x∈R

1
2
d

T
Hkd + ∇f xk( 

T
d,

s.t.

ci xk(  + ∇ci xk( 
T
d � 0,

cj(x) + ∇cj xk( 
T
d≥ 0,

⎧⎪⎪⎨

⎪⎪⎩

(14)

where Hk denotes the positive defnite approximation of
∇2xxL(xk, λk). k denotes the current number of iterations.Te
quasi-Newton method can be used to approximate the so-
lution of the quadratic programming subproblem as the
search direction of the next iteration, thus converging to the
fnal solution set.

2.5. Summary of Our Model. Te core part of our algorithm
is the setting of the planning step parameter tpss. Te change
in the magnitude of its value helps us to adjust the planned
lane change trajectory at regular intervals. Equation (2) is
obtained by simplifying the speed and acceleration at the
starting and ending points in equation (1) so that the ob-
jective function contains only two variables.Te constructed
optimization objective function considers the comfort and
efciency, while the safety is determined by the crash
boundary model. Finally, the SQP algorithm is introduced to
solve our optimization problem.

3. Numerical Simulation

In this section, numerical simulation is conducted to verify
the efectiveness of the proposed algorithm. Te simulated
parameters adopted in this section are given in Table 1,
which mainly refer to existing literature [3, 17, 24]. Te
initial speed of the Sego, S1, S2, S3, and S4 vehicles are assumed
to be 20m/s, the planning step size tpss is set as 1 s, and the
value of comfort weight coefcient is set as 0.5. Te initial
longitudinal relative position between the surrounding ve-
hicles and the ego vehicle is all 50m. Te preliminary nu-
merical result is given in Figure 4.

Under this simulation scenario, there are total four steps
of trajectory planning, and the total duration is about 4 s. At
the end of the frst-step trajectory planning, the AV arrives at
(17.98m, 0.21m). Ten, the autonomous vehicle replans its
second-step trajectory planning and arrives at (37.85m,

1.51m). After the third-step and fourth-step trajectory plan-
nings, the AV fnally reaches the center line of the target lane.
On the other hand, the lateral speed gradually increases to
1.7m/s and then gradually decreases to 0m/s.Te longitudinal
speed drops slightly, but it is always above 20m/s. Te cost
value (Jtotal, Jcomfort, Jefficiency)k of the AV at each planning step
is (15.22, 5.09, 25.34)k�1, (13.43, 7.18, 19.69)k�2,
(13.2, 5.84, 20.56)k�3, and (22.58, 8.05, 37.1)k�4, respectively.
Tis preliminary numerical simulation verifes the efectiveness
of the proposed DLTP algorithm. Tis algorithm indeed
achieves the efect of dynamically planning the LC trajectory.
Tere are total four steps of trajectory planning in this sim-
ulation scenario.

Tereafter, we vary the value of tpss from 0.5 s to 2 s, and
the corresponding results is given in Table 2. It could be
found that with the decrease of the tpss, AV needs to plan
more steps. When tpss equals to 0.5 s, there are eight steps of
trajectory planning. When tpss equals to 2 s, there are only
two steps of trajectory planning. Te corresponding total
cost value, comfort cost value, and efciency cost value at
each planning step are also detailed presented in Table 2.
When we compare the performance of the algorithm with
diferent tpss, we can analyze the average, maximum, and
minimum values of each cost. When tpss is 0.5 and 0.8, the
average value of comfort cost is 11.26 and 7.30, the average
value of efciency cost is 29.03 and 26.70, and the total cost is
20.12 and 17.00, respectively. Terefore, it may be more
appropriate to choose tpss as 0.8. An excessively small tpss
may lead to the increase of the discomfort cost. A smaller
value of tpss could be set in a more complicated LC envi-
ronment. On the other hand, if the LC conditions are
comfortable (i.e., no surrounding vehicles or too far apart),

Table 1: Te numerical parameters used in this section.

Variables Denotation Values
Vehicle length la 5m
Vehicle width lb 2m
Ellipse long radius Ca

����
13.5

√
m

Ellipse short radius Cb

�
2

√
m

Maximum speed vmax 30m/s
Minimum speed vmin 5m/s
Maximum acceleration amax 8m/s2
Minimum acceleration amin −8m/s2
Maximum jerk jmax 8m/s3
Minimum jerk jmin −8m/s3
Lateral moving distance D0 3.5m
Minimum safe space MSS0 5m

Cb

Ca

lb

la
Collision

area
Collision
boundary

Figure 3: Te boundary of the collision area of the ego vehicle.
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the AV could choose a large tpss. In essence, this may relate to
the tradeof between our desire for safer LC trajectory and
our desire for more comfortable LC experience. Tis may
involve the further development of our algorithm in
selecting the optimal tpss value for the AV. How to calculate
this value will be accomplished in future research. Figure 5
presents the sensitivity analysis results of the initial speed of
the ego vehicle. It can be found that with _x(tini) increasing
from 15m/s to 30m/s, the LC duration gradually decreases
from 4 s to 3.6 s. Meanwhile, the fnal longitudinal position
also increases from 69.69m to 120.68m, the corresponding
average comfort cost gradually increases from 4.00 to 8.33,
and the corresponding average efciency cost gradually
increases from 19.91 to 34.48.

4. Field Data Validation

In this section, the highD dataset is employed to validate our
proposed algorithm. First, the processing process of this

dataset is presented. Second, we compare and analyze the
simulation results with the feld data.

4.1. highD Dataset. Te highD dataset is a new dataset of
naturalistic vehicle trajectories recorded on German
highways during 2017 and 2018 [26]. Tis dataset contains
16.5 hours of measurement, 45,000 kilometers of total
driven distance, and over 11,500 vehicles. Tese trajec-
tories are recorded in 4k (4096 ∗ 2160) resolution from
six diferent locations near Cologne, Germany. Te total
driven distance of this dataset is about 45,000 kilometers,
and the total recorded hour is about 16.5. At the same
time, the positioning error of each trajectory is typically
less than ten centimeters. For the details of this new
dataset, please refer to reference [26]. As shown in Fig-
ure 1, we mainly focus on extracting the LC trajectory
which involves fve surrounding vehicles. Te process of
extracting the LC trajectories is summarized as follows.
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Figure 4: Preliminary numerical result of the proposed algorithm (four planning steps in this scenario).
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Step 1: we mainly focus on researching the LC of the
private vehicles. We manually flter out the LC trajectories
in which some of the abovementioned fve vehicles are
missing. Step 2: we determine the beginning and ending
points of LC according to the lateral speed of the subject
vehicle. It is reasonable for us to assume that the lateral

speed of the subject vehicle equals to zero at these two
points. Step 3: after the abovementioned two steps, we
roughly got a preliminary data processing result. Finally,
we manually verify the fnal LC trajectory one by one. Tis
is because the trajectory information may be missing at
some time in the process of LC.

Table 2: Sensitivity analysis result of the planning step size.

tpss Steps Final longitudinal
position (m)

Remaining LC
time (s)

Total cost
value

Comfort cost
value

Efciency cost
value

0.5 s

1 88.71 4.45 15.22 5.09 25.34
2 83.91 3.81 13.04 4.24 21.83
3 77.33 3.09 14.98 11.38 18.58
4 72.35 2.44 19.25 21.50 17.00
5 70.60 1.95 15.89 13.45 18.34
6 71.89 1.62 14.44 3.95 24.94
7 73.84 1.31 28.65 16.55 40.75
8 73.76 0.91 39.49 13.49 65.48

0.8 s

1 88.71 4.45 15.22 5.09 25.34
2 82.87 3.46 13.16 6.02 20.29
3 78.54 2.55 14.58 10.51 18.64
4 78.14 1.83 13.50 3.07 23.93
5 78.48 1.14 28.57 11.83 45.32

1 s

1 88.71 4.45 15.22 5.09 25.34
2 82.80 3.26 13.43 7.18 19.69
3 80.23 2.23 13.20 5.84 20.56
4 80.44 1.34 22.58 8.05 37.10

1.5 s
1 88.71 4.45 15.22 5.09 25.34
2 83.72 2.80 13.68 7.85 19.50
3 83.24 1.38 22.24 7.53 36.95

2 s 1 88.71 4.45 15.22 5.09 25.34
2 85.19 2.38 13.35 5.42 21.28
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Figure 6 exhibits an example of the process of de-
termining the starting and ending points of the LC trajec-
tory. It is worth noting that when determining the starting
and ending points, we cannot rely solely on the variable of
speed. It is also necessary to consider the variable of ac-
celeration and position since the speed and acceleration of
the vehicle fuctuate around zero as shown in Figure 6. Each
specifc trajectory needs specifc analysis and determination.
Finally, we have obtained a total of 560 LC trajectories.
Figure 7 presents three examples of LC trajectory, and each
LC trajectory involves fve vehicles. It is worth noting that no
matter what the initial input is, this algorithm could still
ensure the safe completion of LC. Tis is guaranteed by the
vehicle constraints (the real-time speed, acceleration, jerk,
and distance constraints). Terefore, we will not adopt all
trajectories for verifcation. Te comprehensive comparative
analysis of the cost value between the real trajectory and the
simulated trajectory is the follow-up research of this paper.
Under diferent LC scenarios, the distribution of the comfort
and efciency costs of feld-data LC trajectories and the
approximation of the weight coefcient between these two
types of cost will be studied in the future research. Tis may
guide us to improve the proposed algorithm.

4.2. SimulationResults. Te state of the surrounding vehicles
of the LC trajectory is utilized as the input of the proposed
DLTP algorithm, and tpss is set as 1 second. Under diferent
sizes of the weight coefcient, simulation results are pre-
sented in Figure 8 (the corresponding tracks’ segments id
and vehicle id are also presented).When ω1 equals to 0.1, AV
is most concerned about LC efciency compared with
comfort. Take the vehicle 376 as an example, the corre-
sponding average comfort and efciency cost is about 42.31
and 15.93, respectively. Tereafter, with the gradually in-
crease of ω1 from 0.1 to 0.9, the driver becomes more
concerned about LC comfort. Te corresponding average
comfort cost gradually decreases from 42.31 to 3.43, and the
average efciency cost gradually increases from 15.93 to
27.36. Meanwhile, the LC duration gradually increase from
2.9 s to 4.8 s.

Te comparison with the real trajectory data and the
trajectory simulated by the SLTP algorithm is also con-
ducted. ω1 and tpss are set as 0.5 and 1s, respectively. Te
right part of Figure 9 represents the actual speed of the
surrounding vehicles. Te left part is the comparison of the
lateral trajectory of the ego vehicle. In these three examples,
the speed of the target-front vehicle decelerates and the
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speed of the target-rear vehicle gradually increases. Te
results demonstrate that the proposed DLTP algorithm
could adjust its LC trajectory according to the change of

surroundings, while the SLTP algorithm fails to adapt to this
change. Furthermore, the corresponding average comfort
and efciency cost for each LC trajectory are presented in
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Figure 9: Comparison between the real trajectory with the simulated trajectory.

Table 3: Comparison results of the cost between the feld data with simulated data.

Tracks segment
ids Vehicle ids

Cost (feld data) Cost (simulated data)
Comfort Efciency Total Comfort Efciency Total

26 2399 21.124 41.199 31.162 6.017 23.684 14.851
33 2038 63.169 53.530 58.349 7.986 31.437 19.711
30 921 13.843 56.911 35.377 8.379 32.839 20.609
25 2794 24.770 21.110 22.940 13.884 27.423 20.654

12 Journal of Advanced Transportation



Table 3. Te results demonstrate that our proposed algo-
rithm could provide more efcient and more comfort LC
trajectories than original trajectories.

5. Conclusion and Future Work

Tis paper focuses on developing the DLTP algorithm.
Specifcally, for each planning step, the quintic polynomial
curve is introduced as the underlying form of the trajectory
equation. Te problem of determining the corresponding
parameter is then transformed into an optimization prob-
lem, which takes driver’s safety, comfort, and efciency into
account. Tereafter, to verify the efectiveness of our pro-
posed algorithm, preliminary numerical simulation has been
conducted at frst. Te corresponding numerical results
demonstrate that our proposed algorithm could achieve the
efect of dynamically replanning its LC trajectory. Te de-
tailed trajectory information for each planning step has been
provided, including the speed, acceleration, position, and the
corresponding cost values. At the same time, sensitivity
analysis on the planning step size and the initial speed has
been carried out.

Along with numerical simulation, feld-data validation
has also been conducted in this paper. Since no actual au-
tomated LC trajectory is available at this point, it is at least
appropriate to employ the naturalistic LC trajectories to
examine the performance of our proposed algorithm. Sev-
eral LC trajectories are extracted from the highD dataset.Te
feld-data validation results demonstrate that our proposed
algorithm could provide safer LC trajectory than the tra-
ditional SLTP algorithm. Meanwhile, our proposed algo-
rithm exhibits better performance in terms of the average
total cost than the feld-data trajectory. To some extent, this
indicates that the AV could provide more ideal trajectory
than the human-drive vehicle.

Undoubtfully, many aspects of this paper need further
research. First, an issue that remains to be explored is to
develop the corresponding LTT (LC trajectory tracking)
algorithm. Te LTT algorithm focuses on controlling the
autonomous vehicle to follow a given trajectory, which is
also an indispensable part in supporting automated LC.
However, due to page limit, we only focus on developing the
LTP algorithm in this paper. Te corresponding LTT al-
gorithm will be accomplished in the future research of this
study. Second, the exploration of the distribution of comfort
and efciency cost of feld-data LC trajectories and the
comparison between the feld-data trajectories and the
simulated trajectories may guide us to improve our proposed
algorithm. Tird, the incorporation of the prediction al-
gorithm into the LTP algorithm could also have been
imbedded into our proposed algorithm. Tis may further
reduce the risk of collisions, thus enhancing the safety of LC.
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