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To provide an efficient demand-responsive transport (DRT) service, we established a model for predicting regional movement
demand that reflects spatiotemporal characteristics. DRT facilitates the movement of restricted passengers. However,
passengers with restrictions are highly dependent on transportation services, and there are large fluctuations in travel demand
based on the region, time, and intermittent demand constraints. Without regional demand predictions, the gaps between the
desired boarding times of passengers and the actual boarding times are significantly increased, resulting in inefficient
transportation services with minimal movement and maximum costs. Therefore, it is necessary to establish a regional demand
generation prediction model that reflects temporal features for efficient demand response service operations. In this study, a
graph convolutional network model that performs demand prediction using spatial and temporal information was developed.
The proposed model considers a region’s unique characteristics and the influence between regions through spatial information,
such as the proximity between regions, convenience of transportation, and functional similarity. In addition, three types of
temporal characteristics—adjacent visual characteristics, periodic characteristics, and representative characteristics—were
defined to reflect past demand patterns. With the proposed demand forecasting model, measures can be taken, such as having
empty vehicles move to areas where demand is expected or encouraging adjustment of the vehicle’s rest time to avoid
congestion. Thus, fast and efficient transportation satisfying the movement demand of passengers with restrictions can be
achieved, resulting in sustainable transportation.

1. Introduction

The right to travel refers to citizens’ right to move freely and
safely. Because it is a fundamental right that is indispensable
to human life, efforts to ensure the right to move continu-
ously are needed [1]. Although transportation patterns have
changed over the past few decades, mainstream passenger
transport (e.g., buses and taxis) has not changed sufficiently
to meet these changes. In particular, timed route methods,
such as buses, incur fixed operating costs. If a passenger is
not picked up, a loss occurs; if the passenger’s demand
changes, the utilization rate decreases, and eventually, the
fixed cost increases. This leads to a vicious cycle that results

in a decrease in use, because the service does not adequately
satisfy the requirements of passenger travel. If this phenom-
enon persists, supply is concentrated on major routes, which
can create barriers to passengers’ travel rights. Moreover,
socially disadvantaged people (elderly people, disabled peo-
ple, residents of vulnerable areas, etc.) can experience severe
isolation. Demand-responsive transport (DRT) services have
emerged to solve this problem.

A DRT service refers to a transportation service that
responds to the movement demand of passengers without
a predetermined route or operation plan. It combines low
fares, which are the advantages of buses running fixed
routes, and convenient boarding and disembarking and
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speed, which are the advantages of taxis. Therefore, relative
to buses and taxis, DRT services achieve a tradeoff in terms
of efficiency and cost. DRT services have the following
advantages over fixed-route operations. First, the demand
resolution is optimized. For DRT services, the driving dis-
tance of a fixed-route vehicle divided by the number of pas-
sengers onboard is approximately half that for a fixed-route
operation. Additionally, DRT services have the advantage of
efficient operational cost management. DRT services are
economical because the fixed cost incurred when there is
no demand is low. Another advantage of DRT services is
their environmental superiority. They have a shorter toler-
ance distance than fixed-route vehicles. They are ecofriendly
with regard to greenhouse-gas emissions and fuel consump-
tion because they use small vehicles. Finally, passengers are
highly satisfied with DRT services. DRT services operating
in a door-to-door manner achieve higher levels of passenger
satisfaction than fixed-route operations, where passengers
must travel directly to the station [2].

DRT is applied to the movement of passengers with
restrictions, e.g., in areas where demand is intermittent or
transportation services are insufficient and vulnerable [3].
Real-time response to the travel demand is crucial for efficient
DRT service operations, requiring a system and demand fore-
casting model to allocate requests to vehicles quickly and effi-
ciently when passengers receive travel requests [4]. The
demand forecasting field for mainstream passenger transport
continues to improve with the development of deep-learning
technologies such as long short-term memory (LSTM). For
example, in [5], LSTM was utilized to predict future demand
according to past demand through traffic card data analysis.
However, DRT services are designed for the movement of pas-
sengers with restrictions; therefore, they exhibit a different
demand pattern from general mainstream passenger transpor-
tation. Because the existing liquor passenger transportation
model cannot be applied, a model that reflects the movement
characteristics of passengers with restrictions is required.

It is crucial to consider the demand at previous times in
the region, but it is also essential to reflect spatial character-
istics. Each region has spatial characteristics, such as com-
mercial districts and suburban areas [6, 7]. Because spatial
characteristics affect temporal trends, spatiotemporal factors
must be considered. In this study, three types of components
that reflect spatial, temporal, and spatiotemporal character-
istics were constructed and reflected in the model. Because
DRT services are subject to spatiotemporal influences, the
data are sparse. LSTM affiliation is not well suited for sparse
data. To solve this problem, we used channel-wise attention
and temporal means to alleviate the sparsity of the data to
the greatest extent possible and then used ConvLSTM.

The main contributions of this study are as follows.

(i) First, we improved the interpretability of the model
by identifying the cause of spatiotemporal demand
and reflecting it in the model

(ii) Second, we used channel-wise attention and tempo-
ral means to maximize the demand for sparse
demand response

(iii) Finally, a graph convolutional network (GCN) was
used for the first time to reflect spatial factors in
demand prediction according to the region of the
DRT service

The remainder of this paper is organized as follows.
Section 2 presents related research and basic deep-
learning models related to DRT service demand predic-
tion. Section 3 presents the proposed method. Section 4
presents the results of applying the proposed method to
actual data. Section 5 presents conclusions and suggestions
for further research.

2. Related Works and Preliminaries

This section introduces DRT service demand prediction
research and deep-learning methods.

2.1. DRT Service Demand Prediction. Because demand pre-
diction must precede the efficient operation of DRT services,
many studies have recently been conducted using various
methodologies. For example, in [8], after the entire region
was divided into grids, the demand for a DRT service was
predicted using a convolutional neural network (CNN),
LSTM, and ConvLSTM, along with exogenous variables
such as weather. In [9], an appropriate DRT type was iden-
tified by estimating the average number of people getting on
and off at bus stops in a regular pattern identified through
cluster classification of time-by-time boarding points for
the efficient placement of DRT.

Recent studies focus on spatial dependence, traveler per-
sonal heterogeneous, sparse uncertainty, and demand pre-
diction quality requirements. Reference [10] mentioned
that variables representing factors related to the characteris-
tics of service supply, demographic characteristics, land use,
and accessibility should be discovered and fused to reflect
the direct impact and ripple effect on demand. Their
research uses a model structure (Attention, ConvLSTM) that
can demonstrate demand patterns of call taxis for the dis-
abled as a service supply characteristic. In addition, to reflect
demographic characteristics, the administrative region,
which is a division of a population-based area, was used as
variables representing factors related to land use and accessi-
bility were discovered and utilized as a functional similarity
adjacency matrix of the GCN method. However, this paper
is aimed at developing an optimal bus route rather than a
DRT service. Call taxi for the disabled is a short-distance
transportation service for people who cannot go to the
appropriate stop due to severe disabilities. There is a sepa-
rate long-distance customized bus service for the disabled
in Seoul. Therefore, the use of the call taxi for the disabled
is different. Reference [11] is a thesis that studies the error
distribution rather than specific parameters, learning
methods, and hyperparameter adjustments for a transporta-
tion demand prediction model for adequate public transpor-
tation (PT) operation. To build an accurate model, it is
necessary to study the error distribution considered in the
study. References [12, 13] utilized H-ConvLSTM that applies
convolution based on a hexagonal shape rather than a

2 Journal of Advanced Transportation



conventional pixel standard. We improved the performance
by using the ensemble for postaggregation, like bagging. To
reflect the interregional relationship between hexagons, they
used the GCN additionally.

In particular, the traffic demand was predicted using call
taxi data for people with disabilities in Seoul. In [14], the
waiting times for disabled people in Seoul were predicted
using SARIMA and LSTM and compared. In [15], the call
taxi latency for the disabled was predicted using several
hyperparameters of LSTM. However, in these studies, only
past temporal characteristics were considered; spatial char-
acteristics were omitted or reflected only in the Euclidean
space. Furthermore, because the spatial relationship is not
based only on the location in Euclidean distance, it is neces-
sary to reflect various spatial structures based on non-
Euclidean distance in the model.

2.2. Spatiotemporal Prediction. Demand prediction and
urban traffic prediction fields, such as traffic volume predic-
tion and congestion distribution estimation, exist in tasks
that reflect spatiotemporal factors. Previous studies on urban
traffic prediction can be classified into two categories
according to the input data format. Grid-based inflow and
outflow prediction is based on images, whereas graph-
based traffic speed prediction is based on graphs.

2.2.1. Grid-Based Inflow and Outflow Prediction. The
demand forecasts for DRT services and taxis are highly
similar [8]. Therefore, to predict the general taxi demand,
the entire area is converted into an image set to a grid of a
specific size and utilized. In [16], exogenous variables such
as weather and weekend availability were added in a fully
connected layer. The values before a certain point, such as
the distant, near, recent of the grid, are learned through
convolution. In [6], predetermined point-of-time values
and point-of-interest (POI) characteristics were learned
by a grid through convolution, such as the time, day,
and week of the set grid, and combined through ResPlus
to predict the regional taxi demand at the next time. Col-
lecting exogenous variables that may be related to future
demand can improve the predictive performance.
Although weather, POI, or traffic flow was used in the
foregoing studies, the performance improvement was
insignificant relative to the increase in the number of
parameters, because the improvement through exogenous
variables was orthogonal to capturing complex spatiotem-
poral dependence in the data [7].

2.2.2. Graph-Based Traffic Speed Prediction. Graph struc-
tures—not images—are used to solve various urban prob-
lems. In contrast to the grid-based method, research is
focused on solving various urban problems, such as predict-
ing traffic speed, rather than predicting movement demand.
For example, in [17], a GCN with three adjacency matrices
was used. Spatial characteristics were adopted, along with a
contextual gated recurrent neural network [14, 18, 19] and
temporal characteristics with values prior to a certain point
in time of closeness, period, and trend. In [20], a three-
part model that predicts the travel demand at the next point

in time was proposed. The first part is a long-term encoder
for encoding the past moving demand. The second part is
a short-term encoder for deriving next-step predictions from
generated multistep predictions. The third part is an
attention-based output module for modeling dynamic tem-
poral and channel-wise information. In [21], ST-Conv
block—a combination of temporal-gated convolution and
spatial graph convolution—was used to predict the traffic
speed at the next point in time. In this study, we predicted
the demand for a DRT service using the graph-based
method.

2.3. GCN. The GCN applies to graph G = ðV , AÞ, where V
refers to vertices and A ∈ℝjV j×jVj is a matrix with edges
expressing the relationships between the vertices. The GCN
can extract a local feature from a non-Euclidean structure
in another receptive field. For example, to utilize convolu-
tion in the graph structure, the Fourier transform [22] can
be used. To share the basis of the Fourier transform, we
compute the Laplacian matrix

L = I −D−1/2AD−1/2, ð1Þ

where D denotes the degree matrix. We denote Xl as the fea-
tures of the lth layer, αk as trainable coefficients, Lk as the k
-order multiplier of the graph Laplacian matrix, and σ as
an activation function. The graph convolution operation
[23] using a Laplacian matrix is defined as follows:

Xl+1 = σ 〠
K−1

k=0
αkL

kXl

 !
: ð2Þ

We learn the relationships between adjacent vertices by
updating feature X through multiple layers. Moreover,
because the GCN has the characteristics of learning weight
sharing and local features, which are characteristics of the
CNN, it is possible to obtain a node feature reflecting the
connection information of the adjacent (hop) nodes of each
node.

2.4. Channel-Wise Attention. Given an input X ∈ℝW×H×C ,
channel-wise attention [17, 18] learns the weights for each
channel to find and highlight the most important frame with
larger weights. Here, H, W, and C refer to the height, width,
and channel number of the image, respectively. The
channel-wise attention is defined as follows. A summary of
each channel

zc = Fpool X:,:,cð Þ = 1
WH

〠
W

i=0
〠
H

j=0
Xi,j,c for c = 1,⋯, C ð3Þ

is obtained. Then, we obtain the attention s = σðW2δðW1zÞÞ.
The algorithm learns to assign a large weight to the impor-
tant channels. The attention value to the original input
values is channel-wise as follows:

X~
:,:,c =X:,:,c ⊙ sc, for c = 1,⋯, C: ð4Þ
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Figure 1: Distributions of demands at 5 p.m. on November 1, 2019. (a) Distribution of demands (continuous) at 5 p.m. (b) Distribution of
demands (0/1) at 5 p.m.
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Here, Fpool is a global average pooling operation, andW1
and W2 are the corresponding weights. δ and σ are nonlin-
ear functions for each ReLU, i.e., rectified linear unit and sig-
moid function.

3. Method

3.1. Description of Dataset. In this study, DRT service data of
call taxis for the disabled in Seoul for two years (from 00:00
on January 1, 2018, to 24:00 on December 31, 2019) were

used. The call taxis were primarily operated in Seoul but
sometimes moved to areas adjacent to Seoul, depending on
the passenger demand. However, we limited the spatial
range to Seoul. Therefore, we included data from both
departure and destination sets within Seoul. The call taxi
data for the disabled included the following information.
For each call, the variables were the type of call (regular
reception, full-day reservation, and direct call), reception,
hope, dispatch, boarding, departure, destination, departure
coordinates, customer number, purpose of use, and number

ConvLSTM

ConvLSTM

ConvLSTM

Functional similarity

Transportation

Neighborhood Prediction

Various time values
(closeness, period,
trend)

(i) Spatial dependency
encoding relationships
by region

(ii) Temporal dependency
time J observations with
contextual gated ConvLSTM
(CGConvLSTM)

(iii) Spatial-temporal
dependency
GCN

Figure 2: Model overview.

Require:

1: Past demands X = ðxðtrendÞi , xðperiodÞi , xðclosenessÞi ÞjV j−1
i=1

2: Future true demand yi = ðxðt+1Þi ÞjVj−1i=0
3: Adjacency matrix A = ðAN , AT , AFÞ, degree matrix D = ðDN ,DT ,DFÞ, hop: K
Ensure: future prediction demand byi = ðx̂ðt+1Þi ÞjV j−1

i=0
4: While training do
5: For all A do
6: (1) Spatial dependency: apply Chebyshev to each adjacency matrix A
7: ~L⟵ rescale (normalize ðLÞ)
8: For all K do
9: Tk+1 ⟵ Chebyshev ð~L, TkÞ
10: End for
11: (2) Temporal dependency: apply with contextual gating (CG) and ConvLSTM
12: Hi ⟵ ConvLSTMðCGðX, Tk+1ÞÞ
13: End for
14: (3) Spatial-temporal dependency: apply with FC (fully connected) and GCN (graph convolution network)

15: dyi ⟵ FCðGCNðHiÞÞ
16: Compute loss: L = BCELossðbyi , yiÞ
17: End while

Algorithm 1: Training procedure of the proposed method.
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of boarding vehicles. Of the 424 administrative districts,
Wirye-dong, which had no passenger demand in 2018 or
2019, was excluded. In addition, we excluded data correspond-
ing to hours other than the primary operating hours. There
were 1,699,614 data points within 11h, including 7–17h.

The data contained one row of demand consisting of a
three-dimensional matrix with 8030 rows and 423 (adminis-
trative districts) columns in 365 days × 2 ðyearsÞ × 11 (time
zones) by aggregating the number of demands by administra-
tive district in the date-time period. The number of demand
cases was continuous data; however, as mentioned previously,
the number of demand cases had an extensive and intermit-
tent distribution. Zero accounted for 62% of the cases
(1,064,141 of 1,699,614), one accounted for 21%, and the
others accounted for only 17%. The class imbalance problem
was alleviated by treating multiple demands as one demand
(0/1). For example, for 5 p.m. on November 1, 2019, the data
exhibited a wide variety of demands, as shown in Figure 1(a).
However, the number of demands was changed according to
whether there was demand, as shown in Figure 1(b).

3.2. Proposed Method. The proposed method consists of three
steps. The first step is to encode the spatial dependency, the
second step is to use ConvLSTM [24] to reflect the temporal
dependency, and the third step is to use a GCN [23] to reflect
the temporal dependency. Figure 2 illustrates the overall pro-
cess. Furthermore, pseudocode is presented in Algorithm 1.

3.3. Encoding Spatial Dependency. The proposed method uti-
lizes several types of adjacency matrices to reflect the spatial
dependency. The adjacency matrix AN reflects the neighbor-
hood between administrative districts.

AN ,i,j =
1, vi and vj are adjacent,

0, otherwise

 
ð5Þ

Figure 3(a) shows a heat map of the adjacency matrix for
adjacent connections between administrative districts. The
second adjacency matrix AT was designed to reflect the real
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Figure 3: Adjacency matrices for neighborhood, transportation, and functional similarity. (a) Neighborhood adjacency. (b) Transportation
adjacency. (c) Functional-similarity adjacency.
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travel distance between the administrative districts.

AT ,i,j =max 0, conn vi, vj
À Á

− AN ,i,j
À Á

∈ 0, 1f g: ð6Þ

Figure 3(b) shows a heat map of the adjacency
matrix for the transportation convenience connection
between administrative districts. According to the third
adjacency matrix AF , for administrative districts that
are more functionally similar, the demand patterns are
more similar.

AF,i,j = I sim Pvi
, Pvj

� �
> 0:9

� �
− AT ,i,j − AN ,i,j ∈ 0, 1f g: ð7Þ

Here, simð·Þ denotes cosine similarity. P is a vector
of the medical location quotient (LQ), disability LQ,
number of resident registration disabilities, and demand
movements for each administrative district. Location

quotient (LQ) measures the dispersion of a specific
industry. We calculate the satisfaction of medical care
and disability facilities in administrative districts by com-
paring them with Seoul city. It can be interpreted that
the higher the coefficient, the higher the satisfaction of
the owned facilities compared to other administrative
districts, and vice versa—the lower the coefficient, the
insufficient. LQ, a quantitative indicator, was used to
compare the functional similarity between the two
administrative districts. The adjacency matrix and nor-
malized Laplacian matrix for the functional similarity
between the two administrative districts were expressed
in a heat map, as shown in Figure 3(c).

Chebyshev polynomials [25] were used to embed the
configured adjacency matrix. We transformed the adjacency
matrix into a Laplacian matrix as follows:

~L = I −D−1/2AD−1/2, ð8Þ

where D is degree matrix, ~L is normalized graph Lapl-
caian matrix, and I is identity matrix.

Using k-order Chebyshev polynomials [25],

f A ; θið Þ = Tk
~L
À Á

= 2x Tk−1 ~L
À Á

− Tk−2 ~L
À Á

withT0 = I, T1 = ~L,
ð9Þ

encoding.

3.4. Learning Temporal Dependency. Contextual gates and
ConvLSTM deploy temporal dependencies. We use input
values based on closeness, period, and trend. For closeness,
we consider the demands from 1, 2, and 3h in the past.
The period is the same as that of 1, 2, and 3d in the past.
The trend is the demand a week in the past. As shown in
Figure 4, contextual gating is performed.

We first compute GCN (X) applying GCN to the original
value. In the model, GCN is applied as follows. Multigraph
convolution is used, such as equation (10), to reflect spatial

[H(1), … , H(J)] = H ∈ ℝJ×|V|×P

[z(1), … , z(J)] = z ∈ ℝJ×1×P[X(1), … , X(J)] = X ∈ ℝJ×|V|×P

Fpool (X) ∈ ℝJ×|V|×P

Fpool (GCN(X)) ∈ ℝJ×|V|×P

Fpool

Fattention∀ |V|
s ∈ ℝJ

J reweighted observations

J observations

J observations

Figure 4: Contextual gating mechanism of the proposed method.

Conv
LSTM

Temporal
mean

J reweighted observations
|V| nodes

J
[H(1), … , H(J)] = H ∈ ℝJ×|V|×P

Figure 5: Contextual gating mechanism.
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dependency by utilizing several graphs configured. Multi-
graph convolution is used to reflect spatial dependency. Xl

∈ℝjVj×Pl , Xl+1 ∈ℝjV j×Pl+1 is feature vectors of region V layer
in l and l + 1:σ is activation function and ⊔ is aggregation
function, where is sum. A is a set of graphs, and f ðA ; θiÞ

∈ℝjV j×jV j is the aggregation matrix of other samples. If Wl
∈ℝPl×Pl+1 is the feature transformation matrix, Xl+1 is
updated to

Xl+1 = σ ⊔A∈A f A ; θið ÞXlWlð Þ: ð10Þ
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Figure 6: Results for the functional similarity adjacency matrix obtained using t-SNE: (a) t-SNE results for the functional similarity; (b)
t-SNE results for the Seoul map.
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Then, we apply global average pooling to all regions.

z jð Þ =
1
Vj j〠

Vj j

i=1
Fpool X jð Þ

i

� �
+ Fpool GCN X jð Þ

i

� �� �� �
, for j = 1,⋯, J:

ð11Þ

Let σ be a sigmoid function and δ be the GeLU, i.e., Ga
linear unit function. Equation (11) produces the following
summary:

s = s 1ð Þ, s 2ð Þ⋯,s Jð Þ
� �

= σ W2δ W1zð Þð Þ, ð12Þ

for each of the temporary observation periods. We multi-
plied the calculated summary by the original value.

~X
jð Þ = X jð Þ ⊙ s jð Þ, for j = 1,⋯, J: ð13Þ

Through the contextual gating mechanism, we obtain
reweighted observations with weights over time.

However, the LSTM architecture may not be well
learned from sparse data. To resolve this, we applied
ConvLSTM after the temporal mean, as shown in
Figure 5. For each of the three inputs, the temporal mean

is as follows:

~X
jð Þ = mean ~X

closenessð Þ� �
, mean ~X

periodð Þ� �
, mean ~X

trendð Þ� �� �
:

ð14Þ

We learn the temporal characteristics of each region
using ConvLSTM in the temporal mean reweighted obser-
vations. Owing to intermittent demand, we convert sparse
data into dense data. Therefore, we average features for
closeness, period, and trend and then apply ConvLSTM.
Across all regions, ConvLSTM is applied to the values of
the reweighted observations. This results in a single vector
that aggregates the learned spatiotemporal information.

Hi = convlstm ~X
1ð Þ,⋯,~X jð Þ� �

, for i = 1,⋯, Vj j: ð15Þ

Finally, a multigraph GCN is applied to the result of the
ConvLSTM to learn spatiotemporal characteristics simulta-
neously. We then apply a fully connected layer for aggregation.

ŷi = FC GCN Hið Þð Þð : ð16Þ

4. Spatiotemporal Characteristics of DRT Service

In the proposed method, the regional demand for DRT ser-
vices is predicted via graph-based deep learning using the
spatiotemporal characteristics of the demand in the past
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Figure 7: Percentage of demand occurrences by hour.

Table 1: Mean feature vectors by clusters.

Cluster Medical LQ Disabled LQ Garage Return home Treatment Rehabilitation Religion Commute Shopping Business

0 1.57 1.07 0.08 1259.99 616.59 416.56 78.55 148.14 12.31 0.33

1 1.46 0.96 0.11 1075.18 814.89 474.19 119.67 138.13 11.78 0.33

2 1.22 0.94 0.07 1218.28 553.75 454.73 90.22 89.83 10.15 0.23

3 1.53 1.00 0.09 1200.80 1200.80 717.32 59.14 141.73 21.75 0.55

4 1.61 1.08 0.10 1319.93 1319.93 405.94 68.83 97.03 12.47 0.49
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two years. Therefore, it is necessary to investigate the cause
of the presence or absence of demand. Accessibility to the
DRT service is influenced mainly by time and space, as
shown in Figures 6 and 7. In this section, the factors that
affect the demand for transportation services are identified
through temporal and spatial characteristic analyses.

4.1. Analysis of Spatial Characteristics. To visually validate
the spatial dependency embedded vectors of the functional
similarity adjacency matrix, we used t-distributed stochastic
neighbor embedding (t-SNE) [26] over a low-dimensional
space. Then, we applied k-means clustering [27] to the lower
dimensions. We performed dimension reduction with t-SNE
for visualization and observed five clusters, as shown in
Figure 6. Table 1 presents the mean feature vectors for each
group.

Group 0 shows the residential area with the most passen-
gers boarding to commute. Meanwhile, there is a moderate
demand for the rest of the purposes. In the case of group
1, the number of garages is relatively large, and it is a resi-
dential area where people board the most for returning
home and religious purposes. In the case of group 2, the
medical LQ and disability LQ are low, and they do not board
well for business work and treatment purposes. In the case of
group 3, many people used DRT service for returning home,
rehabilitation, and shopping, and the pursuit of work was
relatively high. Finally, in the case of group 4, the medical
LQ and disability LQ are high, and the residential area tends
to have the highest purpose of returning home.

4.2. Analysis of Temporal Characteristics. As shown in
Figure 7, aggregating the demand status for the two years
by the hour revealed that 7 a.m. was the most in demand
and shows a decreasing trend at 8 a.m. and 9 a.m. However,
it increases again from 10 a.m. and then to decrease to 20%
from 1 p.m. to 5 p.m. Because of this characteristic, it is cru-

cial to predict the demand in the period when the demand is
plummeting, as most administrative districts exhibited a
demand of >50% at 7 a.m. These results are attributed to
the purpose of passenger use.

Figure 8 shows the usage purpose pattern: the number of
people returning home increased by 12 p.m., and the demand
for treatment, rehabilitation, and commuting/work increased
in the morning. In the case of movement for this purpose,
because the movement is often constant, it is possible to pre-
dict the demand position using this pattern. A functionally
similar adjacency matrix can explain this pattern.

According to the ratio of call types by time, direct calls
and full-day reservations were inversely proportional in the
case of full-day reservations. Therefore, we infer that dis-
abled call taxis operate regularly. We make three policy sug-
gestions. First, the demand should be checked on the
previous date by expanding the operating time zone of the
full-day reservation. Currently, the service is only operated
at 7 a.m., 8 a.m., and 10 a.m. However, the demand should
be predicted by expanding the operating hours or establish-
ing a system that can be flexibly received the reservation
before anytime. Second, movement should be encouraged
by utilizing measures such as deploying additional temporal
vehicles at 7 a.m., when the demand is the highest. Third,
maximum movement should be achieved at the minimum
cost by avoiding and adjusting the driver’s rest time between
10 a.m. and 12 p.m., when the demand increases again.

100

Pe
rc

en
ta

ge
 b

y 
ca

ll 
ty

pe
 (%

)

0

7 8 9 10 11 12
Time of day

13 14 15 16 17

90

80

70

60

50

40

30

20

10

Direct call
Call type

Full-day reservation
Regular reservation

(a)

70

Pe
rc

en
ta

ge
 b

y 
pu

rp
os

e (
%

)

0

7 8 9 10 11 12
Time of day

13 14 15 16 17

60

50

40

30

20

10

Return home
Purpose

Etc.
Shopping
Business

Rehabiltation
Religion
Treatment
Commute

(b)

Figure 8: Percentage of demand for different (a) purposes of use and (b) call types based on hours.

Table 2: Comparison of various methods.

Model Accuracy Precision Recall F1 score

HA 65.18 36.74 55.29 44.15

Logistic regression 68.04 30.92 66.07 42.13

XGboost [28] 69.82 42.47 65.19 51.43

Our method 78.13 75.41 62.26 68.21
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4.3. Model Performance Comparison. In this section, we
compare the two aforementioned models. Let ŷi = Pr(Xi)
be the conditional probability given an input xi. For a loss
of observation, we used the binary-cross entropy loss.

LBCE = −
1
n
〠
n

i=1
yi · log ŷið Þ + 1 − yið Þ · log 1 − ŷið Þ½ �: ð17Þ

The training dataset included data from January 1, 2018,
to October 31, 2019. Twenty percent of the data were used
for the validation. Data from November 1, 2019, to Decem-
ber 31, 2019, were used as test data. To maintain chronolog-
ical order, the data were not shuffled. ConvLSTM had four
hidden sizes and three layers, and the GCN had 64 hidden
sizes.

The performance of the proposed method was compared
with that of other methods, and the results are presented in
Table 2. Compared with the existing time series and classifi-
cation model, the proposed method achieved significantly
better performance. In contrast to the other methodologies,
previous time zones, e.g., the closeness, period, and trend,

were input as data configurations, and the characteristics of
each administrative district (medical LQ, disability LQ,
etc.) were added. Three adjacency matrices were used, and
the results of the experiment are presented in Table 3. The
first row presents the results obtained using only the neigh-
borhood adjacency matrix. The second row presents the
results obtained using two transportation adjacency matri-
ces: the neighborhood and transportation adjacency matri-
ces. The third row presents the results obtained using all
three functional adjacency matrices, i.e., neighborhood,
transportation, and functional similarity.

As shown, the method exhibited the best performance
when all three adjacency matrices were used. However, in
the case of the second row, the performance was inferior to
that achieved using only the neighborhood adjacency matrix.

Table 4 presents the performance with respect to the
type of temporal correlation. ConvLSTM outperformed
vanilla LSTM, which did not reflect the spatial information.
Also, max pooling shows lower performance.

The performance differences for different combinations
of closeness, period, and trend are presented in Table 5. As
time was used more, performance increased. In the case of
call taxi data for the disabled, the demand is very intermit-
tent, so the less time is used, the greater the sparse value will
be affected. In addition, in the case of the demand a week
ago, the actual past information is excessively required;
therefore, the demand was fixed to 1. The performance dif-
ference when using the performance difference according
to the use of K is presented in Table 6.

In the GCN, problems such as oversmoothing occur as
the number of layers K increases excessively [29]. Similarly,
in this study, when K increased by four or more, the

Table 3: Effect of adding components to the spatial correlation modeling on the performance.

Component Accuracy Precision Recall F1 score

Neighborhood 77.89 76.50 59.65 67.03

Neighborhood+transportation 77.75 75.54 60.56 67.22

Neighborhood+transportation+functional 78.13 75.41 62.26 68.21

Table 4: Effects of temporal correlation modeling.

Temporal Accuracy Precision Recall F1 score

Average pooling 76.60 71.46 63.11 67.02

Max pooling 77.56 72.71 64.72 68.49

LSTM 77.45 73.40 62.99 67.80

ConvLSTM 78.13 75.41 62.26 68.21

Table 5: Effects of time combinations.

J
(# closeness, # period, #

temporal)
Accuracy Precision Recall

F1
score

7 (3, 3, 1) 78.13 75.41 62.26 68.21

5 (2, 2, 1) 77.83 74.07 63.31 68.27

3 (1, 1, 1) 77.12 73.14 62.08 67.16

2 (0, 1, 1) 70.02 62.17 52.76 57.08

2 (1, 0, 1) 70.24 62.69 52.48 57.13

2 (1, 1, 0) 71.25 65.15 51.40 57.46

Table 6: Measures according to K .

K Accuracy Precision Recall F1 score

2 77.95 73.96 64.02 68.63

3 78.13 75.41 62.26 68.21

4 77.87 73.38 64.77 68.81

Table 7: Mean waiting time depending on whether there is a
vacant vehicle that exists or not (min).

Time Exist Nonexist Difference (nonexist-exist)

7 49.23 57.96 8.73

8 46.58 54.34 7.76

9 42.14 40.32 -1.82

10 26.95 48.24 21.29

11 28.81 44.96 16.15

12 30.16 42.07 11.91

13 32.91 35.63 2.72

14 33.77 34.78 1.01

15 31.74 29.38 -2.36

16 34.50 30.36 -4.14

17 28.17 34.55 6.38

Total 33.91 49.71 15.8
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performance was degraded. Finally, in the case of Seoul, if it
is influenced by too many hops, the performance is
degraded, reflecting irrelevant administrative district
relationships.

At the time of demand generation, we investigate the
average difference time in waiting time between the case
where the empty car is waiting and the case where there is
no waiting. Table 7 shows the mean waiting time depending
on whether there is a vacant vehicle that exists or not. When
an empty car is on standby, we expect that we could reduce
waiting time by about 16 minutes on average.

5. Conclusions

The proposed method can resolve unequal waiting times
between regions by predicting the demand location for effi-
cient operation of DRT services, which can support mini-
mum cost–maximum movement. The objective of this
study was to reduce the waiting time by efficiently rearran-
ging nearby empty cars by predicting the regional demand
for Seoul’s call taxi service for the disabled, which has inter-
mittent call characteristics. After configuring various sub-
graphs, the GCN was used to reflect the spatial
characteristics between regions, and the model was con-
structed using the temporal mean and ConvLSTM to reflect
temporal characteristics. Using various subgraphs from real
data analysis showed alleviated results in terms of accuracy
and interpretation. We expect improved convenience of
movement and satisfaction with public transportation by
reducing the waiting time. In addition, DRT services can
replace public buses, increase the efficiency of subsidies for
various types of public transportation, and generate profits
and labor inducement effects for transportation companies,
revitalizing the local economy and increasing the sharing
rate of public transportation.
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