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Te macroscopic models for solving the pedestrian fow problem can be generally classifed into two categories as follows: frst-
order continuum models and high-order continuum models. In frst-order continuum models, the density satisfes the mass
conservation law, the speed is defned by a fow-density relationship, and the desired directional motion of pedestrians is
determined by an Eikonal-type equation. In contrast, in high-order models, the velocity is governed by the momentum con-
servation law. In this study, we summarize existing frst-order and high-order models and rewrite them in the form of unifed
scalar or system hyperbolic conservation laws. Next, we apply high-order discontinuous Galerkin methods with a positivity-
preserving limiter on unstructured triangular meshes to solve the conservation law and a second-order fast-sweeping scheme to
solve the Eikonal equations. Our method can efciently model real-life complex computational regions and avoid nonphysical
solutions and simulation blow-ups. Finally, numerical examples are presented to demonstrate the accuracy and efectiveness of the
proposed solution algorithm. Te numerical results validate the reliability of the proposed numerical method and highlight the
advantages of triangular meshes.

1. Introduction

Due to the importance of the security and safety manage-
ment of pedestrian trafc, the pedestrian and crowd dy-
namic problem has received considerable attention in recent
decades. Models for simulating pedestrian fows can be
classifed into microscopic and macroscopic models.
Commonly used microscopic models such as social force
models, discrete element models, and cellular automaton-
based models simulate pedestrian movement by quantita-
tively describing the physical and psychological interactions
between individuals [1–3]. Tese models enable the simu-
lation of pedestrian dynamics and the reproduction of
empirical observations, such as the decision-making process
[4], uni- and bidirectional fundamental diagrams [5], and
pedestrian movements at bottlenecks [6] at low densities.

However, at high crowd density levels, microscopic models
are not as computationally efcient as macroscopic models
[7]. In addition, unlike microscopic models, dynamic
macroscopic models can simulate the evolution of collective
pedestrian behaviors, thus facilitating the analyses of key
variables and parameters of crowd dynamics.

Macroscopic models can enhance the understanding of
pedestrian fow dynamics by efciently simulating large-
scale and high-density crowds. Te variables (e.g., fow
intensity, density, and velocity) in a macroscopic model can
be represented by smooth mathematical functions, and their
relationship can be described by a set of partial diferential
equations. Among these models, the Light-
hill–Whitham–Richards (LWR) model [8, 9] is one of the
simplest continuum pedestrianmodels. Although this model
was originally independently proposed by Lighthill and
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Whitham [8] and Richards [9] (in 1950) to solve trafc
models, it is widely used to study pedestrian dynamics due to
the similarity between vehicular and pedestrian fows. In this
model, a mass conservation law is used to describe the
pedestrian fow, assuming an equilibrium state of the fow-
density relationship, similar to that reported by Greenshields
[10]. Te traditional LWRmodel has several limitations, and
thus, many extended LWR models have been designed to
solve problems such as the multiclass problem [11]. Spe-
cifcally, the traditional LWR model is defned in a one-
dimensional (1D) space, in which the walk direction is
unidirectional and known. Te route-choice strategy can be
identifed using the fow-density relationship. In a two-
dimensional (2D) pedestrian fow problem, although the
speed is known, the walk direction is no longer a single
entity, and many (even infnite) feasible walking directions
may exist. Consequently, a mathematical formulation must
be obtained to describe the route-choice strategy. To de-
scribe the route-choice strategy in a 2D pedestrian fow
problem, Hughes [12] proposed a systematic modeling
framework based on the continuum theory and used an
Eikonal equation to implement the route-choice strategy.
Subsequently, Hoogendoorn and Bovy [13, 14] developed
a dynamic user-optimal pedestrian fowmodel to study user-
optimal dynamic trafc assignment problems in continuous
time and space, in which pedestrians are assumed to have
perfect information regarding the modeled domain that can
be used to choose the route that minimizes the actual walk
cost. In this model, a time-dependent Hamilton–Jacobi
equation is used to describe the route-choice strategy. Huang
et al. [15] reformulated Hughes’ model and discovered that
the pedestrian route-choice strategy in Hughes’ model
satisfes the reactive dynamic user equilibrium (RDUE)
principle, in which a pedestrian chooses a route to minimize
their instantaneous travel cost to the destination. Xiong et al.
[16] extended Huang’s reactive DUE model to study bi-
directional pedestrian fow problems. Later, Du et al. [17]
proposed a predictive dynamic user equilibrium (PDUE)
model, in which a pedestrian chooses a route to minimize
their actual travel cost to the destination.

In the abovementioned 1D or 2D LWR models or ex-
tended LWR models, the speed is defned by a fow-density
relationship. Such models are typically known as frst-order
or equilibrium models, and numerical simulations have
demonstrated their usefulness in planning and designing
walking facilities. Although equilibrium models can sensibly
predict pedestrian dynamics, they cannot simulate the stop-
and-go waves and forward propagation of disturbances in
heavy trafc [18]. Tus, nonequilibrium models (second- or
high-order models) have been designed. Te Payne–
Whitham (PW) model [19, 20] is the earliest known non-
equilibrium model. Te speed in the PW model satisfes the
momentum equation rather than a fow-density relation-
ship, as in the case of LWR models. Te PWmodel has been
used to study the wrong-way travel problem [21, 22], and
many PW-like models have been developed, using diferent
trafc sound speeds to solve diferent problems. In general,
PW and PW-like models have the same structure, in-
corporating a mass conservation law and a momentum

equation. Such models are strictly hyperbolic when the
characteristic speed exceeds the vehicle speed, which may
lead to gas-like behavior [23]. Aw and Rascle [24] and Zhang
[25] developed a nonequilibrium model devoid of this be-
havior. To describe the property of crowd pressure and
identify the force chains, Liang et al. [26] proposed an ex-
tended PW (PWP) model that explicitly considers the crowd
pressure and efects of pushing forces and high densities to
describe pedestrian movement.

Te abovementioned frst- and higher-order models can
be rewritten into a unifed form that consists of a scalar or
system conservation law coupled with an Eikonal equation (or
Hamilton–Jacobi equation). In studies of numerical solution
of these pedestrian fow models, fnite diference (FD)
[11, 14, 26–29] and fnite volume (FV) methods [30] have
been commonly used. Tese methods can be directly used to
solve many pedestrian fow problems on structured grid
points, rectangular meshes, or some simple unstructured
meshes. However, FD methods cannot address problems
involving real and complex computation regions, for which
unstructured grids must be used. Moreover, FV methods are
difcult to implement because of the challenges associated
with reconstructions on complex meshes. Direct numerical
simulations may lead to signifcant oscillations, nonphysical
solutions, or even blow-ups when solving shock problems.

Discontinuous Galerkin (DG) methods are a class of fnite
element methods that have been widely used to solve hy-
perbolic equations. Tese methods use completely discon-
tinuous basis functions and are thus more fexible than
traditional continuous fnite element methods. In addition,
DG methods are characterized by a high-order accuracy, high
parallel efciency, fexibility for hp-adaptivity, and use of
arbitrary geometries and meshes. Te frst DG method, in-
troduced in 1973 by Reed and Hill [31], was used to solve
a time-independent linear hyperbolic equation. Subsequently,
Cockburn et al. [32–35] established a framework to solve
nonlinear time-dependent problems by combining the ex-
plicit, nonlinearly stable high-order Runge–Kutta time dis-
cretization scheme [36] with the spatial DG discretization. In
thismethod, exact or approximate Riemann solvers are used as
interface fuxes, and total variation-bounded nonlinear lim-
iters [37] are used to achieve nonoscillatory properties for
strong shocks. Tere are some extended DG methods, such as
local DG [38], direct DG [39], hybrid DG [40], and oscillation-
free DG [41], for partial diferential equations (PDEs) that
contain higher-order spatial derivatives or to reduce the os-
cillation. Tis method is widely applied in the domains of
aeroacoustics, gas dynamics, granular fows, magnetohydro-
dynamics, modeling of shallow water, oceanography, oil re-
covery simulations, turbulent fows, viscoelastic fows, and
weather forecasting. In this study, we implement the high-
order DG method over unstructured triangular meshes to
solve the conservation law and establish a systematic nu-
merical algorithm for modeling pedestrian dynamics.

Physically, the pedestrian density must be nonnegative
in a continuum model. However, in numerical experiments,
this property does not hold for many numerical schemes.
Te failure to preserve a positive density leads to ill-
posedness of the models and can easily cause blow-ups,
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especially when high-order numerical schemes are applied to
low-density regions. In many applications, the negative values
are simply truncated to zero or small positive values. Although
this approach may be efective in certain problems, brute
truncation will eventually result in blow-ups because the total
mass increases every time a negative density is set as zero. To
ensure stable computing, schemes that are demonstrably
positivity-preserving while also preserving the conservation
property must be designed. In reference [42], the authors frst
constructed an arbitrary high-order accurate maximum-
principle-satisfying DG scheme for one-dimensional and
multidimensional scalar conservation laws on rectangular
meshes. Subsequently, the authors extended this method to
a high-order accurate positivity-preserving scheme for Euler
systems on rectangular and triangular meshes [43, 44].

To fll the research gap of robust numerical algorithms on
triangular meshes for the reviewed pedestrian models, this
study applies a genuinely high-order DG scheme with a posi-
tivity-preserving limiter on unstructured triangular meshes to
solve the 2D conservation law, enabling the realization of
robust simulations in complex computational domains. In
addition, we use the second-order fast-sweeping method to
solve the Eikonal equation that describes the route choice in
frst-order models or equilibrium speed in higher-order
models. In numerical examples, we frst provide a numerical
example that has an exact solution to demonstrate the accuracy
of the high-order scheme. Ten, we test diferent cases of the
PWP model. First, to validate the correctness of the schemes,
we test an evacuation case involving a rectangular obstacle.Te
results are consistent with those obtained from the FD
weighted essentially nonoscillatory method [26]. Te simula-
tions based on the two methods yield consistent numerical
results, which confrm that the DG method can be applied to
nonsmooth and unstructured meshes without the loss of ac-
curacy or conservation properties. Second, an evacuation case
with circular obstacles is designed to validate the higher-order
model and highlight the advantages of the proposed approach.
Te averaged local fow-density relationship derived from the
simulation produces a second-peak phenomenon, consistent
with the fndings of empirical studies [18, 45]. Moreover, the
occurrence of stop-and-go waves is observed, which verifes the
applicability of the proposed model to unstable crowd con-
ditions. In addition to the density distribution, the aggregated
pushing pressure calculated using the proposed model can
serve as another risk-level indicator to strategically prevent
crowd disasters. Tus, the high-order DG scheme with
a positivity-preserving limiter is demonstrated to be accurate
and efective.

Te remainder of the paper is organized as follows.
Section 2 reviews diferent continuum pedestrian dynamic
models and describes the method of rewiring them in
a unifed form. Section 3 describes the numerical algorithm,
including the DG scheme with a positivity-preserving limiter
for hyperbolic equations, fast-sweeping method for Eikonal
equations, and total variation diminishing (TVD) Run-
ge–Kutta temporal discretization. Section 4 presents the
numerical examples designed to test the properties and
efectiveness of the proposedmethods. Section 5 presents the
concluding remarks.

2. Pedestrian Dynamic Model

When studying the pedestrian and crowd dynamics
through the continuum modeling approach, the pedestrian
dynamic model can be formulated as a set of partial dif-
ferential equations (PDEs) or PDEs with relaxation. In this
section, we review several commonly used continuum
pedestrian models, including frst-order and high-order
models, and rewrite them into a unifed form. Te con-
sidered frst-order models are the traditional LWR model
and 2D extended LWR models (such as RDUE/PDUE).
Among high-order models, diferent second-order models
are introduced.

2.1. First-Order Models. We frst introduce the frst-order
models, in which pedestrians always choose routes that
minimize their cost. Te LWR model is one of the simplest
continuum pedestrian dynamic models, in which the pe-
destrian fow is considered to be in a 1D space. Te trafc
state variables such as the fow, speed, and density satisfy the
following mass conservation law:

ρt + ρVe(ρ)( 􏼁x � q, (1)

where ρ is the pedestrian density and q is the travel demand.
Ve(ρ) is the preferred speed, which is a given nonnegative
and nonincreasing function with respect to ρ and defned in
[0, ρjam]; ρjam is the maximum density, corresponding to
a trafc jam. Tus, the fow fux f is defned as follows:

f(ρ) � ρVe(ρ). (2)

In the LWR model, because Ve(ρ) is a given function of ρ,
the fow fux satisfes several fundamental diagrams, such as
the Greenshields model.

Te traditional LWR model is defned in a 1D space, in
which the pedestrian walks forward to the destination and
the speed (norm of the velocity vector) function Ve(ρ) is
given. Tus, the velocity is known. Although this model is
useful for analytical problems, it cannot be applied to real-
world problems because pedestrians typically walk in 2D
scenarios. Terefore, we review the 2D-extended LWR
models coupled with diferent route strategy assumptions. In
2D space, the following conservation law is satisfed:

ρt + ρue( 􏼁x + ρve( 􏼁y � q, (3)

where ve � (ue, ve) is the 2D-preferred velocity vector. Al-
though the speed intensity Ve � |ve| can be computed
through a given speed-density relationship Ve(ρ), as in the
1D case, pedestrians can move freely in any direction.
Consequently, additional route-choice strategies are re-
quired to describe the travel direction of ve. Commonly used
route strategy models include RDUE and PDUE models.

In RDUE models, pedestrians always choose routes that
minimize their instantaneous walk cost and change their
movement directions in a reactive manner.Te route-choice
strategy satisfes

ve(x, y, t) // − ∇ϕe(x, y, t), (4)
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where // indicates that two vectors are parallel. Here, ϕe is
defned as the instantaneous cost potential, which can be
computed using the following Eikonal equation:

∇ϕe(x, y, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � π(x, y, t), (5)

where π � π(ρ) is the local cost function.
In the PDUE model, pedestrians are assumed to have

perfect information regarding the modeling domain that can
be used to predict future trafc information. Tus, the users
can choose routes that minimize their actual walk cost. Te
route-choice strategy satisfes the form presented in equa-
tion (4). However, the total travel cost ϕe must be redefned
as the actual travel cost and computed using a time-
dependent Hamilton–Jacobi equation as follows:

1
Ve(x, y, t)

ϕe( 􏼁t(x, y, t) − ∇ϕe(x, y, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 � − π(x, y, t). (6)

According to the route-choice strategy presented in
equation (4), the density in both the RDUE and PDUE
models is governed by the following 2D conservation law:

ρt(x, y, t) + ∇ · f(x, y, t) � q(x, y, t), (7)

where f(x, y, t) is the fow fux, which is defned as follows:

f(x, y, t) � ρ(x, y, t)ve(x, y, t)

� − ρ(x, y, t)Ve(x, y, t)
∇ϕe(x, y, t)

∇ϕe(x, y, t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
.

(8)

2.2. High-Order Models. In frst-order models, the magni-
tude of the movement speed Ve is a given function of the
density ρ (corresponding to the fundamental diagram), and
the movement direction is computed using a suitable route-
choice strategy. Te existing fundamental diagrams are
typically based on empirical observations and indicate the
average behavior of moving pedestrians. However, evident
individual diferences and unstable movement patterns have
been observed from empirical data. To describe these be-
havioral characteristics of pedestrianmovement, the second-
order PW model with relaxation has been designed. Similar
to LWR models, the frst equation in the PW model still
expresses the mass conservation, and the density, fux, and
travel demand satisfy the following conservation law:

ρt +(ρu)x +(ρv)y � q, (9)

where u and v are the velocities in the x and y directions, re-
spectively. In contrast to the LWR models, the velocities are no
longer computed by the given speed functions and route-choice
algorithms and satisfy the following momentum equations:

ut + uux + vuy +
h
2
0
ρ
ρx �

ue − v

τ
,

vt + uvx + vvy +
h
2
0
ρ
ρy �

ve − v

τ
,

(10)

where τ is the relaxation time; ue and ve are the equilibrium
speed in the x and y directions, respectively; and h0 < 0 is the
trafc sound speed. Because h0 is a negative parameter, the
traditional PWmodel may produce negative speeds (i.e., wrong-
way travel). To address this problem, many nonequilibrium PW
models have been designed, in which the constant trafc sound
speed h0 is replaced by a function h(ρ) that depends on the
density ρ.Te newmomentum equations are defned as follows:

ut + uux + vuy +
h
2
(ρ)

ρ
ρx �

ue − v

τ
,

vt + uvx + vvy +
h
2
(ρ)

ρ
ρy �

ve − v

τ
.

(11)

Te mathematical structure of these improved models is
similar to that of the PW model, and thus, such models are
named PW-like models.

To eliminate the gas-like behavior in PW-like models,
Aw and Rascle [24] and Zhang [25] developed a non-
equilibrium model shown to be devoid of the gas-like be-
havior. In this model, the momentum equation in PW-like
models is replaced with the following equations:

u + Pu( 􏼁t + u u + Pu( 􏼁x + v u + Pu( 􏼁y �
ue − v

τ
,

v + Pv( 􏼁t + u v + Pv( 􏼁x + v v + Pv( 􏼁y �
ve − v

τ
,

(12)

where Pu andPv are the pressures in the x and y directions,
respectively, which are increasing functions of the density.

Te abovementioned higher-order models focus on the
simulation of normal pedestrian movement in low-density
scenarios. To address large-scale and dense problems such as
crowd disasters, Liang et al. [26] proposed a higher-order
continuum model that considers panic efects and explicitly
takes into account the efect of the aggregated pushing force.
Te model formulation is

ρt +(ρu)x +(ρv)y � 0,

(ρu)t + ρu
2

+ P1􏼐 􏼑
x

+(ρuv)y � ρ
ue − u

τ
−
1
m

zP2

zx
,

(ρv)t +(ρuv)x + ρv
2

+ P1􏼐 􏼑
y

� ρ
ve − v

τ
−
1
m

zP2

zy
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)
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with suitable initial boundary conditions. Here, m is the
average mass of a pedestrian, and P1 is the compression
force, which is determined by the pedestrian density as
follows:

P1 � s(ρ), (14)

where s(ρ) is a given function that indicates the relationship
between the average compression force and density. P2 is the
pushing force, which is generated by panic in a dense fow
and satisfes the following equation:

∇
P2

α
􏼒 􏼓

�������

�������
�
δ(x, y, t)k(ρ)

α
; P2 � 0, if α � 0, (15)

where k(ρ) is a given function that describes the relationship
between the pushing capacity and density; δ(x, y, t) ∈ [0, 1]

is a given parameter that describes the level of panic in the
crowd; and α represents the relaxation factor defned as
follows:

α(x, y, t) �

1, if ∇ρ · ve ≥ 0,

max
ρ − ρ0
ρm − ρ0

, 0􏼠 􏼡, if ∇ρ · ve < 0,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(16)

where ρ0 represents the critical density when the pushing
capacity is higher than 0, and ρm represents the maximum
density.

2.3. Unifed Form of Diferent Models. In the previous sec-
tions, we reviewed several classical pedestrian dynamic
models including the frst-order models (equilibrium
models) and high-order models (nonequilibrium models).
All these models can be rewritten in the following unifed
form. Note that we present the 2D cases of the models,
except for the traditional LWR model as follows:

Ut + f(U)x + g(U)y � Q. (17)

Table 1 presents the variables U, f(U), g(U), and Q for
the diferent models.

Te equilibrium velocity vector (ue, ve) is computed
using equations (4) and (5) (or equation (6)).

Remark. Many other continuum pedestrian models are
available, but they have not been introduced in this section
due to limited space. Most of these models can also be
written as the conservation law, with diferent defnitions of
the conservation variables, pressure h(ρ), Pu, Pv, source
terms, and equilibrium speeds.

3. Solution Algorithms

Equation (17) represents a 2D system of hyperbolic con-
servation laws, and we defne F(U) � (f(U), g(U)). In this
model, the source term Q is computed implicitly. At each
fxed time, equation (5) must be solved to determine the
equilibrium speed (ue, ve). Moreover, in the PWP model,
equation (15) must be solved to obtain the gradient of P2 and
compute the source term Q. Equations (5) and (15) can be
written as the following Eikonal-type equation with suitable
boundary conditions:

‖∇ϕ‖ � C(x, y). (18)

Several numerical algorithms have been designed to
solve the conservation law system. Te DG method is one of
the most popular algorithms and can be used to study
problems with complex geometries by using unstructured
meshes. In this study, we use the high-order DG method
with a positivity-preserving limiter on triangular meshes to
solve equation (17). At each time level of the DGmethod, we
use the second-order fast-sweeping method on triangular
meshes to solve the Eikonal equation, equation (18).

Te formulation of the fast-sweeping method is pre-
sented in Section 3.1. Te high-order DG method and
positivity-preserving limiter are discussed in Sections 3.2
and 3.3, respectively.

3.1. Fast-Sweeping Method for Solving Eikonal Equations.
We apply the fast-sweeping method to solve equation (18)
on triangular meshes. Details of frst- and second-order fast-
sweeping methods on triangular meshes can be found in
References [46, 47], respectively. In this study, the second-
order fast-sweeping method is used.

We discretize the computational domain Ω into un-
structured triangular cells Δj. As shown in Figure 1, for
a given triangle Δj, the three angles are α, β, and c and the
lengths of the three edges are a, b, and c. Te fast-sweeping
method is an iterative method. Assuming that ϕj1 and ϕj2 at
nodes xj1 and xj2 and their related derivatives
∇ϕjl :� (zxϕjl, zyϕjl), l � 1, 2 are known, we aim to update
ϕj at node xj.

Before introducing the local solver for updating ϕj, we
examine the directional derivatives along edges a and b at
node xj. Te second-order approximations are defned as
follows:

Dlϕj � 2
ϕj − ϕjl

‖xj − xjl ‖
−

xj − xjl

‖xj − xjl ‖
· ∇ϕjl, l � 1, 2. (19)

Te following defnitions are considered:
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δ1 � 2ϕj1 + xj − xj1􏼐 􏼑 · ∇ϕj1, δ2 � 2ϕj2 + xj − xj2􏼐 􏼑 · ∇ϕj2 and

p1 �
2ϕj − δ1
xj − xj1

�����

�����
,

p2 �
2ϕj − δ2
xj − xj2

�����

�����
, δ � δ2 − δ1.

(20)

According to the connection between the gradient ∇ϕj

and directional derivatives,

Dϕj ≈H∇ϕj, H �

xj − xj1

‖xj − xj1 ‖

xj − xj2

‖xj − xj2 ‖

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≜
H1

H2

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (21)

where Dϕj � [D1ϕj, D2ϕj]
T, and superscript T represents

transposition. According to equation (21), the gradient ∇ϕj

at node xj can be approximated as follows:

∇ϕj ≈H
− 1

Dϕj. (22)

If this equation is combined with equation (18), the value
of ϕj at node xj satisfes

Dϕj􏼐 􏼑
T
HH

T
􏼐 􏼑

− 1
Dϕj � C xj, yj, t􏼐 􏼑, (23)

where C(xj, yj, t) is the source term at location (xj, yj) at
time t.

As presented in Reference [46], the computed solution
from equation (23) can be accepted only if the following
upwind criteria are satisfed:

D1ϕj ≥ H1 · H
T
2􏼐 􏼑D2ϕj andD2ϕj ≥ H1 · H

T
2􏼐 􏼑D1ϕj.

(24)

Otherwise, the gradient ∇ϕj satisfes

∇ϕj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≈ min
ϕj − ϕj1

a
,
ϕj − ϕj2

b
􏼠 􏼡. (25)

Tus, by solving equation (23) and combining it with
equation (25), the following expression can be obtained:

∇ϕj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ≈

1
sin c

������������������

p
2
1 − 2p1p2 cos c + p

2
2

􏽱

, if equation (27) holds,

min
ϕj − ϕj1

a
,
ϕj − ϕj2

b
􏼠 􏼡, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(26)

Tis form pertains to the Godunov numerical Hamil-
tonian for Eikonal equations. According to equation (26),

Node xj

Node xj1 Node xj2

a b

c

αβ

γ

Figure 1: Triangle ∆j.
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ϕj �

δ1 + δ2
2

+
sin(α − β)

2 sin c
δ2 − δ1( 􏼁 +

sin α sin β
sin c

��������

c
2
C
2
j − δ2

􏽱

, if equation (27) holds,

min ϕj1 + aCj, ϕj2 + bCj􏼐 􏼑, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(27)

where Cj � C(xj, yj, t).
Next, we introduce the sweeping process, which is

a Gauss–Seidel iteration process.Te sweeping order is a key
parameter in the fast-sweeping method. Te systematic

order must efciently cover all directions. Te order of
a rectangular mesh can be derived in a straightforward
manner, and the following four sweeping directions are
considered:

i � 1: I, j � 1: J(up − right); i � 1: I, j � J: 1(up − left);

i � I: 1, j � 1: J(down − left); and i � I: I, j � J: 1(down − right),
(28)

where i and j are indices in the x and y directions, re-
spectively. Notably, these natural orderings cannot be di-
rectly applied to unstructured meshes. A new systematic
ordering must be identifed to cover all directions. Following
Reference [46], we choose at least three noncollinear ref-
erence points and then sort all nodes according to the lp(p �

1, 2) distance to each reference point. In this manner, we can
sweep all nodes based on their ascending and descending
orders.

Te process of the fast-sweeping method on a triangular
mesh can be summarized as follows.

(1) Initialization

(a) Choose the reference points xi
ref , i � 1, . . . , R,

and sort all nodes according to the lp(p � 1, 2)

distance to each reference point. Defne S+
i and

S−
i as the arrays of all nodes according to the
distance to the i-th reference point in decreasing
and increasing orders, respectively.

(b) Based on the boundary condition, assign the
exact values ϕj and Dϕj at the infow boundary.
Large values (e.g., 1012) are assigned as the initial
estimates at all other grid points.

(2) Gauss–Seidel iteration

(c) Denote the vector of the initial solutions as ϕk

and set k � 1.
(d) Sweeping

(i) Choose the frst sweeping direction and set
l � 1.

(ii) Loop through all nodes in set S+
l and apply

the local solver to update the value.
(iii) Loop through all nodes in set S−

l and apply
the local solver to update the value.

(iv) If l≥R, proceed to Step 2(e); otherwise, set
l � l + 1 and return to Step ii.

(e) If ‖ϕk+1 − ϕk‖≤ ϵ, stop; otherwise, return to Step
2(d). Here, ϵ is a convergence threshold and ‖·‖ is
the L1 norm.

3.2. DG Methods. Equation (17) is solved using the DG
method. Te triangulation of the domain Ω is F, and
∆j ∈ F is any triangular element. Equation (17) is multiplied
by a test function v and then integrated over each cell Δj as
follows:

􏽚
∆j

(U(x, y, t))tv(x, y)dx dy + 􏽚
∆j

(∇ · F(U(x, y, t)))v(x, y)dx dy � 􏽚
∆j

Q(x, y, t)v(x, y)dx dy. (29)

Integrating by parts yields

d

dt
􏽚
∆j

U(x, y, t)v(x, y)dx dy − 􏽚
∆j

F(U(x, y, t)) · ∇v(x, y)dx dy + 􏽚
z∆j

F(U(x, y, t)) · nv(x, y)ds

� 􏽚
∆j

Q(x, y, t)v(x, y)dx dy,

(30)
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where n is the outward unit normal of the cell boundary z∆j.
Te line integral in this equation is typically discretized by
a Gaussian quadrature with a sufciently high order of
accuracy as follows:

􏽚
z∆j

F · nvds ≈ z∆j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽘

M

k�1
wkF U Gk, t( ( 􏼁􏼁 · nv Gk( 􏼁, (31)

where Gk is the quadrature point and wk is the quadrature
weight.

Next, we approximate solution U by using a numerical
solution within the fnite element solution space Vk

h, defned
as follows:

V
k
h � v ∈ L

2
(Ω): |v|∆j

∈ P
k ∆j􏼐 􏼑,∀∆j ∈F􏼚 􏼛, (32)

where Pk(∆j) represents the space consisting of polynomials
of degree up to k in element ∆j. In the fnite element space
Vk

h, the functions can be totally discontinuous across the
element interfaces. We replace function U in equation (30)
with Uh ∈ Vk

h. Moreover, we select test functions from the

space Vk
h. Function v in equation (30) is replaced with

vh ∈ Vk
h. As Uh and vh are allowed to have discontinuities

across the cell interface, the fux term F(Uh) and test
function vh on the cell boundary are not well defned. In the
DG methods, F(Uh) · n on the cell boundary must be
replaced with a numerical fux. Although many types of
numerical fuxes are available, the Lax–Friedrichs fux is
used in this study as follows:

􏽢F Uh( 􏼁 �
1
2

F U−
h( 􏼁 + F U+

h( 􏼁( 􏼁 · n − a U+
h − U−

h( 􏼁􏼂 􏼃, (33)

where U−
h and U+

h are the values of Uh on the cell boundary
obtained from the inside and outside of triangle ∆j, re-
spectively, and a � max

U,n
|F′(U) · n|. Te test function vh on

the cell boundary is set as v−
h , derived from the inside of ∆j.

Te DG method for solving equation (20) can be summa-
rized as follows: fnd the unique solution Uh ∈ Vk

h such that
∀vh ∈ Vk

h. For any triangular element ∆j in the triangulation
F,

d

dt
􏽚
∆j

Uh(x, y, t)vh(x, y)dx dy − 􏽚
∆j

F Uh(x, y, t)( 􏼁 · ∇vh(x, y)dx dy + 􏽚
z∆j

􏽢F Uh(x, y, t)( 􏼁vh(x, y)ds

� 􏽚
∆j

Q(x, y, t)vh(x, y)dx dy.

(34)

Similar to that in equation (31), this cell boundary in-
tegral can be approximated using the Gaussian quadrature
rule. Similarly, the term 􏽒∆j

F(Uh(x, y, t)) · ∇vh(x, y)dx dy

is computed by the following numerical quadrature:

􏽚
∆j

F Uh(x, y, t)( 􏼁 · ∇vh(x, y)dx dy ≈ ∆j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽘

N

k�1
λkF Uh Hk, t( ( 􏼁􏼁 · ∇vh Hk( 􏼁, (35)

where Hk is the quadrature point within ∆j and λk is the
quadrature weight.

Te basis functions for the space Pk(∆j) are φm
j (x, y) for

m � 1, . . . , K, where K � (k + 1)(k + 2)/2. Tus, the nu-
merical solution can be represented as follows:

Uh(x, y, t) � 􏽘
K

m�1
Um

j (t)φm
j (x, y), ∀(x, y) ∈ ∆j. (36)

Substituting this form into equation (34) and taking vh �

φl
j, l � 1, . . . , K yield

Aj

d

dt
Uj � rhs, (37)

where Uj � (U1
j , . . . ,UK

j )T, and Aj is a K × K matrix with
the entry al,m

j , defned as follows:

a
l,m
j � 􏽚

∆j

φl
j(x, y)φm

j (x, y)dx dy, (38)

and rhs is a K × 1 vector with the l-th entry, defned as
follows:

rhsl
� 􏽚

∆j

F Uh(x, y, t)( 􏼁 · ∇φl
j(x, y)dx dy − 􏽚

z∆j

􏽢F Uh(x, y, t)( 􏼁φl
j(x, y)ds + 􏽚

∆j

Q(x, y, t)φl
j(x, y)dx dy. (39)

Journal of Advanced Transportation 9



Equation (37) can be rewritten as the following ordinary
diferential equation (ODE):

d

dt
Uj � Aj􏼐 􏼑

− 1
rhs≜ Lj Uj􏼐 􏼑. (40)

To discretize the time to solve this ODE system, we use
the third-order TVD Runge–Kutta method [36, 48], which
can maintain the stability of the spatial discretization as
follows:

U(1)
j � Un

j + ∆tLj Un
j􏼐 􏼑,

U(2)
j �

3
4
Un

j +
1
4

U(1)
j + ∆tLj U(1)

j􏼐 􏼑􏼐 􏼑,

Un+1
j �

1
3
Un

j +
2
3

U(2)
j + ∆tLj U(2)

j􏼐 􏼑􏼐 􏼑.

(41)

3.3. Positivity-Preserving Limiter. Tis section describes the
positivity-preserving schemes for triangular meshes de-
veloped in Reference [42]. As TVD time discretizations are
convex combinations of the Euler forward operators, we
need to consider only the frst-order Euler forward time
discretization. In this study, we use the global Lax–Friedrichs
scheme, but the results can be easily extended to other
monotonic schemes.

For the test function vh � 1 in equation (34), we obtain
a scheme that is satisfed by the cell averages of the DG
method as follows:

Un+1
j � Un

j −
Δt
Δj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘
3

i�1
􏽚

ei
j

􏽢F U−
i ,U+

i( 􏼁ds +
∆t

∆j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽚
∆j

Q x, y, t
n

( 􏼁dx dy, (42)

where Un

j is the cell average of numerical solutions over
triangle ∆j at the time level n andU−

i andU
+
i are the values of

Uh on the i-th boundary ei
j obtained from the inside and

outside of the triangle ∆j, respectively. For the frst com-
ponent of Uh, i.e., the density ρ,

ρn+1
j � ρn

j −
Δt
Δj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘
3

i�1
􏽚

ei
j

􏽢F1 U
−
i , U

+
i( 􏼁ds +

∆t

Δj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
∆t􏽚

∆j

q x, y, t
n

( 􏼁dx dy, (43)

where 􏽢F1 and q are the frst components of 􏽢F and Q, re-
spectively. Let ρn

j(x, y) be the k-th degree polynomial on
triangle Δj. Ten, the line integral must be approximated by

the least k + 1 Gauss quadrature point. Tis scheme can be
rewritten as follows:

ρn+1
j � ρn

j −
Δt
Δj

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽘

3

i�1
􏽘

k+1

β�1

􏽢F1 U−
i,β,U+

i,β􏼐 􏼑wβl
i
j +
∆t

∆j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
􏽚
∆j

q x, y, t
n

( 􏼁dx dy, (44)

where ωβ is the Gauss quadrature weight on the interval
[− 1/2, 1/2] and􏽐

k+1
β�1ωβ � 1.U−

i,β andU
+
i,β represent the values

of U at the β-th Gauss quadrature point on the i-th edge,
taken from inside and outside the triangle ∆j, respectively;
and lij is the length of the i-th edge.

Next, we decompose the cell average ρn
j as a convex

combination of the point values of the DG polynomial
ρn

j(x, y). Following Reference [44], we denote the set of
quadrature points as follows:
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S
j

k �
1
2

+ v
β

􏼒 􏼓V1 +
1
2

+ 􏽢u
α

􏼒 􏼓
1
2

− v
α

􏼒 􏼓V2 +
1
2

− 􏽢u
α

􏼒 􏼓
1
2

− v
α

􏼒 􏼓V3,􏼚

1
2

− 􏽢u
α

􏼒 􏼓
1
2

− v
α

􏼒 􏼓V1 +
1
2

+ v
β

􏼒 􏼓V2 +
1
2

+ 􏽢u
α

􏼒 􏼓
1
2

− v
α

􏼒 􏼓V3, and

1
2

+ 􏽢u
α

􏼒 􏼓
1
2

− v
α

􏼒 􏼓V1 +
1
2

− 􏽢u
α

􏼒 􏼓
1
2

− v
α

􏼒 􏼓V2 +
1
2

+ v
β

􏼒 􏼓V3,

α � 1, . . . , N, β � 1, . . . , k + 1􏼛,

(45)

where V1,V2, andV3 are the position vectors of the three
vertices of triangle ∆j; and 􏽢uα, α � 1, . . . , N and
vβ, β � 1, . . . , k + 1 are the Gauss–Lobatto and Gauss
quadrature points on the interval [− 1/2, 1/2], respectively,
where N is the smallest integer such that 2N − 3≥ k. If k � 1,
the set of quadrature points S

j
1 is as shown in Figure 2. Te

cell average of ρn
j can be decomposed as follows:

ρn
j � 􏽘

3

i�1
􏽘

k+1

β�1

2
3
wβ 􏽢w1ρ

int ∆j( 􏼁
i,β + 􏽘

L

c�1
􏽥wcρ

int
c , (46)

where ρint(∆j)

i,β is the value of the polynomial ρn
j(x, y) at the

quadrature points on edge ei
j, ρ

int
c is the value of the poly-

nomial ρn
j(x, y) at the quadrature points in the interior ofΔj,

and the number of interior points is L � 3(N − 2)(k + 1).
Te coefcient is 􏽥wc � 2/3wβ 􏽢wα, β � 1,

. . . , k . . . , α � 2, . . . , N − 1. Similarly, the integral of the
source term q can be decomposed as follows:

􏽚
∆j

q x, y, t
n

( 􏼁dx dy � ∆j

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽘

3

i�1
􏽘

k+1

β�1

2
3
wβ 􏽢w1q

int Δj( 􏼁
i,β + 􏽘

L

c�1
􏽥wcq

int
c

⎛⎝ ⎞⎠, (47)

where q
int(∆j)

i,β is the value of q(x, y, t) at the quadrature
points on edge ei

j and qintc is the value of q(x, y, t) at the
quadrature points in the interior of ∆j.

Next, we consider equation (42), which is satisfed by the
cell averages of the DG method. If ρn

j(x, y) is nonnegative
for any (x, y) ∈ S

j

k in the Courant–Friedrichs–Lewy con-
dition with a∆t/|∆j|􏽐

3
i�1l

i
j ≤ 1/3􏽢w1 and ∆t≤ min

j,m
Aj,m

q , then

ρn+1
j is also nonnegative. Here, lij is the length of the i-th edge

ei
j of triangle ∆j; 􏽢w1 is the quadrature weight of the N-point
Gauss–Lobatto rule on [− 1/2, 1/2] for the frst quadrature
point; Aj,m

q is the value of Aq at point Gj
m ∈ S

j

k; and Aq is
a function of ρ and x and y, which is positive for positive
density values. Its explicit form depends on the specifc
source term q [49].

At the time level n, the original DG polynomial does not
satisfy the sufcient condition in this theorem in certain cases.
Tus, we need tomodify the polynomial ρn

j(x, y) such that it is
nonnegative for all (x, y) ∈ S

j

k. For any triangle, we assume
that ρn

j ≥ 0 and defneU
n
j(x, y) as the DG polynomial forU in

triangle ∆j. Next, we introduce the linear scaling limiter to
derive the modifed polynomial 􏽥Un

j(x, y) as follows:

􏽥Un

j(x, y) � θ Un
j(x, y) − Un

j􏼐 􏼑 + Un

j , θ � min 1,
ρn

j

ρn
j − mj

⎧⎨

⎩

⎫⎬

⎭,

(48)

with

mj � min
(x,y)∈Sj

k

ρn
j(x, y)􏽮 􏽯. (49)

According to equations (48) and (49), if the density ρ is
always nonnegative, the parameter θ always takes a value of
1. In this case, 􏽥Un

j(x, y) � Un
j(x, y) and the limiter does not

work. However, it can be easily derived that 􏽥Un

j(x, y)≥ 0 for
all (x, y) ∈ S

j

k. Terefore, we use the modifed polynomial
􏽥Uj(x, y) to replace Un

j(x, y) in equation (42). According to
Teorem 1, the cell average ρn+1

j at the time level n + 1 is also
nonnegative.

4. Numerical Examples

In this section, we frst provide a numerical test with
a simplifed setup to the model which has an exact solution,
to demonstrate the accuracy of the high-order positivity-
preserving DG scheme. Ten, the PWP model is considered
as an example to evaluate the proposed numerical
algorithms.

4.1. Example 1. We solve the following model equation:

ρt +(ρu)x +(ρv)y � 0,

(ρu)t + ρu
2

+ P􏼐 􏼑
x

+(ρuv)y � s1,

(ρv)t +(ρuv)x + ρv
2

+ P􏼐 􏼑
y

� s2,

ρ(x, 0) � ρ0, u(x, 0) � u0, v(x, 0) � v0,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(50)
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where P � ρ and s1 and s2 are the source terms, chosen so
that an explicit exact solution is available. In this example,
we solve the above system on a domain of [0, 1] × [0, 1], and
the initial data take ρ0 � 1 + 0.2 sin(2π(x

+ y)), u0 � 1, v0 � 1. Te exact solutions for this problem are
ρ � 1 + 0.2 sin(2π(x + y − 2t)), u � 1, v � 1 when the source
terms are s1 � s2 � 0.4π cos(2π(x + y − 2t)).

Te errors and orders of accuracy are shown in Table 2.
We can clearly see that the desired second-order of accuracy
is achieved with the L2 error of ρ on the triangular meshes.

4.2.NumericalExampleof thePWPModel. We consider two
panic evacuation scenarios on a 100m × 50m rectangular
railway platform with obstacles of diferent shapes.
Specifcally, the platform is considered to have rectan-
gular and circular obstacles in Examples 2.1 and 2.2,
respectively.

In both examples, the railway platform is initially empty,
with ρ(x, y, 0) � 0 at t � 0 s. Over time, pedestrians enter the
platform from the left boundary and move from the left to
the right within the platform. Te boundary conditions for
both examples are set as follows. Te origin Γo is at x � 0m,
y ∈ [0, 50m]. Te infow at the origin is

Fin �

ρinfd ρin( 􏼁

ρinfd ρin( 􏼁
2

+ s ρin( 􏼁

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (51)

where

ρin(t) �

2.5 ×
t

60
, t ∈ [0, 60 s],

2.5, t ∈ [60, 120 s],

2.5 × 3 −
t

60
􏼒 􏼓, t ∈ [120, 180 s],

0, t ∈ [180, 400 s],

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(52)

and the unit of ρin is ped/m2. Te destination is
x � 100m, y ∈ [0, 50m], where the cost potential is zero.
Te upper (y � 50) and lower (y � 0) boundaries are solid
wall boundaries, and the projection of the speed vector on
the normal direction of a boundary is set as zero. Table 3
specifes the other parameters and functions.

4.2.1. Example 2.1. A rectangular obstacle is located at
[50, 70] × [10, 30] (unit: m).Te proposed methods are used
to solve the PWP model on triangular meshes. Figure 3
illustrates a sample triangular mesh with N � 9893 cells. Te
characteristics of the numerical results obtained by the DG
method are consistent with those of the fndings of our
previous study [26].

Figure 4 compares the density cut along the lines
y� 40m for the PWPmodel simulated by the P1 DG scheme
without and with the positivity-preserving limiter at
t � 0.15 s (see subfgures 4(a) and 4(b)). Te P1 DG scheme
without the positivity-preserving limiter produces negative
solutions, whereas the positivity of the density is maintained
when using the P1 DG scheme with the positivity-preserving
limiter. Te solution will blow up if the PWP model is
continually computed using the P1 DG scheme without the
positivity-preserving limiter.

Figure 5 shows the density curves in the 1D section
corresponding to x � 48 m (sub-Figure 5(a)) and y � 36m
(subfgure 5(b)) at t � 200 s for diferent mesh sizes, as
obtained from the DG method. Te numbers of elements in
the triangular meshes are N � 1401,5560, and 9893. By
gradually refning the mesh, the deviation between the
density curves can be reduced. Te convergence of both
numerical solutions is thus validated.

Figure 6 plots the density distributions during the
evacuation at diferent time points, determined using the
second-order DG method on triangular meshes with
N� 9893. Before t � 150 s, the pedestrian fow is charac-
terized by calm behaviors; the pedestrians try to avoid the
obstacle andmove at the free-fow speed (see subfgure 6(a)).
At t � 150 s, congestion is induced near the corner of the
rectangle because the obstacle decreases the available space,
leading to a maximum density of approximately 6.0 ped/m2.
Te passage is further blocked by the congested pedestrian
fow (see subfgure 6(b)). After t � 150 s, panic begins to
propagate in the crowd (see subfgures 6(c)–6(f )). In this
condition, the density increases more slowly than in the
normal condition as it is already extremely high. However,
pedestrians continue to enter the fow, generating a high
pushing pressure in the dense crowd, as shown in Figure 7.
Te pushing pressure propagates from the low-density re-
gion to the high-density region (close to the obstacle) and
reaches a value of approximately 250|N/m (see subfgures
7(a) and 7(b)). Te pressure increases rapidly in the dense
crowd, and the density level remains high. In other words,
the crowd pressure characteristics, which have been ob-
served in many crowd disasters [49–51], are correctly
rendered.

Te averaged local fow-density relationship obtained by
the DG method on triangular meshes also reveals the

Figure 2: Set of quadrature points S
j
1.
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Table 2: Errors and orders of accuracy for the density ρ.

N L2 error of ρ Order of accuracy
139 5.877590E − 003 —
506 1.021613E − 003 2.52
1932 2.312943E − 004 2.14
7579 5.612360E − 005 2.04
29956 1.394325E − 005 2.01

Table 3: Parameters and functions.

Critical density ρ0 � 5 ped/m2

Maximum density ρm � 7 ped/m2

Panic sentiment δ �
0, t ∈ [0, 150 s]
max 0, (ρ − ρ0)/(ρm − ρ0)􏼈 􏼉, t ∈ [150, 400 s]􏼨

Sonic speed c0 � 0.5m/s
Compression force P1 � s(ρ) � c0ρ2 N/m
Relaxation time τ � 0.61 s
Average mass m � 60 kg
Local cost π(ρ) � 0.01ρ2 + 1/fd(ρ)

Fundamental diagram fd(ρ) � 1.034 exp(− 0.06ρ2)
Pushing capacity k(ρ) � 600

������������
max(0, ρ − ρ0)

􏽰
 N/m

50

40

40 60 80 100

30

20
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10

0
0

Figure 3: Sample triangular mesh (N � 9893) for example 2.1.
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Figure 4: Comparison of the density cut along the lines y� 40m for the PWP model simulated by the P1 DG scheme without and with the
positivity-preserving limiter at t � 0.15 s. Te number of elements in the triangular mesh is N � 9893. (a) Complete region and (b)
magnifed view of the local density plot in (a).
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second-peak phenomenon, consistent with the fndings
reported by Reference [26]. Te averaged local fow and
corresponding density are calculated in the simulation of
a panic evacuation between t ∈ [150, 400] by using the
method presented in Reference [26]. In Figure 8, these

entities correspond to the “actual fow” and are compared
with the values derived from the fundamental diagram. A
notable second peak occurs at approximately ρ � 5.6 ped/m2

due to the panic sentiment and aggregated pushing pressure.
Helbing et al. [18] frst observed this phenomenonwhen they
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Figure 5: Density curves corresponding to (a) x � 48m and (b) y � 46m at t � 200 s in example 2.1, simulated using the DG method.
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Figure 6: Density distributions (unit: ped/m2) simulated in example 2.1 using the second-order DG method (c0 � 0.5m/s). Te number of
elements in the triangular mesh is N � 9893. (a) t � 100 s. (b) t � 150 s. (c) t � 200 s. (d) t � 250 s. (e) t � 300 s. (f ) t � 400 s.
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conducted a postdisaster analysis of a Hajj crowd disaster
and related it to the forward and backward moving shock
waves in the dense crowd. In our model, we generate the
waves by considering the aggregated pushing pressure
created by the panic, thereby reproducing this complex
phenomenon. Terefore, the realistic nature of the results of
the continuum model is validated.

4.2.2. Example 2.2. Example 2.2 corresponds to a more
realistic computational domain than that in Example 2.1.
Tree circular obstacles are placed at
(x, y) � (60, 25), (80, 10), and (80, 40){ } with radii of
r � 10,6, and 6{ } (unit: m), respectively. Tis complex region
cannot be easily divided by structured meshes, and thus, the
traditional FD or FV methods cannot be applied. Terefore,
we apply the DG methods over unstructured triangular
meshes, as illustrated in Figure 9.

Figure 10 plots the density distribution during the
evacuation at diferent time points. Before t � 150 s, the
pedestrian fow is characterized by calm behaviors; the
pedestrians try to avoid the obstacles and follow the shortest
path to their destinations (see subfgure 10(a)). However, the
three circular obstacles cause congestion upstream and

downstream of the obstacles, with the maximum density
being approximately 5.3|ped/m2 (see subfgure 10(b)). Tis
maximum density is smaller than that in example 2.1 (with
rectangular obstacles), which suggests that the infuence of
circular boundaries on pedestrian movement is weaker. Tis
fnding is supported by existing simulation results [52, 53].
After t � 150 s, panic begins to propagate in the crowd (see
subfgures 10(c)–10(f)). Te density gradually increases to
approximately 5.8|ped/m2, following a similar pattern to
that in example 2.1. Te pedestrians continue to enter the
fow, generating a high pushing pressure in the dense crowd,
as shown in Figure 11. Te propagated pushing pressure
increases to approximately 110|N/m, considerably lower
than that in example 2.1 (see subfgures 11(a) and 11(b)).

4.2.3. Illustration of Instability Using the DGMethod. At low
sonic speeds (c0 � 0.1|m/s in this study), the simulation
results exhibit stop-and-go waves. At t � 150 s, three stop-
and-go waves are observed near the largest circular obstacle,
as illustrated in Figure 12(a). Tese waves are generated near
the bottleneck and propagate backward to the low-density
area until they vanish. Moreover, when the pedestrians
panic, small and dense waves are generated and propagated
continuously in the high-density regions, as illustrated in
Figure 12(b). Tis phenomenon is similar to the turbulence
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Figure 7: Pressure distribution simulated at t � 200 s in example 2.1 using the DG method (c0 � 0.5m/s). (a) Plot of density curve and
pushing pressure curve corresponding to x � 48m. (b) Contour plot of the pushing pressure distribution (unit: N/m).
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Figure 10: Density distribution (unit: ped/m2) simulated in example 2.2 using the second-order DG method (c0 � 0.5m/s). Te number of
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Figure 11: Pressure distribution simulated at t � 200 s in example 2.2 using the DG method (c0 � 0.5m/s). (a) Density curve and pushing
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observed by Fruin [52], who indicated that shockwaves can
propagate through dense crowds. Te DG scheme can
successfully reproduce the instability of crowd dynamics
induced at low sonic speeds, which validates the
continuum model.

5. Conclusion

Several commonly used continuum pedestrian fow models
are reviewed. According to the equilibrium state of speed,
these models can be classifed into frst- and high-order
models. Te frst-order models include the traditional LWR
model and other extended LWR models, coupled with
RDUE and PDUE route strategies. High-order models in-
clude the PWmodel, PW-like model, Aw–Zhangmodel, and
PWP model. Both types of models can be rewritten in
a unifed form as a scalar or system conservation law with
diferent conservation variables, fow fuxes, and source
terms. To address problems in real and complex compu-
tational regions, a high-order DG scheme with a positivity-
preserving limiter is applied to solve the conservation law,
and a second-order fast-sweeping scheme is used to solve the
Eikonal equations. Te proposed solution algorithm can
efciently solve all types of pedestrian dynamic models
considered in this study. We provide a numerical example
that has the exact solution to demonstrate the accuracy of the
high-order scheme and validate the proposed numerical
method through numerical examples involving evacuation
cases with a rectangular obstacle and three circular obstacles
based on the PWP model. Te numerical results (which
indicate the occurrence of the second-peak phenomenon
and stop-and-go waves) are consistent with those reported
in our previous work. Tus, the proposed numerical algo-
rithm is accurate and efective.

Notably, because of the limitations of the fast-sweeping
method for solving the Eikonal equation on triangular
meshes, the complete algorithm is no more than second-
order accurate. Future research can be aimed at developing
numerical methods with higher-order accuracy to solve the
Eikonal equation on triangular meshes to ensure that the
algorithm can reach third-order accuracy or higher with
a higher-order DG scheme. In this manner, the solution
efciency and applicability to more complicated real-world
cases can be enhanced.
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