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Pedestrians are more likely to be seriously injured in vehicle collisions. In fact, multiple collisions between vehicles and pedestrians
occur on residential roads that lack street-to-sidewalk dividers and have numerous blind spots. Traditional trafc safety features
and equipment, such as speed bumps and trafc signs, are not always sufcient to prevent pedestrian accidents on such residential
roads. Terefore, we suggest a collision risk warning service for residential roads as a solution to this issue. We use CCTVs with
computer vision techniques and radar to accurately detect objects in real-time and to trace their trajectories. In addition, we
employ a time-to-collision-based method to identify dangerous situations. Te service warns drivers and pedestrians about
hazardous situations using a light-emitting diode sign board. We applied our service to three diferent roads on a university
campus in Seoul, Korea, and then conducted a user survey to evaluate the service. In summary, more than 90% of respondents
stated that the service was necessary for these specifc locations, and 76.9% noted that the service signifcantly contributed to trafc
safety on the campus. Tis implies that the proposed service improved trafc safety and can be applied to various locations on
residential roads.

1. Introduction

Approximately 1.3 million people die annually because of
trafc accidents [1]. Some governments and agencies in
many countries have tried to reduce trafc accidents by
implementing safety education and policies such as pro-
moting trafc rules and enforcing speed limits [2]. As a result
of these eforts, trafc fatalities in most developed countries
in the OECD have decreased substantially. For example,
Korea reduced road fatalities by 26.4% from 2017 to 2020 [3].
However, safety issues of pedestrians remain a concern [4].
Pedestrian fatalities in Korea accounted for 35% of total
fatalities [5]. More than half of pedestrian fatalities occur on
residential roads without separation of streets and sidewalks

[6]. Pedestrians are the most likely to be seriously injured in
vehicle collisions. Traditional trafc safety features and
equipment, such as speed bumps and trafc signs, are not
always sufcient for preventing pedestrian accidents in blind
spots on residential roads. Particularly when pedestrians
abruptly exit from parked vehicles on roads, drivers are
unable to respond appropriately, and trafc accidents are
highly possible.

Several technologies have been developed to prevent
vehicle-pedestrian collisions. Tey are based on algorithms
that identify objects, predict their trajectories, and determine
whether or not a collision risk exists. Te algorithms can be
divided into two categories depending on how the collision
risk is determined. First, some algorithms employ surrogate
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safety measures (SSMs) to recognize the presence of po-
tentially dangerous situations based on whether predicted
trajectories of objects overlap. Using microscopic trafc
characteristics such as vehicle speed, acceleration, time
headway, and space headway, an SSM method assesses the
collision risk of particular trafc scenarios [7]. SSMs, such as
time-to-collision (TTC) and post encroachment time (PET),
have been widely used to evaluate trafc safety performance
and identify potential accident risks [8–13]. One study as-
sumed a connected environment in which pedestrians and
vehicles shared real-time location information using IoT
devices. According to object locations, velocity, relative
distance, angle, and TTC, dangerous situations were de-
termined [8]. In another study, an algorithm was developed
using onboard cameras in vehicles. Potential collision areas
were defned by the minimum TTC from the predicted
movements of ego vehicles and pedestrians [9]. In addition,
in a connected vehicle environment, a crash warning system
was developed for bike lane areas. PET was used to identify
potential areas of interaction between vehicles and bicycles
[10]. Most algorithms were verifed as simulation-based or
autonomous platforms. Te second set of algorithms pre-
dicts risk situations using deep learning methods [11–13].
After an algorithm is trained using prior data labeled by
SSMs as risk situations, it predicts whether a given situation
is dangerous. Te gated recurrent unit method was used to
predict collision risk at a signalized intersection [11]. Sim-
ilarly, long-short term memory (LSTM) was used to predict
risk situations [12]. In some cases, deep learning methods
were used for trajectory estimation to predict risk situations.
One study proposed a collision risk area estimation system at
unsignalized crosswalks. Te system used LSTM to predict
object trajectories and then conducted statistical inferencing
to predict collision risk areas [13].

As soon as a potentially hazardous situation is identifed,
various warning services are provided. Tis warning in-
formation can be divided into three categories. First, in-
formation is provided by vehicles. Augmented reality (AR)
on the heads-up display in vehicles was employed to display
warning information. In addition to AR, an audio warning
was immediately provided [10]. Several active pedestrian
collision avoidance systems did not give alerts but instead
automatically controlled the vehicles [14, 15]. Te second
method is to provide information to vehicles from roadside
equipment (RSE). For example, amber fashing lights were
activated when pedestrians were approaching or crossing
crosswalks so that the drivers could perceive them [16]. Te
third method is to use infrastructure-to-vehicle (I2V), ve-
hicle-to-pedestrian (V2P), and vehicle-to-everything (V2X)
communication. One study utilized I2V communication to
give warning information to vehicles from RSE [17]. Several
studies developed V2P and V2X communication-based
warning services in Wi-Fi environments [18, 19]. How-
ever, in the current state, the communication-based safety
warning method has problems regarding latency and
stability.

Most systems were developed from the perspective of
vehicles. Based on cameras or radar sensors in vehicles and
CCTVs in RSE, warning information was provided to

drivers. Few services considered a pedestrian perspective.
One study developed a system that recognized dangerous
situations and provided information to pedestrians via their
smartphones [20]. However, it was inaccurate and in-
efective in that object detection was conducted only by
cameras on smartphones. In addition, few studies evaluated
the efects of proposed algorithms in the feld. Most algo-
rithms were evaluated based on simulations or feld pro-
totype tests, and accuracy was only verifed through
a confusion matrix.

In the present study, we propose a safety service
framework that provides risk information to both vehicles
and pedestrians. Te proposed framework utilizes RSE such
as CCTVs and radar to detect objects using a deep learning
method. Ten, the algorithm uses SSMs to identify whether
the current situation is dangerous. If the situation is unsafe,
a light-emitting diode (LED) sign board gives warning in-
formation to both vehicles and pedestrians to avoid a po-
tential collision. Tus, the service alerts drivers and
pedestrians at the same time. To evaluate the safety efects of
the proposed service, we implemented and operated it on-
site. We conducted a survey to investigate user satisfaction.

Te remainder of this paper is structured as follows: the
service description section presents the overall framework.
Te application and evaluation section introduces the study
site and presents the evaluation. In the last section, we
summarize this study and discuss possible future research
directions.

2. Service Description

We propose a collision risk warning service procedure, as
depicted in Figure 1. Tis service is a proactive counter-
measure against vehicle-vehicle or vehicle-pedestrian col-
lisions. Tere are four steps: Step 1 object detection through
CCTV and radar; Step 2 trajectory prediction of detected
objects; Step 3 collision risk identifcation based on predicted
trajectories; and Step 4 collision risk warning, if any. Here,
the current time is t0, and the previous point one time step
before and the future point n time steps after are denoted by
t−1 and tn.

2.1.ObjectDetection. We use CCTV and radar equipment to
detect vehicles and pedestrians. One of the detecting algo-
rithms is you only look once (YOLO) [21], which has been
used in various felds for real-time detection. We employ
a YOLO v5-based algorithm. YOLO v5 is faster and more
accurate than its previous versions [22]. To account for the
characteristics of residential roads, we need residential-road-
specifc training datasets, which are distinguished from
general road datasets. Terefore, we used 150 hours of video
data from CCTV cameras installed on residential roads in
Guro-gu, Seoul. We trained for various environments such
as lighting and weather conditions as well as situations
involving numerous objects such as pedestrians carrying
umbrellas, as shown in Figure 2. With the trained model,
objects can be accurately identifed in real-time as pedes-
trians, motorcycles, bicycles, vehicles, and personal mobility
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devices, even under severe lighting and weather conditions.
In Figure 3, the training results are shown with an example
site at two diferent time points compared to the identif-
cation without the training.Te overall accuracy is presented

in Table 1. At the 50% level of Intersection over Union,
defned as the degree of overlap between ground truth and
prediction regions [23, 24], the detection rate for pedes-
trians, motorcycles, bicycles, vehicles, and personal mobility

Transmitted pulse

Reactive pulse RadarCCTV

t–1 t0 tn
t–1 t0 tn

Step 1. Object detection

Step 2. Trajectory prediction

Step 3. Collision risk identifcation

Step 4. Collision risk warning

Dangerous Not dangerous

Figure 1: Overall structure of collision risk warning service.
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devices was higher than 99%. In addition, radar is employed
to complement CCTVs. Tey provide precise locations and
speeds, which are difcult to collect with CCTVs. With these
two complementary devices, accurate and precise real-time
object detection is achieved.

2.2. Trajectory Prediction. Future trajectories of objects are
predicted based on their previous coordinates that we can track.
In this study, perspective transformation and Kalman flter are
used for tracking objects. Coordinates of objects detected by
CCTVs are transformed into overhead perspectives to measure
exact locations. We employ the perspective matrix in Open CV
to convert the coordinates from the videos to overhead co-
ordinates [25, 26]. Kalman flter involves repeating the pre-
diction step and correction step of trajectories [27]. In the
prediction step, the next position of the object in the current time
is estimated based on the information collected about the object
already being tracked, as in equation (1).

xk � Axk−1 + wk−1, (1)

where xk is the state vector representing the object’s dynamic
behavior at a discrete time index k; A is the transition matrix
at time index k − 1 to k; and vector wk−1 is the noise fol-
lowing normal probability distribution N(0, Q) with zero
mean and covariance matrix Q. In the correction step, the
previously-predicted position is compared to the position
measured by CCTVs. Tomodify the object position, a weight
called Kalman gain Kk is used, which indicates the ratio of
the error of the predicted object position to the error of the
object position measured by the object detection algorithm.
Kk has a range from zero to one, and it is infuenced by more
accurate values between the predicted position and the
measured position, as stated in equation (2).

xk � x
−
k + Kk zk − Hx

−
k( , (2)

where xk is a posteriori estimated state; x−
k is a priori es-

timate; zk is the observed measurement; and H is the
measurement matrix at time k − 1  to k. After the repeated
execution, we update Kk and fnd the optimal state (x∗k ) that
minimizes the error between the estimated state and the
measured state [28].

Te object-tracking algorithm proposed in this
study was compared to DeepSORT, which is a deep
learning-based method for tracking objects [29, 30].
DeepSORTconsists of four key components: detection,
estimation, data association, and generation and de-
letion of tracking objects. In DeepSORT, Kalman flter
is used in the estimation stage, and a Hungarian
matching algorithm is employed in the data associa-
tion stage [30]. Te major diference between Deep-
SORT and the proposed algorithm is twofold. First, we
advanced the Kalman flter algorithm. Second, due to
the Hungarian algorithm’s prohibitive computational
cost, we developed an original matching algorithm
instead of using the Hungarian algorithm. For com-
parison, we used the Oxford Town Centre dataset,
which is commonly employed to assess object-tracking
performance [31]. Te comparison results are shown in
Table 2.

Multiple object tracking accuracy (MOTA) is used to
evaluate the accuracy of object-tracking algorithms [32].
MOTA is the most prevalent indicator used to measure
a tracker’s performance. Its value may be determined using
equation (3).

MOTA � 1 −
IDSW + FN + FP

GT
, (3)

where ground truth (GT) is the total number of ground truth
objects, identity switching (IDSW) represents the number of
ID switches in the video stream, false negative (FN) indicates
a missed detection, and false positive (FP) means an in-
accurate detection. Based on MOTA, we observe that the
proposed algorithm results in higher accuracy than Deep-
SORT. Mostly tracked targets (MT) and mostly lost targets
(ML) are the number of tracked and lost objects, re-
spectively. Te proposed algorithm has higher and lower
values of MT and ML, respectively, than DeepSORT, which
are desirable. Furthermore, the proposed object-tracking
algorithm has a higher FPS than DeepSORT since we do
not use the computationally burdening Hungarian matching
algorithm. In summary, the proposed tracking algorithm
outperforms DeepSORT.

Ten, based on the tracking data, we predict vehicle and
pedestrian trajectories. First, we classify straight and curved
trajectories based on whether the angle of the previous
trajectories is smaller than the angle that we predetermine,
θset > 0 (unit: radians). We estimate a vehicle’s tendency to
move based on the angle diference between previous points.
Ten, we refect this tendency in the trajectory prediction. If
we set the time index k to zero for the current time, the
current position is P0 at x∗k�0, and the previous positions at
two and one time steps before are P−2 and P−1, respectively,
i.e., the coordinates of P−2 and P−1 are x∗k�−2 and x∗k�−1. Te
known angle between P−2P−1

�������→
and P−1P0

�����→
is θ−1 (unit: ra-

dians). Te tendency angle θ0 (unit: radians) is calculated in
equation (4).

θ0 � 
0

k�−Tpast

θkωk, (4)

where ωk is a weight factor that considers the angle error, s.t.,


0
k�−Tωk � 1, and Tpast is the time window length of the past

data, i.e., we consider the tracking data at
k ∈ −Tpast, −Tpast + 1, . . . , −1, 0 .

We consider a short prediction period between k � 0 and
k � Tfuture, where Tfuture≪Tpast. Tus, it can be reasonable
to assume that a vehicle with |θ0|< θset keeps moving straight
during Tfuture. At future time point n ∈ 1, . . . , Tfuture − 1 ,
the center location of the straight moving vehicle, denoted
Pn, is on the straight line extended from P−1P0

�����→
and the

distance from P0 to Pn, |P0
Pn

����→
|, is the multiplication of the

average vehicle speed and the time diference between t0 and
tn. If |θ0|≥ θset, the center of a vehicle predicted at time point
n, Pn, is found based on Pn−1, θn−1, and the average vehicle
speed. Particularly, P1 is calculated using P0 and θ0. Similar
to equation (4), θn is defned as 

n
k�0

θkωk−n +
−1
k�n−Tθkωk−n
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for all n ∈ 1, . . . , Tfuture . Te spatial range of a vehicle,
predicted at n, is defned to have its center at Pn, and its
boundary is determined based on the actual vehicle size.

Compared to vehicles, pedestrians have relatively
uncertain and inconsistent movement characteristics.
Tus, we use an elliptical trajectory prediction approach
to account for stochastic pedestrian trajectories, and we
consider the ellipse as the future spatial range of a pe-
destrian’s location [33]. We estimate the moving di-
rection of pedestrians based on the previous directions in
the same method for vehicles, as described in equation
(4). We estimate the major and minor axes of an ellipse
using actual pedestrian path data collected from CCTVs
on residential roads [34]. Estimation results depend on
the time point tk�n for all at which we predict from the
present time, n> 0. We can fnd Pn of the center of an
ellipse for a pedestrian in a similar way to fnding that for
a vehicle with |θ0|≥ θset. Depending on the moving dis-
tance dn (unit: meters) from the current time point t0 to
the future point tn, defned as |P0

Pn|, the possible spatial

range that the pedestrians reach varies. Te estimated
major and minor axes of the ellipse are determined using
equation (5), where the parameters were tuned based on
the actual data.

e
major
n �

1.6 dn − 0.89, e
major
n ≥ 1.0 ,

1.0, e
major
n < 1.0 ,

⎧⎪⎪⎨

⎪⎪⎩

e
minor
n �

2.0, dn ≥ 3.0( ,

1
3

dn + 1.0, dn < 3.0( ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dn � P0
Pn



,∀n ∈ 1, . . . , T
future

 ,

(5)

where e
major
n (unit: meters) is the major axis of the ellipse at

future time point n, and eminor
n (unit: meters) is the minor

axis of the ellipse at future time point n.

(a) (b)

(c) (d)

(e) (f )

Figure 2: Various environments for training model. Te model was trained in various lighting conditions, including clear (a, b, c), snowy
(d), and rainy weather (e, f ).
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Te predicted trajectories are graphically illustrated in
Figure 4.

We tested the accuracy of the trajectory prediction model
using example trajectories of three pedestrians and two vehicles,
as depicted in Figure 5. Te length of each time period is one
frame, and for each prediction, we plotted the center of a pe-
destrian’s ellipse or a vehicle at n � 3 (after three seconds from
each prediction time point). Te prediction trial is indexed by i

and the total number of trials is I. We conducted 857, 396, 899,
330, and 324 trials for pedestrian #1, pedestrian #2, pedestrian
#3, vehicle #1, and vehicle #2, respectively. Te test results are
presented in Figure 6 and Table 3. Te unit of the graphs in
Figure 6 is in pixels, and the horizontal and vertical lengths of
a pixel are 0.09meters and 0.11meters, respectively. For the
accuracymeasure, we usemean absolute error (MAE) calculated
by equation (6).

MAE �


I
i�1 x

i
3 − x

i
3





I
, (6)

where xi
3 and xi

3 are the predicted and the actual locations of
the object three seconds later than the current time point of
the ith prediction trial, respectively. Specifcally, xi

3 is the

coordinate of P3.TeMAEwas calculated to be between 0.09
and 0.65meters. Te accuracy is lowered as the curvature
and speed increase.

2.3. Collision Risk Identifcation. Once future trajectories of
objects intersect, we get one intersecting point
(qintersect,sintersect) of two objects a and b, and two collision time
(CT) to reach the intersecting point from each object at the
current location. qintersect andsintersect are calculated by equation
(7) [35].

qintersect �
s

b
0 − s

a
0  − q

b
0 tan θ

b

0 − q
a
0 tan θ

a

0 

tan θ
a

0 − tan θ
b

0

,

sintersect �
q

b
0 − q

a
0  − s

b
0 cot θ

b

0 − s
a
0 cot θ

a

0 

cot θ
a

0 − cot θ
b

0

,

(7)

where qintersect and sintersect represent the longitudinal and
latitudinal coordinates of the intersecting point, respectively;
(qa

0, sa
0) and (qb

0, sb
0) represent the current coordinates of

(a) (b)

Figure 3: Detection performance improvement: (a) before and (b) after additional training. After additional training, the model detects
a pedestrian carrying umbrella and distinguishes a personal mobility device from a pedestrian.

Table 2: Object-tracking performance comparison.

MOTA
(%) IDSW FN FP MT ML GT FPS

DeepSORT 79.90 1024 5667 2753 114 2 46985 68.65
Proposed tracking
algorithm 81.70 743 3590 4258 136 1 46945 333.79

Journal of Advanced Transportation 7



objects a and b, respectively; and tan θ
a

0, tan θ
b

0, cot θ
a

0, and
cot θ

b

0 represent the current tangent and cotangent values of
objects a and b. With qintersect,sintersect, and the objects’ speeds
and directions, we can calculate CTs for both objects,
CT

a  and CTb
[36]. We compare the two CTs, and the

smaller one, CTmin( ≡ min CT
a
, CT

b
 , unit: seconds), is

used in determining whether the spatial ranges overlap in
increments of 0.25 seconds starting from one second earlier
than CTmin(i.e.,CTmin − 1 + 0.25δ  for δ � 0, 1, 2, . . .)

considering the diference between the center point and the
spatial range boundary of each object.

If the spatial ranges of two objects successively
overlap at more than three intervals, the time interval
when the two spatial ranges frst overlap is defned as the
predicted TTC. Tis indicator assumes that the involved
objects do not recognize the risk and there is no urgent
maneuver to avoid it in a following short period of time.
We compare the predicted TTC with a TTC threshold to
identify whether a collision risk exists [37–39]. If it is

Straight line

Curved line

P–1

P–1

P0

P0

P–1
P0

θ⌃0

|θ⌃0| ≥ θset

θ⌃0

P⌃n

P⌃1

P⌃1

|θ⌃0| < θset

(a)

Vehicle’s spatial range

P edestrian’s spatial range

spatial range

P–1

P0

θ–1
θ–2

θ⌃0

P⌃1

P–1

P0

θ–1
θ–2

θ⌃0

P⌃1

(b)

Figure 4: Trajectory prediction method: (a) trajectory classifcation—straight and curved trajectories are classifed based on whether the
angle of the previous trajectories is smaller than the angle predetermined. (b) Trajectory predictions—vehicle and pedestrian trajectories are
predicted as rectangles and ellipses, considering the actual vehicle size and stochastic pedestrian trajectories, respectively.

Pedestrian trajectory
Vehicle trajectory

Figure 5: Test scenario description. Trajectories of three pedestrians and two vehicles were tested.
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Figure 6: Trajectory prediction test results.

Table 3: Trajectory prediction accuracy.

Pedestrian Vehicle
#1 #2 #3 #1 #2

MAE 0.09 0.39 0.18 0.54 0.65
(unit: meters)

CTmin ≡ min {CTa, CTb}

Object b

Object a

CTb seconds

CTa seconds

Current state

(a)

CTmin – 1.00 CTmin – 0.75 CTmin – 0.50 CTmin – 0.25 CTmin 

Future state: After CTmin – 1 + 0.25δ seconds (δ = 0,1,2,...)

here, predicted TTC = CTmin – 0.50 (units: seconds)

Spatial range overlap

...

...

(b)

Figure 7: Determination of risk existence and prediction of time-to-collision (TTC): (a) CTmin is determined based on CT
a
and CT

b
. (b) If

two spatial ranges overlap successively more than three intervals, the predicted TTC is calculated as the frst overlap, and if the predicted
TTC is smaller than the TTC threshold, the collision risk is regarded to exist.
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smaller than the TTC threshold, the collision risk is
regarded to exist. Te entire process of the TTC calcu-
lation is depicted in Figure 7.

We assume that the TTC threshold value is the summation
of the perception reaction time, themargin time for an LED sign,
and the vehicle stopping time. In this study, a fxed TTC
threshold of four seconds is used to account for a safety margin
to some extent. We consider the perception reaction time to be
1.5 seconds [40], the LED sign margin time to be 1 second, and
the vehicle stopping time to be 1.5 seconds.

2.4. Collision Risk Warning. If the situation is judged to be
dangerous, drivers and pedestrians are presented with LED sign
information. Tis service delivers warning information on the
roadside for vehicles and pedestrians, as opposed to prior
systems that provided risk information only to vehicles. Te
warning information is presented in Figure 8.

3. Application and Evaluation

3.1.Application. We applied the proposed service on KAIST
Seoul Campus in Korea. Te service was provided in three
situations: illegal roadside parking, unprotected left turn,
and wrong-way driving. Figure 9 provides a description of
the application site and each situation. In addition, we
evaluated the proposed service to analyze its impact on safety
by conducting an on-site survey.

3.2. Survey Design. After the service application, we analyzed
responses to the service in terms of safety efects. We collected
data through in-person interviews. Te survey questionnaire
consisted of four sections. First, we inquired about demographic
characteristics, including gender, age, mobility impairment, and
current modes of transportation. Second, we asked whether
accidents or accident hazards had occurred at the site. If so,
respondents were questioned as to whether they were using
a smartphone or headphones and about locations of incidents.
Furthermore, we inquiredwhether respondents thought campus
trafc safety should be improved. Tird, for each location, we
solicited feedback on the installed and operating service, such as
preference or level of satisfaction. We frst inquired if re-
spondents were aware that the service was operational. If they
were familiar with the service, they were asked about its safety
efects following the operation and its requirements at each
location. Finally, the contribution of the service to safety on
KAIST Seoul Campus was assessed using a fve-point
Likert scale.

Te respondents to the questionnaire were people who
commute to KAIST Seoul Campus. Te survey was conducted
in July 2022. A total of 151 responses were collected. Te
majority of respondents were campus members, such as stu-
dents, professors, and employees, while some were local resi-
dents and travelers who were passing by KAIST Seoul Campus.
Sample descriptions are summarized in Table 4.

3.3. Survey Analysis. We analyzed the collected data, in-
cluding descriptive statistical analysis and the chi-square
test. First, we investigated the perception of the trafc safety

status and the service on the site, as shown in Figure 10.
32.5% of respondents reported that they had encountered
unsafe situations on KAIST Seoul Campus, with 44.9% in A,
22.4% in B, and 10.3% in C. 30.6% of respondents who
experienced accident risk indicated that those risks had
occurred at night. Moreover, 26.5% were using a smart-
phone, and 22.4% were wearing earphones (or headphones)
when the incidents happened. Regarding campus trafc
safety, 78.8% of respondents indicated that it should be
improved for four reasons, as shown in Figure 11. First, there
is no separation between streets for vehicles and sidewalks
for pedestrians on campus roads (16.8%). Second, the road
widths are narrow (15.1%). Tird, insufcient guiding signs
on one-way roads frequently lead to wrong-way driving
(7.6%). Fourth, there are multiple blind spots due to parked
vehicles and buildings (5.9%). Tese factors are consistent
with the safety problems of residential roads in other regions
of Korea [6].Ten, after service installation and operation on
KAIST Seoul Campus, 76.9% of total subjects noted that the
service contributed to trafc safety on the campus from the
results of the Likert scale, as shown in Table 4. Tey stated
that the service could prevent collision risk in the blind spots
by providing warnings. Specifcally, they mentioned that
LED sign boards made signs instantly recognizable, even at
night, compared to convex mirrors. In addition, 78.6%,
77.6%, and 85.1% of respondents who were aware of the
service in Locations A, B, and C, respectively, believed that
roads were safer after service operation. In addition, 92.9%,
91.8%, and 94.6% of respondents who knew the service in
Locations A, B, and C indicated that the service was nec-
essary for campus trafc safety, as presented in Figure 12.

Second, we conducted a chi-square test to determine
whether respondents’ perceptions of the service in operation
at three diferent locations difered signifcantly. A chi-
square test is a nonparametric test to analyze the in-
dependence or diference across a group among nominal
variables [41]. We used the chi-square test of homogeneity to
compare the proportions of service perception among
groups at three locations for signifcant diferences. To
conduct the homogeneity test, samples of the test groups
must be distinct [42]. For this, three diferent groups of
respondents were questioned about their opinions of the
service in the three designated locations (i.e., Locations A, B,
and C). Each location had a diferent number of individuals
who were aware that the service was operational. In Location
C, there were more individuals who were unaware that the
service was operational than those who were aware, as
shown in Figure 12. Terefore, we were able to use the
homogeneity test. Te formula for the test statistics, χ2
-value, is mathematically expressed as equation (8).

χ2 � 
L

l�1


J

j�1

Ol,j − El,j 
2

El,j

, (8)

where Ol,j is observed frequency, El,j is expected frequency, l
represents the location index, j refers to the category of
response (e.g., yes or no), and L and J are the number of
locations and the number of categories, respectively. Te
degree of freedom (df ) was found to be two, using the
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Figure 8: Collision risk warning as delivered by LED sign board. Tree diferent images are displayed sequentially until a risk situation
is over.

LED sign board

One-way

Pedestrian

Illegal roadside parking
(Location A)

Unprotected lef turn
(Location B)

Wrong-way driving
(Location C)

Korea Advanced Institute of Science and Technology (KAIST) Seoul Campus

Parked vehicle

Driving vehicle

Driving vehicle (Wrong-way)

Figure 9: Site description: the proposed service was applied to three diferent locations on KAIST Seoul Campus. Each location was chosen
for a single specifc risk circumstance: Location A for illegal roadside parking; Location B for unprotected left turn; and Location C for
wrong-way driving.
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Table 4: Sample description.

Sample attributes Number of samples %

Gender Male 114 75.5
Female 37 24.5

Age

20’s 78 51.7
30’s 41 27.2
40’s 15 9.9
50’s 12 7.9

Over 60 5 3.3

Mobility handicapped Yes 1 0.7
No 150 99.3

Transportation mode

On foot 117 77.5
Vehicle 26 17.2
Bicycle 5 3.3

Personal mobility 3 2.0

Working or visiting period
Less than six months 52 34.4
Six months∼one year 26 17.2
More than one year 73 48.4

Accident risk experience Yes 49 32.5
No 102 67.5

Necessity to improve trafc safety on KAIST Seoul Campus Necessary 119 78.8
Not necessary 32 21.2

Contribution of service to trafc safety

(Strongly) did not contribute 2 1.3
Did not contribute 5 3.3

Neutral 28 18.5
Contributed 99 65.6

(Strongly) contributed 17 11.3

<Collision risk experience>

49
(32.5%) 

102
(67.5%) 

13
(26.5%) 

36
(73.5%) 

<Using a smartphone>

11
(22.4%) 

38
(77.6%) 

<Wearing earphones>

34
(69.4%) 

15
(30.6%) 

<Gender>

<Age>

<Transportation mode>

<Location>

34
(69.4%) 

15
(30.6%) 

<Time>

31
(63.3%)

14
(28.6%)

1
(2.0%)

3
(6.1%)

22
(44.9%) 

11
(22.4%) 

11
(22.4%) 

5
(10.3%) 

7
(14.3%) 

14
(28.6%)

7
(14.3%) 

2
(4.0%) 

19
(38.8%)

Yes
No

Male
Female

19~29
30~39

50~59

40~49
Over 60

On foot
Bicycle

Vehicle
Personal mobility

Use a smartphone
Not use a smartphone

Wear earphones
Not wear earphones

A
B

C
Other

Daytime
Nighttime

Figure 10: Responses to questions about collision risk. Respondents who experienced risk were asked seven diferent questions.
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following formula: Degree of freedom� (the number of
rows− 1) (the number of columns− 1). We established the
two diferent null hypotheses that the proportion among the
three groups is the same for the following questions: (i) “Do
you think that the service has increased safety at this lo-
cation?” and (ii) “Do you think that the service is necessary
at this location?.” If the calculated χ2-value is greater than the
critical value from the χ2-distribution, we must reject the
null hypothesis. Tis implies that at least one proportion
difers considerably from another proportion among groups.

We obtained two χ2 values of 1.6444 and 0.4911, with as-
sociated p values of 0.4395 and 0.7823, respectively. Since
these p values are greater than the signifcance level of 0.05,
we do not reject the two hypotheses. Te report states that
there is no statistically signifcant diference among the
locations in terms of service perception. Each location
represents scenarios that can happen on residential roads.
Accordingly, it is demonstrated that the proposed service
can be implemented in many locations on residential roads
and have the same efect regardless of location from a user’s

53
(35.1%) 98 

(64.9%)

<Awareness of service at Location A>

77 
(78.6%)

<Is it safer than before at Location A?>

91 
(92.9%)

7 
(7.1%)

<Is the service necessary at Location A?>

78 
(91.8%)

7 
(8.2%)

66 
(77.6%)

85
(56.3%)

66 
(43.7%)

<Awareness of service at Location B>

<Is it safer than before at Location B?>

<Is the service necessary at Location B?>

70 
(94.6%)

4 
(5.4%)

63 
(85.1%)

11 
(14.9%)

<Awareness of service at Location C>

74
(49.0%)

77
(51.0%)

<Is it safer than before at Location C?>

<Is the service necessary at Location C?>

Safer than before
No diference

Yes
No

Yes
No

Yes
No

Safer than before
No diference

Safer than before
No diference

Necessary
Not necessary

Necessary
Not necessary

Necessary
Not necessary

Figure 12: Perception of service at each location.

119
(78.8%)

32
(21.2%) 

<Need for safety improvement>

18
(15.1%) 9

(7.6%)

1
(0%) 

20
(16.8%)

7
(5.9%)

Yes
No

<Reasons>
No separation between streets and sidewalks

Numerous blind spots

Narrow road widths
High frequency of the wrong-way driving

Steep slope
No response

Figure 11: Responses to question about need for safety improvement.
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perspective. Te results of the chi-square test are summa-
rized in Table 5.

Finally, we asked respondents for suggestions on im-
proving trafc safety at each location. Te suggestions are
summarized in Table 6. One of the most recommended
approaches at almost all locations was to use an acoustic
speaker to deliver warning information. Some respondents
suggested that it would be more efective if both a visual and
an audible warning were utilized concurrently. Another
suggestion was to promote the service to campus members.
Indeed, in Locations A, B, and C, 64.9%, 56.3%, and 49.0% of
respondents, respectively, knew that the service was in
operation. Except for the use of acoustic speakers, Location
C’s suggestions difered from those of the other locations.
Te characteristics of Location C included trafc safety signs
for one-way driving and an automatic roadblock that pre-
vents vehicles from traveling in the incorrect direction.

4. Conclusions

In this study, we propose a collision risk warning service for
residential roads based on risk assessment. In contrast to
earlier research, this service combines CCTVs and radar to
detect items precisely and quickly. We use an elliptical
trajectory prediction approach to predict unknown pedes-
trian behaviors.Temajor andminor axes of the ellipse were
derived using CCTV data on actual pedestrian trajectories.
Furthermore, we use TTC to identify collision risks in
vehicle-vehicle and vehicle-pedestrian cases. An LED sign
board is used to provide risk warnings to vehicles and pe-
destrians. Te proposed service was provided in three sit-
uations: illegal roadside parking, unprotected left turn, and
wrong-way driving on residential roads.

We applied our service to three locations on KAIST
Seoul Campus in Korea. To evaluate service efects, we
conducted a survey and analyzed the safety efects from the
user’s perspective. Using a set of questions, we investigated
respondents’ satisfaction with the service. 76.9% of re-
spondents reported that the service contributed to

improving trafc safety on KAIST Seoul Campus. In ad-
dition, they stated that the campus was safer than before the
service installation, with 78.6%, 77.6%, and 85.1%
responding positively for Locations A, B, and C, respectively.
Tese results, combined with the high satisfaction reported
by survey respondents, suggest that our service can be ap-
plied to various areas that are typically considered residential
roads. Te service implementation is expected to improve
trafc safety and reduce fatalities that arise due to
blind spots.

Te generalizability of these results is subject to certain
limitations. For instance, evaluating the proposed service
was conducted based only on a survey. A natural progression
of this work is to evaluate the service using before-and-after
surrogate data, such as the frequency of two- and three-
second TTC events. We are currently collecting the relevant
data for this purpose. In addition, TTC may also vary based
on given infrastructure, nature, and human environments.
In this study, a constant TTC threshold was adopted with
a safety margin, which could yield unnecessary false posi-
tives in some situations. Terefore, we should conduct
a sensitivity analysis for TTC with respect to diferent
location-specifc environments to determine the optimal
TTC for each location. Moreover, using acoustic speakers to
alert vehicles and pedestrians appeared to be the most
suggested approach for enhancing trafc safety at all loca-
tions. According to the respondents, they believed that
combining visual and audible warnings would provide
a more efective warning to those using a smartphone and/or
earphones. Te results are consistent with [43], which
supported the idea that multimodal warning services have
potential advantages in various situations, such as when
people are using smartphones or are engaged in distracted
driving.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Table 5: Chi-square test results.

Question Location
Number of responses (%) Results
Yes No Total χ2 df p value

(1) Do you think that the service has increased safety at this location?
A 77 (78.6%) 21 (21.4%) 98

1.6444 2 0.4395B 66 (77.6%) 19 (22.4%) 85
C 63 (85.1%) 11 (14.9%) 74

(2) Do you think that the service is necessary at this location?
A 91 (92.9%) 7 (7.1%) 98

0.4911 2 0.7823B 78 (91.8%) 7 (8.2%) 85
C 70 (94.6%) 4 (5.4%) 74

Table 6: Suggestions for improving trafc safety at each location, based on open-ended questions.

Ideas for
Location A % Ideas for

Location B % Ideas for
Location C %

Use acoustic speakers 20 Need advertisements 19 Use acoustic speakers 25
Need advertisements 16 Use acoustic speakers 11 Need trafc safety signs 22
Need convex mirrors 13 Prohibit illegal roadside parking 11 Install automatic roadblock 14

14 Journal of Advanced Transportation



Conflicts of Interest

Te authors declare that they have no conficts of interest.

Authors’ Contributions

Aya Selmoune and Jeongin Yun contributed equally to
this paper.

Acknowledgments

Tis work was supported by the Ministry of the Interior and
Safety (MOIS), Republic of Korea (grant nos. 2021-MOIS41-
001-00000000-2022 (development of trafc safety risk
warning technology for blind spots in living roads)).

References

[1] WHO, “WHO road trafc injuries,” 2022, https://www.who.
int/news-room/fact-sheets/detail/road-trafc-injuries.

[2] PWC, “A guide for policy makers: on reducing road fatalities,”
2022, https://www.pwc.com/m1/en/publications/guide-on-
reducing-road-fatalities.html.

[3] “OECD International Transport Forum: Road injury acci-
dents,” 2022, https://stats.oecd.org/Index.aspx?DataSetCode=
ITF_ROAD_ACCIDENTS.

[4] M. W. Adler and R. Ahrend, “Trafc safety in South Korea:
understanding the vulnerability of elderly pedestrians,”OECD
Regional DevelopmentWorking Papers, Trafc Safety in Korea,
OECD Publishing, Seoul, Korea, 2017.

[5] “OECD International Transport Forum: Road safety annual
report 2021 korea,” 2022, https://www.itf-oecd.org/sites/
default/fles/korea-road-safety.pdf.

[6] J. Lim, S. Lee, J. Choi, and S. Joo, “Te comparative study on
travel behavior and trafc accident characteristics on a com-
munity road-with focus on Seoul metropolitan city,” Journal
of the Korean Society of Civil Engineers, vol. 36, no. 1,
pp. 97–104, 2016.

[7] S. Tak, S. Kim, D. Lee, and H. Yeo, “A comparison analysis of
surrogate safety measures with car-following perspectives for
advanced driver assistance system,” Journal of Advanced
Transportation, vol. 2018, Article ID 8040815, 14 pages, 2018.

[8] S. o. Son, J. Park, C. Oh, and C. Yeom, “An algorithm for
detecting collision risk between trucks and pedestrians in the
connected environment,” Journal of Advanced Trans-
portation, vol. 2021, Article ID 9907698, 9 pages, 2021.

[9] L. Zhang, K. Yuan, H. Chu et al., “Pedestrian collision risk
assessment based on state estimation and motion prediction,”
IEEE Transactions on Vehicular Technology, vol. 71, no. 1,
pp. 98–111, 2022.

[10] Y. Wu, M. Abdel-Aty, O. Zheng, Q. Cai, and L. Yue, “De-
veloping A crash warning system for the bike lane area at
intersections with connected vehicle technology,” Trans-
portation Research Record, vol. 2673, no. 4, p. 47, 2019.

[11] S. Zhang, M. Abdel-Aty, Y. Wu, and O. Zheng, “Modeling
pedestrians’ near-accident events at signalized intersections
using gated recurrent unit (GRU),” Accident Analysis &
Prevention, vol. 148, Article ID 105844, 2020.

[12] S. Zhang, M. Abdel-Aty, Y. Wu, O. Zheng, and J. Ugan,
“Prediction of pedestrian-vehicle conficts at signalized in-
tersections based on long short-term memory neural net-
work,” Accident Analysis & Prevention, vol. 148, Article ID
105799, 2020.

[13] B. Noh and H. Yeo, “A novel method of predictive collision
risk area estimation for proactive pedestrian accident pre-
vention system in urban surveillance infrastructure,” Trans-
portation Research Part C: Emerging Technologies, vol. 137,
Article ID 103570, 2022.

[14] W. Yang, X. Zhang, Q. Lei, and X. Cheng, “Research on
longitudinal active collision avoidance of autonomous
emergency braking pedestrian system (AEB-P),” Sensors,
vol. 19, no. 21, 2019.

[15] R. Matsumi, P. Raksincharoensak, and M. Nagai, “Autono-
mous braking control system for pedestrian collision avoid-
ance by using potential feld,” IFAC Proceedings Volumes,
vol. 46, no. 21, pp. 328–334, 2013.

[16] A. Høye and A. Laureshyn, “SeeMe at the crosswalk: before-
after study of a pedestrian crosswalk warning system,”
Transportation Research Part F: Trafc Psychology and Be-
haviour, vol. 60, pp. 723–733, 2019.

[17] D. Ka, D. Lee, and H. Yeo, “Development of predictive pe-
destrian collision warning service considering pedestrian
characteristics,” Te Journal of Te Korea Institute of In-
telligent Transport Systems, vol. 18, no. 3, pp. 68–83, 2019.

[18] J. J. Anaya, P. Merdrignac, O. Shagdar, F. Nashashibi, and
J. E. Naranjo, “Vehicle to pedestrian communications for
protection of vulnerable road users,” in Proceedings of the
IEEE Intelligent Vehicles Symposium Proceedings, Dearborn,
MI, USA, June 2014.

[19] K. Dhondge, S. Song, B. Choi, and H. Park, “WiFiHonk:
smartphone-based beacon stufed WiFi Car2X-
communication system for vulnerable road user safety,” in
Proceedings of the IEEE 79th Vehicular Technology Conference
(VTC Spring), pp. 1–5, Seoul, Korea, May 2014.

[20] T. Wang, G. Cardone, A. Corradi, L. Torresani, and
A. T. Campbell, “Walksafe: a pedestrian safety app for mobile
phone users who walk and talk while crossing roads,” in
Proceedings of the Twelfth Workshop on Mobile Computing
Systems & Applications, pp. 1–6, San Diego, CA, USA, Feb-
ruary 2012.

[21] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
Look once: unifed, real-time object detection,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 779–788, las vegas, NV, USA, June 2016.

[22] F. Zhou, H. Zhao, and Z. Nie, “Safety helmet detection based
on YOLOv5,” in Proceedings of the IEEE International Con-
ference on Power Electronics, Computer Applications
(ICPECA), pp. 6–11, Shenyang, China, January 2021.

[23] R. Padilla, S. L. Netto, and E. A. Da Silva, “A survey on
performance metrics for object-detection algorithms,” in
Proceedings of the 2020 international conference on systems,
signals and image processing (IWSSIP), pp. 237–242, IEEE,
Niteroi, Brazil, July 2020.

[24] R. Solovyev, W. Wang, and T. Gabruseva, “Weighted boxes
fusion: ensembling boxes from diferent object detection
models,” Image and Vision Computing, vol. 107, Article ID
104117, 2021.

[25] I. Culjak, D. Abram, T. Pribanic, H. Dzapo, and M. Cifrek, “A
brief introduction to OpenCV,” in Proceedings of the 35th
International convention MIPRO, pp. 1725–1730, Opatija,
Croatia, May 2012.

[26] B. Noh, W. No, and D. Lee, “Vision-based overhead front
point recognition of vehicles for trafc safety analysis,” in
Proceedings of the 2018 ACM International Joint Conference
and 2018 International Symposium on Pervasive and Ubiq-
uitous Computing and Wearable Computers, pp. 1096–1102,
Singapore, October 2018.

Journal of Advanced Transportation 15

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.pwc.com/m1/en/publications/guide-on-reducing-road-fatalities.html
https://www.pwc.com/m1/en/publications/guide-on-reducing-road-fatalities.html
https://stats.oecd.org/Index.aspx?DataSetCode=ITF_ROAD_ACCIDENTS
https://stats.oecd.org/Index.aspx?DataSetCode=ITF_ROAD_ACCIDENTS
https://www.itf-oecd.org/sites/default/files/korea-road-safety.pdf
https://www.itf-oecd.org/sites/default/files/korea-road-safety.pdf


[27] S. S. Pathan, A. Al-Hamadi, and B. Michaelis, “Intelligent
feature-guided multi-object tracking using kalman flter,” in
Proceedings of the 2nd International Conference on Computer,
Control and Communication, pp. 1–6, Karachi, Pakistan,
February 2009.

[28] X. Li, K. Wang, W. Wang, and Y. Li, “A multiple object
tracking method using kalman flter,” in Proceedings of the
IEEE International Conference on Information and Automa-
tion, pp. 1862–1866, Harbin, China, June 2010.

[29] N. S. Punn, S. K. Sonbhadra, S. Agarwal, and G. Rai,
“Monitoring COVID-19 social distancing with person de-
tection and tracking via fne-tuned YOLO v3 and Deepsort
techniques,” 2020, https://arxiv.org/abs/2005.01385.

[30] A. Bewley, Z. Ge, L. Ott, F. Ramos, and B. Upcroft, “Simple
online and realtime tracking,” in Proceedings of the 2016 IEEE
international conference on image processing (ICIP) 2016,
pp. 3464–3468, Phoenix, AZ, USA, September 2012.

[31] G. Shu, A. Dehghan, O. Oreifej, E. Hand, and M. Shah, “Part-
based multiple-person tracking with partial occlusion han-
dling,” in Proceedings of the 2012 IEEE Conference on Com-
puter Vision and Pattern Recognition 2012, pp. 1815–1821,
Rhode Island, RI, USA, June 2012.

[32] K. Bernardin and R. Stiefelhagen, “Evaluating multiple object
tracking performance: the clear mot metrics,” EURASIP
Journal on Image and Video Processing, vol. 2008, Article ID
246309, 10 pages, 2008.

[33] K. S. Oh, S. Y. Park, J. H. Seo, G. H. Lee, and K. S. Yi, “Laser-
Scanner-based stochastic and predictive working-risk-
assessment algorithm for excavators,” Journal of Drive and
Control, vol. 13, no. 4, pp. 14–22, 2016.

[34] M. Seo, H. Shin, H. Jeong, and J. Chae, “Development of an
object collision detection algorithm for prevention of collision
accidents on living roads,” Journal of Drive and Control,
vol. 19, no. 3, pp. 23–31, 2022.

[35] R. Miller and Q. Huang, “An adaptive peer-to-peer collision
warning system Vehicular Technology Conference,”vol. 1,
pp. 317–321, in Proceedings of the IEEE 55th Vehicular
Technology Conference. VTC Spring, vol. 1, pp. 317–321, IEEE,
Birmingham, AL, USA, May 2020.
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