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Secondary crashes (SCs) are typically defned as the crash that occurs within the spatiotemporal boundaries of the impact area of
the primary crashes (PCs), which will intensify trafc congestion and induce a series of road safety issues. Predicting and analyzing
the time and distance gaps between the SCs and PCs will help to prevent the occurrence of SCs. In this paper, a combined data-
driven method of static and dynamic approaches is applied to identify SCs.Ten, the random forests (RF) method is implemented
to predict the two gaps using temporal, primary crash, roadway, and real-time trafc characteristics data collected from 2016 to
2019 at California interstate freeways. Subsequently, the SHapley Additive explanation (SHAP) approach is employed to interpret
the RF outputs.Te results show that the trafc volume, speed, lighting, and population are considered the most signifcant factors
in both gaps. Furthermore, the main and interaction efects of factors are also quantifed. High volume possibly promotes the time
and distance gaps, while low volume inhibits them. And volume afects the distance gap inconsiderably when it falls between 300
and 400 veh/5min. Trafc conditions with high speed and low volume are strongly associated with short-time and short-distance
gaps. Darker surroundings probably accelerate the occurrence of SCs. Moreover, crashes involving the violation categories of
improper turns or unsafe lane changes likely result in long time and distance gaps. Tese results have important implications for
proposing trafc management and improving road safety.

1. Introduction

Road trafc crashes pose a threat to normal trafc operations
and safety and can cause property damage or even serious
injuries. According to the world health organization [1],
approximately 1.3 million people die each year as a result of
road trafc crashes. Between 20 and 50 million more people
sufer nonfatal injuries, with many incurring a disability.
Furthermore, road trafc crashes cost most countries 3% of
their gross domestic product [1]. SCs, happening in the
spatiotemporal impact area of primary crashes (PCs),
commonly result in an additional impact on trafc and extra
personal injury [2, 3]. According to [4], SCs can account for
20% of all crashes and 18% of all fatalities on freeways in the

United States. In this context, SC prevention has become
a major consideration in the trafc safety feld.

In the past decades, a large body of literature has been
devoted to investigating the identifcation of SCs and
modeling the risk of SC occurrence [5–13]. Various statis-
tical and machine learning (ML) methods were applied to
explore these two aspects of SCs [9–12]. However, the time
gap (i.e., the time diference) and distance gap (i.e., the
spatial separation) between an SC and the corresponding PC
have received less attention, which might hinder a better
understanding of the possible time and location of SCs.
Among the few methods applied to study these two gaps,
statistical approaches subjected themselves to the possibility
of predicting infnitely large gaps [14, 15], while MLmethods
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failed to provide satisfactory prediction performance on the
distance gap [16]. Moreover, the black-box models need
more explanation to discuss the efects of contributing
factors in detail [16]. Terefore, some promising methods
and data experiments are required.

To better capture the characteristics of SCs, we frst
developed a hybrid method (i.e., static spatiotemporal
threshold-based and speed contour map-based methods) to
identify SCs and obtain the time and distance gaps. Sub-
sequently, random forests (RFs) were used to predict the
time and distance gaps, which have high prediction per-
formance and diversity. And an interpretation technique,
namely the SHapley Additive explanation (SHAP) approach,
was applied to examine the model outputs and estimate the
global and local efects of the infuencing factors. Un-
derstanding time and distance gaps and their infuencing
factors can provide management strategies for trans-
portation agencies and improve trafc operations and road
safety.

2. Literature Review

2.1. Secondary Crash Identifcation. Overall, two types of
methods, static and dynamic methods, were widely used to
identify SCs. Static methods identify SCs by setting the fxed
spatiotemporal thresholds, which means crashes are iden-
tifed as SCs if they fall within the spatiotemporal thresholds
of another crash [17]. First introduced this method and
defned the thresholds equivalent to one mile upstream of
a PC and 15minutes after clearance time. Following this
study, further research associated with static methods has
been explored [5–7, 18]. For example, some studies pro-
posed a spatial threshold of 2 miles and time thresholds of 2,
1, and 2 hours, respectively, to identify California secondary
crashes [19–21]. SCs can be selected quickly and efectively
from massive crashes according to spatiotemporal thresh-
olds [2, 16]. However, static methods have the problem of
subjective judgment: overestimation or underestimation of
the thresholds [2, 22]. As an improvement [7], we in-
troduced three sets of spatiotemporal thresholds to identify
SCs on Florida interstates.Te spatial thresholds for all three
sets were 2 miles, and the time thresholds were 2 h,
15minutes, and 30minutes after the PCs’ clearance time.
Teir results confrmed that the identifcation ratio of SCs
varied for diferent sets.

With the support of various sensor technologies, dy-
namic methods are becoming increasingly popular and used
because of an improvement in the misclassifcation of SCs
[22]. Tere are three main dynamic methods: (a) queuing
theory-based method [23, 24]; and (b) shockwave-based
approaches [25, 26]; (c) speed contour map-based method
[11, 13, 18]. In practical application, due to the data quality
and quantity requirements of methods (a) and (b), the
models are often simplifed and set assumptions, failing to
refect the actual condition in the real world. Nevertheless,
the speed contour map-based method has performed well
without any simplifcation or assumptions since it can ac-
curately capture the impact area of PCs [13, 27, 28]. For
example, [18] compared the crash state speed with the

historical average speed to brighten the impact area. Like-
wise [11, 13], we applied this method to identify SCs and
considered recurrent congestion.

In summary, static methods are easy to implement and
quickly obtain identifcation results, while dynamic methods
achieve better performance but consume a lot of compu-
tational time. Combining these two methods for SC iden-
tifcation can improve efciency and accuracy [16, 25]. Tis
paper proposes a two-stage strategy to identify SCs by in-
corporating the fxed spatiotemporal threshold-based and
speed contour map-based methods.

2.2. Secondary Crash Risk Modeling and Predicting.
Several statistical and ML models have been applied to
explore the relationship between SC occurrences and con-
tributing factors [9–12]. For example, [10] proposed a logit
model to predict SC likelihood, and their results revealed
that rear-end crashes could increase the SC likelihood [11]
developed a random efects logit model to link the proba-
bility of SCs with real-time trafc volume conditions, pri-
mary crash characteristics, environmental conditions, and
geometric characteristics. Similarly, [29] used the Bayesian
complementary log-log model to predict the likelihood of
SCs and examine their relationship with several variables.

However, previous studies focused less on the time and
distance gaps between the SCs and PCs. Several studies have
made attempts using regression approaches. For example,
[14] selected the ordinary least-squares (OLS) regression to
model the two gaps separately. Teir results showed that
time and distance gaps were closely associated with collision
type and the duration of the primary crash. Likewise, [15]
applied OLS regression to evaluate the relationship between
the time and distance gaps concerning individual crash
characteristics. Tey found that the number of lanes, total
vehicles involved in the crash, morning time, and AADT
were the most signifcant factors afecting time and distance
gaps. Although most independent variables had a high
signifcance, traditional statistical models usually mademore
prior assumptions for input variables, and they were unable
to predict the possibility of massive gaps. Moreover, [14, 15]
built an independent regression model for the time and
distance gaps, ignoring the potential correlation of the two
gaps because they happen at the same time. Terefore, it is
necessary to consider an alternative model to investigate
gaps simultaneously.

By contrast, ML methods have become increasingly
attractive and have gained more attention due to their high
prediction power and low limitation on data [30]. Multiple
ML methods have been employed in trafc safety studies
[8, 13, 16, 29], such as neural network models, genetic al-
gorithms, random forests, XGBoost, etc. In a small number
of studies on the time and distance gaps [16], the authors
utilized a linear regression model and two ML algorithms,
including a back-propagation neural network (BPNN) and
the least-squares support vector machine (LSSVM), to build
three prediction models. Te results indicated that the
BPNN and LSSVM models outperformed the linear re-
gression model, but these two ML models also failed to
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provide adequate performance on distance gap prediction.
Regarding ML models, many other promising approaches,
such as ensemble algorithms, combine several base learners
to enhance the prediction performance [31–33].

Besides, relatively fewer studies have focused on SC
prevention. As [2] summarized, available data and high costs
have limited relevant investigations, so continued endeavors
are still needed.Temain objective of this study is to develop
a reliable model to predict the time and distance gaps and
analyze associated infuencing factors, which can help with
proactive prevention and improve safety. Several existing
research gaps and insufciencies were mitigated and sup-
plemented in this study.

3. Data Preparation

In this study, crash data were collected from the Statewide
Integrated Trafc Records System (SWITRS), which records
detailed description of crash-related information, such as the
unique case identifer, location (state route, postmile, lati-
tude and longitude), collision year and time, collision se-
verity and type, lighting, weather, etc. A total of 24643
crashes were collected from freeways I-10, I-5, US-101, I-210,
and I-110 in Los Angeles County of California over four
years, from June 2016 to December 2019 [34]. Trough
a detailed examination, we removed the issues of redundant
attributes and missing values from the crash data.

In order to combine real-time trafc data into the
analysis of crashes, volume, and speed were extracted from
the caltrans performance measurement system [35]. In
PeMS, data were gathered from a set of loop detectors on the
road and transmitted to the management center for storage.
And the confguration information of the detector was in-
tegrated, including the location and unique identifcation

number. A two-step matching strategy is devised to obtain
trafc volume and average speed for each crash.Te frst step
matches the nearest detector upstream for every crash based
on the latitude and longitude of the crashes and the loop
detectors. Te second step is extracting the volume and
speed for 5minutes before the crashes.

Referring to the previous studies on SCs [14, 16], 17
variables were selected from 4 dimensions. Specifcally,
temporal characteristics consist of 5 variables, namely, peak,
weekend, weather, lighting, and population, which refect
the environment’s state. Population density has a relation-
ship with vehicle trips [36, 37]. Primary crash factors include
8 variables: collision severity, collision type, violation cat-
egory, part count, etc. Tese variables demonstrate all the
information associated with a crash. Road condition and
surface refect the roadway characteristics, including
whether the pavement is a maintenance area or free from
abnormal conditions or whether the pavement is dry/wet.
Trafc volume (veh/5min) and speed (mile/h) report the
trafc characteristics. Detailed descriptions and statistical
information are expressed in Table 1. Additionally, the
Pearson correlation coefcients (PCCs) were applied to
examine the multicollinearity between the 17 variables.
Figure 1 demonstrates the computed results. As shown, all
the absolute values of PPC are less than 0.8, indicating a low
linear correlation between variables.

4. Methodology

4.1. SC Identifcation. Te identifcation of SCs is the basis
for conducting SC modeling and analysis. Te static spa-
tiotemporal threshold-based estimation is the frst stage to
identify SCs roughly, and it can be defned in the following
equation:

SC �
1, if tB ∈ tA, tA + tthreshold( 􏼁􏼂 􏼃∪ SB ∈ SA, SA + Sthreshold( 􏼁􏼂 􏼃,

0, others,
􏼨 (1)

where (tA, SA) denotes the location and occurrence time of
the crash A, (tB, SB) denotes the location and occurrence
time of another crash B that needs to be examined,
(tthreshold, Sthreshold) denotes the defned time threshold and
spatial threshold, and the value of 1 means that crash B is
identifed as a secondary crash corresponding to crash A and
0 otherwise.

Speed contour map-based method estimates the impact
area of the PC based on the change in trafc speed, and a SC is
identifed when it is discovered in this area. Te speed contour
map comprises grid cells split by defned time intervals and the
milepost of sensor stations [2]. Te impact area can be
ascertained by checking the speed of each cell near the crash. In
general, it can be written as the following equation:

V
b
(t,S) �

1, if V(t,S) <V
r
(t,S),

0, others,
􏼨 (2)

where V(t,S) and Vr
(t,S) denote the current and the reference

speed of one cell; Vb
(t,S) � 1 denotes that the cell is afected;

and Vb
(t,S) � 0 denotes that the cell is not afected. Te size of

the impact area was determined by the reference speed Vr
(t,S).

Te detailed procedures of the identifcation method are as
follows:

(i) Apply the fxed spatiotemporal thresholds to
identify the candidate SCs. Referring to previous
studies on SC analysis in California [19–21], 2 miles
and 2 hours were selected as the thresholds in this
study. Te initial identifcation on 24,643 crashes
has yielded 563 possible SCs.

(ii) Extract the 5-min speed data to develop a speed
contour map for a potential PC. More specifcally,
given the fxed spatiotemporal thresholds that have
been determined, the time period for extracting
speed data is between 2 hours before and 2 hours
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Table 1: Description of variables used in crash analysis.

Variables Types Description Count Percent Mean Std
Temporal characteristics

Peak Binary 0�no 261 70.9 — —1� yes (7 : 00–9:00 or 17 : 00–19 : 00) 107 29.1

Weekend Binary 0�no 259 70.4 — —1� yes 109 29.6

Weather Categorical
0� clear 306 83.2

— —1� cloudy 46 12.5
2� rainy 16 4.3

Lighting Categorical

0� daylight 217 59.0

— —1� dusk-dawn 17 4.6
2� dark-streetlights 92 25.0

3� dark-no streetlights 42 11.4

Population Categorical

0� incorporated (less than 25,000) 10 2.7

— —
1� incorporated (25,000–100,000) 93 25.3
2� incorporated (100,000–250,000) 67 18.2
3� incorporated (over 250,000) 188 51.1

4� unincorporated (rural) 10 2.7
Primary crash characteristic

Collision
severity Categorical

0� fatal 3 0.8

— —1� severe injury 98 26.6
2� other visible injury 15 4.1
3� complaint of pain 252 68.5

Collision type Categorical

0� head on 2 0.5

— —

1� sideswipe 53 14.4
2� rear-end 242 65.8
3� broadside 11 3.0
4� hit object 45 12.2
5� overturned 12 3.3

6� vehicle/pedestrian 3 0.8

Violation
category Categorical

0� alcohol or drug 22 6.0

— —

1� unsafe speed 247 67.1
2� following too closely 4 1.1
3� unsafe lane change 44 12.0
4� improper turning 38 10.3

5� other 13 3.5

Party count Discrete

Counting total parties in the collision — —

— —

0�1 party 44 12.0
1� 2 parties 202 54.9
2� 3 parties 87 23.6
3� 4 parties 29 7.9
4� 5 parties 4 1.1
5� 6 parties 2 0.5

Tow away Binary 0�no 128 34.8 — —1� yes 240 65.2

Truck involved Binary 0�no 343 93.2 — —1� yes 25 6.8

Hit and run Categorical
0� felony 29 7.9

— —1�misdemeanor 14 3.8
2�no hit and run 325 88.3

Alcohol
involved Binary 0�no 333 90.5 — —1� yes 35 9.5
Roadway characteristic

Road condition Binary 0� construction or repair zone 23 6.2 — —1� no unusual condition 345 93.8

Road surface Binary 0� dry 335 91.0 — —1�wet 33 9.0
Trafc characteristics
Volume
(veh/5min) Continuous Vehicle counts over the 5minutes period preceding PCs — — 369.73 158.82

Speed (mile/h) Continuous Vehicle speed over the 5minutes period preceding PCs — — 48.22 17.16
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after the PC, and the spatial period is 2 miles up-
stream and 2 miles downstream of the PC location.
To eliminate the efects of recurrent congestion, the
historical average speed was calculated by collecting
speed data from the PC-free days in a year [13, 18].

(iii) Estimate the impact area of a potential PC using
equation (2). Te crashes that occur in the impact
area of PC are identifed as SCs.

Following the two-stage identifcation method, 368 SCs
are identifed in this study.Te ratio of the number of SCs to
the number of all crashes is 1.49%, which is consistent with
the fndings of the references in this area that this ratio is
around 1–1.6% [11–13, 18, 25, 38–40].

4.2. Random Forests. Tis study used RF to predict the time
and distance gaps, which has been widely used in the
transportation feld [41–46]. RF uses a bootstrap sampling
method to change the training set to build an integration of
regression trees [47]. Such a mechanism expresses the fol-
lowing advantages: gaining higher performance. Further-
more, RF can perform multiple output modeling [48, 49],
which is suitable for simultaneously predicting the time and
distance gaps.

Te input vectors for the RF model are represented as
x � [xi1, xi2, . . . , xiM],y � [yi1, yi2]􏼈 􏼉, i � 1, 2, . . . , N. M

and N are the number of features and samples, yi1 and yi2
indicate the time gap and the distance gap of sample i,
respectively. Figure 2 expresses the structural framework of
RF, which consists of the following three parts: (1) Sample set
selection: using the resampling method p times on the
original dataset to generate a sample set. In other words,
some samples are likely to be chosen multiple times, while

others will not be selected once. After k rounds of extraction,
k new sample sets are obtained. (2) Decision trees genera-
tion: training k decision trees using k sample sets of data.
During each round of generating trees, m variables from
M(m<M) features are selected for training. Te ran-
domness of the training data and variable combinations
improves the prediction performance of the model and
essentially prevents overftting. (3) Result combination.
Since the decision trees generated are independent, they
have the same contribution to the predicted result. Tere-
fore, the fnal result is obtained by averaging the k predicted
results. For multioutput problems, the following changes are
required in the decision trees: First is to store several output
values instead of 1. Ten use splitting criteria that calculate
the average reduction across all outputs.

4.3. SHAPMethod. MLmethods commonly demonstrate an
outstanding prediction performance, while their abilities are
limited due to their low interpretability. Although the RF
model can obtain global explanations (i.e., the relative im-
portance), it cannot quantify local explanations for indi-
vidual predictions. Nevertheless, local explanations provide
more detailed information than global ones [50, 51]. Shapley
additive explanations (SHAP) technology is a representative
local interpretation method that can explain the main local
efects and interaction efects of independent variables on
dependent variables, as proposed by [52]. Furthermore, [53]
improved SHAP to better and faster explain tree-based ML
models, such as random forests and gradient boosted trees.

SHAP value is the core of the method which is computed
based on the game-theoretic approach, and it represents the
average marginal contributions of one variable on a single
prediction. SHAP value is defned as the following equation:
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Figure 1: Pearson correlation coefcients of variables.

Journal of Advanced Transportation 5



ϕi(f, x) � 􏽘
R∈R

1
M!

fx P
R
i ∪ i􏼐 􏼑 − fx P

R
i􏼐 􏼑􏽨 􏽩, (3)

where R indicates the set of all variable orderings, PR
i

represents the set of all variables that rank before the variable
i in the ordering R, M is the number of variables, x means
the values of explanatory variables, and fx refers to the
single prediction, which can be written by the following
equation:

f(x) � ϕ0(f) + 􏽘
M

i�1
ϕi(f, x), (4)

where ϕ0(f) means the base value, i.e., the average value of
overall predictions.

Additionally, the global importance of variables is the
sum of the contribution of one variable on all predictions,
which is calculated by averaging absolute SHAP values as
shown in the following equation:

Ii �
1
n

􏽘

n

j�1
ϕ(j)

i

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, (5)

where Ii represents the importance of variable i, ϕ(j)

i in-
dicates the SHAP value for variable i in the single prediction
j, and n is the number of all predictions.

Te proposed RF model and SHAP method were mainly
implemented in Python (3.8.8) using scikit-learn (0.24.1)
and shap (0.40.0). Te SHAP package contains three ap-
plications: force plot, summary plot and dependence plot. In
this study, we apply the summary plot to describe the im-
portance of each variable and the dependence plot to refect
the main efects and the interaction efects of all variables.

5. Results and Discussion

5.1. Results. In this study, the grid-search with 5-fold cross-
validation techniques (i.e., GridSearchCV) was used to
determine the core parameters of the RF model. Table 2
reports the optimal values of the parameters. In the appli-
cation, the proposed RF model is compared with two tra-
ditional multivariate models: the K-nearest neighbor (KNN)

model and the multilayer perceptron regression (MPR)
model. All the models were trained and validated by ap-
plying the same dataset to guarantee the reliability of the
comparison results. Specifcally, at a ratio of 7 : 3, the raw
samples were split into a training set and a testing set for
training and testing model. Two classical regression evalu-
ation measures, namely, mean absolute error (MAE) and
mean squared error (MSE), were used to assess model
performance. Te fnal evaluation results are presented in
Table 3. As shown, the RF model mostly outperformed the
other two models on both the training and testing sets in
terms of predicting the time and distance gaps.

5.2. Global Importance of Variables. Figure 3 visualizes the
global importance of variables on the time gap. In the left
part, variables are sorted in descending order according to
their global importance, computed by averaging their ab-
solute SHAP values per variable. Te left x-axis indicates the
mean(|SHAP value|). As shown, lighting is the most dom-
inant variable on the time gap, and its average efect on the
predicted value is 0.11, followed closely by volume and
speed, which change the predicted value by 0.093 and 0.056,
respectively, on average. It suggested that the trafc char-
acteristics signifcantly afect the time gap.Tis fnding is not
surprising; Trafc characteristics are the direct response of
the trafc state, which largely infuences the travel sur-
roundings and driver status. As [11] indicated, more than
geometric characteristics and primary crash characteristics,
trafc characteristics could signifcantly afect the SC like-
lihood. Subsequently, population has a greater contribution
than party count and collision severity, indicating that the
temporal characteristic of population impacts the time gap
more than the primary crash characteristic. By contrast, the
roadway characteristics of road surface and condition have
a substantially minor efect on the time gap, with the
mean(|SHAP value|) less than 0.005.

In the right part, the diagram consists of points repre-
senting the samples, and the color visually reveals the
magnitude of variables (red means a high value, while blue
means a low value). Te right x-axis indicates the SHAP
value, which refers to the efects of all variables on a single
model output (i.e., the local efect). Tis diagram roughly
illustrates the variation of efects with the change of either
variable. Taking lighting as an example, its left side of the
vertical axis is covered with red points (indicate dark) and its
right side is stacked with blue points (refer to daylight). Tis
demonstrates that night may decrease the time gap, while the
daytime probably promotes the time gap. In addition, high
volume (red points) mostly has a positive SHAP value and

Original data set

Sample set 1 Sample set kSample set 2

Tree 1 Tree 2 Tree k

Result 1 Result kResult 2

Final result

...

...

...

Figure 2: Structural framework of RF.

Table 2: Optimal values of parameters of the RF model.

Parameters Values
n_estimators 110
max_depth 10
max_features “auto”
min_samples_split 2
min_samples_leaf 1
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low volume (blue points) mainly has a negative one, re-
vealing that high volume promotes the time gap while low
volume inhibits it.

Figure 4 represents the global importance of variables on
the distance gap. As shown in the left part, volume is the
most signifcant contributor and has an overwhelming efect
on the distance gap, changing the predicted value by 0.136.
Defnitely, volume size directly infuences the length of the
vehicle queue and, thus, the distance gap between the PC and
SC. Lighting, speed, and population also rank at the top of
the importance list. Road surface and condition are in the
bottom third and second places. Generally, the importance
ranking of variables for the two gaps is diferent, but there
are overall similarities. Trafc features are always the most
important. Crash and temporal characteristics are com-
monly distributed throughout the importance list. And road
traits contribute relatively small to both time and distance
gaps. Regarding the right part, it shows that high volume,
daylight, enormous speed, and a dense population have
a positive SHAP value, possibly increasing the distance gap.

5.3. Local Efects of Variables. In previous studies, the local
efects of a particular variable on the predicted outcome are
often observed assuming that other variables are constant.
Te drawback is that this way does not consider the issue
that the changes of specifc variable likely cause variations in
other variables (rather than assuming that all other variables
are constant). Te local dependence plot obtained based on
the SHAP method can quantify the variables’ efects while
avoiding the abovementioned disadvantage.Temain efects

were calculated for each variable. In addition, considering
the nontrivial efects of trafc characteristics on the time and
distance gaps (see Figures 3 and 4 in the previous section),
their interaction efects with the rest of the variables were
also estimated. In this section, we select variables with strong
efects for analysis.

Figure 5 shows the local dependence plots for volume on
the time and distance gaps. Specifcally, the frst two plots
reveal the main efects of volume, and the last two refect the
interaction efects between volume and speed. Moreover, the
left column is for the time gap, while the right column is for
the distance gap. In each plot, every point corresponds to
a sample. Te x-axis represents the volume value; the left y-
axis indicates the SHAP value (i.e., the local efect); the right
y-axis and the diferent colored points in the last two plots
describe the speed value. As shown in Figures 5(a) and 5(b),
plots for volume reveal an overall upward trend. When
volume is around 100 veh/5min in the two plots, its local
efects remain at the negative highest level, suggesting that
low volume may lead to a sharp decline in the time and
distance gaps. One possible explanation is that low volume
allows for such long distances between vehicles that drivers
tend to relax their vigilance generally. When faced with
a sudden crash, they are likely to react slowly and are unable
to stop timely at high speed (as shown in the lower-left
corner of Figures 5(c) and 5(d), the corresponding speed is
around 65mph). Another reasonable interpretation is that
low volume does not contribute to long queue length for-
mation, thus creating a short-distance gap. As volume grows
to 500 veh/5min, its local efects remain at the positive
highest level, indicating that high volume is likely to rapidly

Table 3: Results of several models.

Time gap Distance gap
MAE MSE MAE MSE

Training set Testing set Training set Testing set Training set Testing set Training set Testing set
RF 0.  0.46 0.07 0.31 0.45 0.45 0.33 0.31
KNN 0.44 0.47 0.28 0.32 0.49 0.47 0.36 0.36
MPR 0.45 0.46 0.30 0.32 0.46 0.47 0.31 0.32
Bold values refer to the maximum prediction performance in each circumstance.
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increase the time gap and distance gap. Tis fnding is
consistent with existing works [15].Te reason might be that
high volumemakes the trafc situation entirely stressful, and
drivers have developed a cautious driving style under this
circumstance. When a PC occurs, drivers in the immediate
vicinity upstream will not feel large shock, so SC does not
occur as quickly. Moreover, high volume can prolong queue
length and thus increase the distance gap. When volume is
around 500 veh/5min, its corresponding speed falls in an
extensive range of 24–76mph.

Figures 6(a) and 6(b) show the main local efects of speed
on the time and distance gaps, respectively.Te trends in the
two plots are similar in general (down then up), but the
infection points correspond to diferent speed values. In
Figure 6(a), as speed ranges between 0 and 50mph, its local
efects on the time gap decline to negative from positive as it
increases. When speed falls 50–75mph, its local efects show
a steep upward trend. As for Figure 6(b), when speed in-
creased from 0 to 30mph, its local efects decline from 0.05
to −0.22, indicating that this value range of speed inhibits the
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Figure 5: SHAP local dependence plots of volume. (a) Main efects of volume on the time gap. (b) Main efects of volume on the distance
gap. (c) Interaction efects between volume and speed on the time gap. (d) Interaction efects between volume and speed on the distance gap.
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distance gap. As the speed continues to increase, the local
efects grow to be positive. Moreover, we found that when
the speed ranges between 60 and 75mph (the average
volume for this speed range is 281 veh/5min), the corre-
sponding efects for both time and distance gaps are stable
around value 0, as observed from Figures 6(c) and 6(d). Such
a fnding demonstrates that this trafc state has minor
promotion/inhibition on both gaps.

Figures 7(a) and 7(b) demonstrate the main efects of
lighting on the time and distance gaps; the two plots reveal
an approximate concave trend. As shown in Figure 7(a), the
local efects of daylight and dawn (i.e., lighting� 0 and 1) on
the time gap fall in the range of 0–0.20, while streetlights and
no streetlights (i.e., lighting� 2 and 3) have the most neg-
ative efects. Such variations in local efects indicate that
a darker environment will accelerate the occurrence of SCs.
Probably because the driver’s sight distance in dark situa-
tions depends on the space illuminated by the streetlights
and headlights, leading to a lack of timely and clear per-
ception of the current road condition, resulting in in-
sufcient avoidance of PCs and thus reducing the time gap.
Figures 7(c) and 7(d) display the interaction efects between
lighting and volume. As observed, all points are approxi-
mately divided by their color into upper-right and lower-left
parts, with most of the pale and dark blue points (i.e.,
representing daylight and dawn) being above the horizontal
axis where the local efect is −0.1, the red and orange points
(i.e., denoting streetlights and no streetlights) being below it.

In other words, a bright environment has a larger volume
and positive local efects, while a dark condition has a rel-
atively smaller volume and negative local efects. It makes
sense that the vehicle trips are more during the day than at
night. Likewise, it is reasonable to consider that high volume
likely prolongs queue length and therefore increases the
distance gap.

Figures 8(a) and 8(b) represent the main efects of vi-
olation category on the two gaps. As observed, improper
turns (i.e., violation category� 4) have the maximum SHAP
value. Specifcally, its local efects on the time and instance
gaps roughly fall between 0–0.10 and 0–0.15, respectively;
such ranges indicate that this violation category promotes
the time and distance gaps to a varying degree. Te reason
might be that the crashes in which the violation category is
improper turns probably block turn lanes (usually on a one-
way road), thus afecting the vehicles behind and causing
a long queue length. Followed by another violation category
of unsafe lane changes (i.e., violation category� 3), which
shows positive correlations with both gaps. Likewise, crashes
caused by unsafe lane changes likely blockmultiple lanes and
involve several vehicles, thus decreasing the road capacity
signifcantly and extending the queue length. Besides, this
type of crash is more visible. Tat means drivers behind can
catch the crash information at a distance and drive more
carefully, increasing the time and distance gaps. By contrast,
the other four violation categories have more negligible local
efects. As shown in Figures 8(c) and 8(d), it is the
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Figure 6: SHAP local dependence plots of speed. (a) Main efects of speed on the time gap. (b) Main efects of speed on the distance gap. (c)
Interaction efects between speed and volume on the time gap. (d) Interaction efects between speed and volume on the distance gap.
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interaction efects between violation category and speed. We
fnd a strong association between crashes involving alcohol
(i.e., violation category� 0) and high speed, because points
are red on the frst vertical column. Another interesting
fnding is that the red points in the ffth vertical column (i.e.,
violation category� 4) are concentrated at the bottom, il-
lustrating that those crashes, which occurred due to unsafe
lane changes at high speeds, reduce the time and
distance gaps.

Figures 9(a) and 9(b) represent the main efects of
collision severity. Te fatal crashes, severe injury crashes,
and light injury crashes (i.e., collision severity� 0, 1, and 2)
have a promotion on the time and distance gaps, while only
complaining crashes (i.e., collision severity� 3) mainly have
inhibition on the two gaps. One possible reason is that
serious crashes attract more attention, such as rapid rescue
and intervention by trafc police, so that SCs do not occur at
a close time and distance. Figures 9(c) and 9(d) show the
interaction efects between collision severity and speed. As
observed, most of the blue points (represent the sample of

fatal crashes) occur in the speed range of 60–70mph, sug-
gesting that serious crashes frequently occur at high speeds.

Te main and interaction efects of other variables are
presented in Figures 10 and 11. As shown, plots of pop-
ulation reveal a broadly upward trend, varying from negative
to positive. A dense population (i.e., Population� 3 and 4,
indicating the population is more than 250000) promotes
the time gap and distance gap. One possible explanation is
that car ownership and travel trips may be relatively high in
these densely populated areas, leading to long queuing times
and length. Te local efects of most weekdays (i.e., week-
end� 0) and peak periods (i.e., peak� 1) on the distance gap
are greater than the value 0. It makes sense that weekdays
and peak periods have many commuter trips, resulting in
high volume on the road. Te plot for collision type shows
a v trend on the time gap while a downward trend on the
distance gap.Te efects of clear days are around the value 0,
while the efects of most cloudy days are less than the value 0.
Such a comparison indicates that cloudy days will inhibit
both gaps, i.e., SCs will occur sooner and closer on cloudy
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Figure 7: SHAP local dependence plots of lighting. (a) Main efects of lighting on the time gap. (b) Main efects of lighting on the distance
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Figure 8: SHAP local dependence plots of violation category. (a) Main efects of the violation category on the time gap. (b) Main efects of
violation category on the distance gap. (c) Interaction efects between violation category and speed on the time gap. (d) Interaction efects
between violation category and speed on the distance gap.
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Figure 9: SHAP local dependence plots of collision severity. (a)Main efects of collision severity on the time gap. (b)Main efects of collision
severity on the distance gap. (c) Interaction efects between collision severity and speed on the time gap. (d) Interaction efects between
collision severity and speed on the distance gap.
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Figure 10: SHAP main efects of variables on the time gap and the distance gap. (a) Population on the time gap. (b) Population on the
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Figure 11: SHAP interaction efect plots among variables on the time gap and the distance gap. (a) Speed and weekend on the time gap. (b)
Speed and weekend on the distance gap. (c) Collision type and volume on the time gap. (d) Collision type and volume on the distance gap. (e)
Speed and collision type on the time gap. (f ) Speed and collision type on the distance gap. (g) Volume and weather on the time gap. (h)
Volume and weather on the distance gap. (i) Volume and alcohol involved on the time gap. (j) Volume and alcohol involved on the distance
gap. (k) Volume and road surface on the time gap. (l) Volume and road surface on the distance gap. (m) Volume and road condition on the
time gap. (n) Volume and road condition on the distance gap.
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days. Drinking (i.e., alcohol involved� 1) mostly has neg-
ative local efects, meaning that drinking will reduce the time
and distance gap. Tis is consistent with reality. Te wet
surface (i.e., road surface� 1) inhibits both gaps, which is
consistent with existing knowledge [16]. It makes sense that
a wet road surface harms the vehicle’s stability, such as
a brake failure, thus accelerating the occurrence of SCs.

6. Conclusions

Tis study aimed at predicting the time and distance gaps
between SCs and PCs on highways and to analyze how the
infuencing factors contribute to the gaps comprehensively.
First, a data-driven identifcation method combining the
fxed spatiotemporal thresholds-based method and the
speed contour map-based method was developed to identify
SCs. A total of 368 SCs were sought out from the total
number of 24643 crashes.Ten, the RF model was applied to
predict the two gaps. Te data samples were split into
training and testing sets at a ratio of 7 : 3. Te results showed
that the RF model performed better than KNN and MPR.
Additionally, the SHAP method was conducted to explain
the outputs of the RF model. Based on this local in-
terpretation method, we revealed variables’ global impor-
tance and main and interaction efects on the time and
distance gaps.

We found that trafc volume and speed are the im-
portant contributors to the time and distance gaps; moni-
toring trafc conditions helps implement timely and
efective management to prevent SCs. Several temporal
characteristics, such as lighting and population, contribute
more to both gaps than primary crash features and road
factors. Compared with road factors, the primary crash
characteristics of violation category, party count, and col-
lision severity demonstrate more signifcant efects. With
these fndings about factor priorities, trafc managers and
policymakers can develop prevention plans and allocate
resources more efciently.

Te local dependence plots quantify the efects of var-
iables. Plots for the continuous variables, i.e., volume and
speed, reveal developing trends and several infection points.
For example, the local efects of volume increase mono-
tonically from −0.3 to 0.4 as the volume grows. Such var-
iation indicates that low volume sharply inhibits the time
and distance gaps, while high volume boosts them signif-
cantly. Additionally, the local efects on the distance gap are
around value 0 when volume falls between 300 and 400 veh/
5min, suggesting that the trafc state in this volume afects
the gap inconsiderably.Te plot for the main efects of speed
on the distance gap shows an obvious infection point. Such
critical information above is considerable for trafc safety
managers. As for plots about the discrete variables, dem-
onstrate the local efects and corresponding characteristics
of diferent categories of variables. Take lighting as an ex-
ample: the efects of daylight and dawn are positive, while
those of streetlights and no streetlights are mostly having
negative efects. Tat is to say, a darker environment
probably accelerates the occurrence of SCs. Where the
economic condition allows, it is advantageous to increase the

intensity of the lighting. Moreover, crashes involving the
violation categories of improper turns or unsafe lane
changes possibly cause long time and large distance gaps.

Te contributions of this study can be summarized in
the following three aspects: (1) proposing a two-stage SC
identifcation method, which combined the static and
dynamic approaches. And the identifcation results on the
test data are consistent with existing works, providing
a reliable basis for SC analysis. (2) Applying random forest
to simultaneously predict the time and distance gaps,
which facilitated understanding the relationship between
the dependent and independent variables. 17 independent
variables selected from temporal, primary crash, roadway,
and trafc characteristics and two dependent variables,
namely time gap and distance gap, were used as inputs to
train and test the random forest model. Te results
achieved better performance compared with other
models. (3) Using a brand-new interpretation technique
SHAP to explain the RF model from global and local ways.
We made several signifcant fndings which will be def-
nitely helpful for trafc decision makers to formulate
strategies.

Tis research also raises issues in need of further ex-
plorations in the future. First, 368 crashes were used in the
model training. Although we applied ML models that are
advantageous for handling sparse data, small sample sizes
may reduce the performance of the models. More data are
expected to be required to improve the model performance.
Second, 17 variables were used, and future work will cover
more types of factors. Tis study focused on temporal
characteristics, primary crash factors, roadway conditions,
and real-time trafc parameters. Other factors, such as
shoulder width and truck proportion which have shown
correlations with the time gap and distance gap of SCs, will
be considered in future research. Te SC factors are also
worthy of being discussed. In the future, it is a potential idea
to combine the PC and SC characteristics to explore the time
and distance gaps.
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