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The distance from the origin or destination to or from the subway station is defined as the access or egress distance, which
determines the service coverage of the subway station. However, little literature studies the distances at the station level, and they
may vary from station to station. Therefore, this study aims to explore the influencing factors and spatial variation of the distances
at the station level by using the mobile phone positioning data of more than 1.2 million anonymous users in Chengdu, China.
First, this study proposes a method to extract the access and egress trips of the subway. Next, the ordinary least squares (OLS)
regression models are carried out to select the significant explanatory variables. Finally, the geographically weighted regression
(GWR) models are used to model the spatial variation relationship between the 85th percentile access/egress distances and the
selected explanatory variables. The results show that different stations” access/egress distances vary significantly in space. Hotel,
residence, life, finance, road density, and mixed land use are found to be negatively correlated with distances, while education,
36-45 years old, male, and high education are positively correlated. In addition, the GWR model reveals that the influence of
explanatory variables on access/egress distance varies from space to space. The results further promote the understanding of the
existing system and provide a relevant reference for planners and transportation departments to optimize land use and public

transportation planning.

1. Introduction

The subway in China is experiencing rapid growth to cope
with new problems related to urban expansion, traffic
congestion, and air pollution [1-3]. At the same time, the
service quality of the subway is constantly improving, with
longer service time and higher service reliability [4]. In
addition to efforts to improve the service quality of the
subway itself, providing a high-quality travel environment
around stations is another way to increase its attractiveness.
Therefore, some cities vigorously develop transit-oriented
development (TOD) projects based on compact, mixed-use,
pedestrian- and bicycle-friendly urban construction con-
cepts to realize the effective strategy of changing the mode of
short-distance into walking and bicycle and long distance

from automobile to subway [3]. Naturally, the construction
of subway stations must be within a reasonable distance to be
convenient for residents to use. However, an important issue
is how to define an acceptable and practical distance to walk,
bicycle, and other modes of transportation to conveniently
access/egress the station for most subway passengers and
potential passengers from their homes, workplaces, schools,
and other locations. The answer to this question can help
provide information for planning and design decisions of
TOD’s scale and geographical scope.

In recent years, more and more scholars have begun to
pay attention to studying the access/egress distances of
subway stations. The proportion of the population served by
the transportation system is a crucial indicator of system
performance. Therefore, when determining the service area
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around the station, most studies usually use the over-
simplified method that most people walk 800 meters to the
station to define it [5, 6]. However, the accuracy and ap-
propriateness of this one-size-fits-all approach are often
questioned in other studies [7]. Because people usually walk
to the subway station, also by bicycle, automobile, and bus.
In Sydney, Australia, only 50% walk, 34% by automobile,
and 14% by bus [5]. In Beijing, China, 65.25% walk, 19.91%
by bus, 14.85% by bicycle, and 5.28% by automobile [8]. In
Toronto, Canada, buses and trams connected to the subway
account for more than one-third of all passengers [9]. Most
studies also admit that walking is a better choice for short
distances, but within the acceptable travel time, using bi-
cycles as the connection mode makes the subway more
attractive and expands the subway station’s service area. For
example, Zuo et al. [10] indicated that the bicycle distance is
1.7 to 2.3 times walking in Shanghai. Lee, et al. [11] found
that bicycles can expand urban service areas from 29.9% to
93.6% in Seoul. Other modes of transportation also increase
the accessibility of the subway system, but there are apparent
variations in different ways. Therefore, the planning of
subway stations needs to consider the connection of various
traffic modes.

The lack of appropriate data is one of the main bottle-
necks in transportation research, which significantly affects
the accuracy of the results. Existing research often relies on
the overall inference from census data or estimates the
distance at the level of individual trips based on small sample
surveys and trajectory data. However, the low diversity and
quantity of data are still challenging. More importantly,
subway stations’ access and egress distances may vary from
station to station and from space to space. This has not been
fully revealed in the existing research. At present, new data
sources related to information and communication tech-
nology have emerged: mobile phone positioning data. These
data are based on the records generated by the interaction
between the mobile phone and the points of interest (POI)
and the timing report every half hour under a continuous
bright screen condition. Mobile phone positioning data can
record users’ arrival and departure times at specific places
(such as subway stations). More importantly, the basic
demographic information is stored in these data, which can
be used to understand the travel characteristics of various
user groups and reveal the observed behaviors. In this way,
we can realize the complete end-to-end travel inference to
detect human movement behavior’s macro and micro levels.

Based on this background, this paper explores the access
and egress distances of subway passengers for the first time
using mobile phone positioning data of 1.2 million users in
Chengdu, China, which has a larger data sample and is closer
to the real travel conditions of residents than the ques-
tionnaires and other data used in previous studies. In fact,
the 85th percentile access and egress distance of each subway
station is an important indicator to evaluate the accessibility
of subway services. Therefore, this paper proposes using the
geographically weighted regression (GWR) model at the
station level to reveal the influencing factors of the spatial
variation of subway stations’” access/egress distances. It at-
tempts to answer three questions: (1) How do the access and

Journal of Advanced Transportation

egress distances of subway stations at the station-level
change in space? (2) What are the influencing factors of
the access/egress distances? (3) How does the influence of
influencing factors on the access/egress distances change in
space? These results can provide a helpful reference for
planners and city managers to optimize new subway stations
and transportation systems. In particular, the Chengdu rail
transit group is vigorously developing the TOD project, and
a large-scale analysis of urban residents’ activities in
Chengdu can determine the applicable distance threshold
for the urban environment with a unique background. In
addition, this study also shows the potential of mobile phone
positioning data in exploring residents’ subway access/egress
distances, which can provide a certain degree of explanation
for the activity intentions of different groups of people.

Next, the literature on access and egress distances of the
subway is reviewed. The third section describes the study
area and data. The fourth section introduces the method. The
fifth section is the explanation and discussion of the results.
Finally, the last section is the conclusion.

2. Literature Review

This section reviews the research related to this topic in
recent years, mainly divided into two aspects: the access/
egress distances of the subway for different modes of
transportation and the influencing factors of access/egress
distances.

2.1. Access/Egress Distances of the Subway. As the most
critical factor affecting the quality of the mode exchange,
researchers have perfomed much work in this area, espe-
cially for walking into subway stations. However, the dis-
tance thresholds obtained from different studies vary due to
the differences in study areas and data sources. For example,
on the one hand, El-Geneidy et al. [7] found that the average
walking distance of the subway from home is 0.564 km, and
the 85th percentile distance is 0.873 km through the Mon-
treal OD survey in Montreal, Canada. On the other hand,
Daniels and Mulley [5] determined the longer walking
distance through the family travel survey in Sydney, Aus-
tralia, with an average of 0.805 km and the 75th percentile of
1.018 km. Given that the distances between access and egress
are not clearly distinguished in previous studies, Wang and
Cao [12] analyzed the walking egress distances through the
2010 Transit Onboard Survey in the Minneapolis and St.
Paul Metropolitan Area. They concluded that the average
distance is 0.494km, and the 85th percentile distance is
0.845 km. Later, Tao et al. [13] examined the distances be-
tween home and subway stations in the same city using the
2016 transit on-board survey and found a shorter average
walking distance of 0.317km. Under the Chinese back-
ground, He et al. [14]’s questionnaire survey of Nanjing
Metro showed a longer distance and walking distances to the
subway station range from 1.050 to 1.2 km.

The bicycles have the potential to promote the use of
subways by connecting stations with origins or destinations.
In recent years, the transfer between bicycles and subways
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has become a research hotspot. Recent studies also show that
bike-sharing has expanded the catchment area of subway
stations, but the extent is various. For example, Rastogi and
Krishna Rao [15] found that the access distances of subway
stations are 1.8-4.05km by investigating the operation
system in Mumbai, India. However, Pan et al. [16] examined
the access distances using questionnaire surveys in Shanghai
and concluded that more than 70% of bicycles travel within
1.5km, and only about 5% are more than 2.5km. By
comparing the distance variations between different cities,
Hochmair [17] proposed that the service area of stations in
Los Angeles is 2-3 times that of Atlanta and the Twin Cities.
In addition, the median access distances observed are within
the buffer radius of the proposed community hub (1.609 km)
and the gateway hub (3.218km). As an essential part of
residents’ mobility, commuter access can significantly reflect
the service quality of transportation. According to surveys in
the Seoul Metropolitan and Deajeon Metropolitan Areas,
Lee et al. [11] found that the distances from home to the
station and from the station to work are estimated to be
1.96 km and 2.13 km, respectively. To get a more accurate
value, Zuo et al. [10] used Cincinnati GPS-based household
travel survey data and examined the distance threshold of
bicycles, which was more than twice that of walking (4.36 km
vs. 1.30km).

Besides walking and bicycle, the distances of other
modes of transportation are also compared. For example,
Wang et al. [8] compared several main modes of trans-
portation in Beijing, indicating that the average distance of
walking is the lowest, which is 0.43 km, while the others are
in order: the bicycle is 1.452 km, the bus is 6.262 km, and the
automobile is 9.115km. Xi et al. [9] analyzed the Trans-
portation Tomorrow Survey in Toronto, Canada, indicating
that subways’ service areas connected with buses and trams
are critical because they account for more than one-third of
all passengers. In space, the radius of the pedestrian service
area is generally less than 1.609 km, while the bus, tram, and
automobile are often many times larger.

Most of the above studies are based on the data collected
from traditional travel surveys, such as questionnaire-based
interviews and travel OD surveys. Access/egress distances are
usually obtained from the participants’ own reports, and are
assumed to be capable of remembering (or willing to share)
the actual activity route and movement distance. However,
Weinstein Agrawal et al. [18] indicated that only half of the
people’s actual distances are similar to those they remember.
Although GPS data can provide the most accurate spatial
trajectory of personal movement patterns, they cannot be
used on a larger scale [13]. Both travel surveys and personal
GPS are small samples of nonpopulation data. These data
limit the sample’s geographic and demographic coverage,
making them challenging to reflect distance patterns fully.

With the development of information and communi-
cation technology, large-scale data about human spatio-
temporal motion trajectories can be obtained from many
sources, such as transportation network companies and
social media data. Using new data, researchers have the
opportunity to solve the traditional problem of distance
calculation caused by limited samples. Furthermore, more

and more academic studies have shown the potential of
large-scale data as an alternative source of travel behavior
information, which can be used to derive the origin-
destination matrix. For example, some studies have ana-
lyzed the transfer distances in bike-sharing utilizing the GPS
and order data about Mobike in Shanghai. The results
showed that bicycle distances have increased compared with
walking distances [19, 20]. However, these current studies
mainly focus on the distance of a single mode of trans-
portation. More importantly, it is not known whether users
of bike-sharing really transfer to/from the subway. Thus, the
usage pattern lacks a comprehensive exploration based on
sufficient data covering different modes of transportation.

2.2. Factors Influencing the Access/Egress Distances. Many
factors may affect people’s use of the subway, which leads to
significant differences in the access/egress distances of the
subway in various environments. Therefore, the relation-
ships between distances and critical factors such as the built
environment and user characteristics must be fully
understood.

2.2.1. Built Environment. The built environment refers to
the artificial environment provided for human activities,
including various forms of buildings (such as residential,
industrial, and commercial), infrastructure (such as trans-
portation and parks), and urban space [21]. It is generally
believed that the built environment has a significant influ-
ence on shaping the mode of human mobility and activities,
which may be directly related to their accessibility to subway
stations and perceived convenience [22, 23]. In particular,
when there is no environment suitable for pedestrians,
people’s decision to drive instead of walking to the station
can be affected [24]. Some studies have found that high
density at intersections and roads positively correlated with
walking distances. They also indicated that population
density negatively correlated with walking distances [7, 13].
In addition, these factors are negatively correlated with
bicycle distances [17]. Unlike previous studies that take
individuals as the analysis unit, Lin et al. [20] established
a regression model at the station level. Their results showed
that the subway stations’ catchment area is positively cor-
related with the distance to the city center but negatively
correlated with the density of subway stations. Later, Li et al.
[19] used the same level to investigate the relationships
between the 85th percentile distances of different subway
stations and the built environment. Many built environment
factors are related to distances, but their relationships show
some variations in space. Generally speaking, these studies
reveal the influence of the built environment on the walking
or bicycle distances of subway stations, which provide ex-
tensive enlightenment for the regional planning of the
station.

2.2.2. User Characteristics. Scholars generally believe that
demographic characteristics significantly impact the dis-
tance to the subway station. However, there are apparent



differences in the direction and degree of personal char-
acteristics (including age, gender, income, and other social
factors). The representative point of view is that there are
differences in walking distances in terms of age. Young
people are more likely to walk to the station and have
a longer walking distance [7, 14, 24, 25]. In terms of gender,
males tend to walk or bicycle for a longer distance to the
station than females [7, 25], but He et al. [14] thought that
there is no difference between genders. Since car ownership,
family income, and family size also have a negative impact
on walking distances because families with more vehicles,
higher income, and more members are more likely to choose
to travel by car but less likely to live near the subway
[7, 24, 25]. When considering the travel purpose, compared
with shopping travelers, working travelers have the most
extended walking distances and the highest possibility of
walking to the subway station [14]. For users in bike-sharing,
Ma et al. [26] found that the distances between males are
higher than that of females, and urban residents are shorter
than suburban residents. In addition, they also analyzed the
possible influence of time on distance. Considering the
impact of travel habits on distances, Lin et al. [20] proposed
that the higher the proportion of a single user of the subway
station, the greater the service distance.

2.3. Summary. Although more and more evidence shows
that the distance between different modes of travel is dif-
ferent, due to the limitation of data sources, the existing
literature mainly studies the distance of a single connection
mode or the distance of individual travel levels. Although
some existing literature has studied access and egress dis-
tances at the station level, very little literature has explored
how distances vary spatially at the station level and the
existence of spatial correlations of distances. In addition,
there are significant differences in the direction and degree
of key factors affecting distance in different studies.
Therefore, the discussion on policies or plans to measure the
scope of subway services is limited. In order to fill these
research gaps, this paper tries to use the geographically
weighted regression (GWR) model to explore the spatial
change of subway access and egress distances at the station
level. The variable coefficient in the GWR model is allowed
to change with space, while the variable coefficient in general
ordinary least squares is fixed, eliminating the spatial au-
tocorrelation of variables [22, 27-29]. Therefore, the GWR
model is more suitable for analyzing the spatial change of the
distances in different subway stations.

3. Study Areas and Data

3.1. Study Areas. This study focuses on Chengdu, the capital
of Sichuan Province, a high-tech industrial base, a com-
mercial logistics center, and a comprehensive transportation
hub in western China. The whole city consists of 12 mu-
nicipal districts, three counties, and five county-level cities,
with 14,335 km”. The study areas are shown in Figure 1. The
main urban areas of Chengdu are mainly composed of 12
municipal districts, namely Chenghua, Jinniu, Jinjiang,
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FIGURE 1: Study areas and the subway system in Chengdu.

Longquanyi, Pidu, Qingbaijiang, Qingyang, Shuangliu,
Wenjiang, Wuhou, Xindu, and Xinjin. At the end of 2019,
the resident population of Chengdu has reached 16.581
million  (https://gk.chengdu.gov.cn/govInfo/detail.action?
id=2576335&tn=2). With the vast population, rail transit
in Chengdu has to develop rapidly to relieve the travel
pressure of the metropolis. Since September 27, 2010,
Chengdu metro line 1 has been put into operation. By the
end of 2020, it has a relatively developed rail transit network.
There are seven lines and 202 subway stations in operation,
with a total length of about 518 km and an average daily
passenger flow of 3.75 million. At the same time, to bring
a better living and traveling environment to residents, the
Chengdu rail transit group is now vigorously developing
TOD projects with high density, multifunction, pedestrian-
friendly environments, and high quality (https://www.
chengdutod.com/#homel).

3.2. Mobile Phone Positioning Data. Mobile phone posi-
tioning data are obtained from Jike (https://www.isjike.com/).
There are 4.994 million users in Chengdu, accounting for
30.12% of the 16.581 million permanent residents at the end
of 2019. The average number of active users per day is 2.228
million. The users used in this paper are 1,210,252 users
randomly selected from the total users. There are about
301,420,967 records, which are the continuous trajectory of
sample users from October 15 to November 15, 2020. The
data for this time were chosen because the weather during this
period was relatively mild and more suitable for travel, and
the results of the study would be more representative. Mobile
phone positioning data are divided into two parts. The first
part is scene data with POI records, with a total of 88,940,033
records. The main fields of scene data include user id, arrival
time, longitude, latitude, departure time, scene classification,
and the exact name of the POI. Table 1 is an example of scene
data. The data is generated by the interaction between the
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TaBLE 1: Example of scene data.

User id Arrival time Longitude Latitude Departure time Classification POI name
3dsh###  2020/11/06 16:46:40  104. ###  30. ###  2020/11/06 16:49:16 Subway station Dongpo road station
3dsh###  2020/11/06 16:49:12  104. ###  30. ###  2020/11/06 16:51:12 Subway station Cultural palace station
3dsh### 2020/11/06 16:51:28  104. ###  30. ###  2020/11/06 16:54:51 Subway station Jinsha museum station
3d5h### 2020/11/06 16:55:31  104. ###  30. ###  2020/11/06 16:59:54 Science education culture Jinsha site museum

### is used to replace more detailed information for privacy reasons.

software development kit inside the mobile phone and the
POI scene through wireless fidelity, Bluetooth, and near field
communication and calibrated by innovative “intelligent
scene recognition” technology (https://www.cdstats.chengdu.
gov.cn/htm/detail _180293.html). The identification standard
is to require identification at the front gate of the subway, and
the farthest 30 meters is the identification range. The shops
are identified based on the entrance of the shops, and the
range within 5meters of the entrance is the effective iden-
tification range. According to the “intelligent scene recog-
nition” technology, when a user enters or tends to enter a POI
scene (such as the subway station and shop), the entry records
are generated, and when a user leaves the scene, which records
the time, latitude, and longitude, POI name, and other user
information at this moment. Therefore, the user’s stay time in
a scene can be calculated. The second part is the timing report
data, with a total of 212,480,934 records. The main fields
include user id, time, longitude, and latitude. An example of
timing report data is shown in Table 2. The generation
principle of timing report data is that a report record is
generated every half hour when the mobile phone continu-
ously lights up.

Mobile phone positioning data also contain information
of each user, such as age, gender, education level, and in-
come level, which is mainly judged by a combination of
integrating real samples with Jike company’s in-depth
partners, users’ APP online usage characteristics and off-
line visiting behaviors. The specific sources of user char-
acteristics are as follows: one of them is from information
such as the APP list. By analyzing the APP list installed on
mobile devices and the usage as well as the reference feature
labels, user characteristics are analyzed and judged. For
example, in the inference of gender, the typical applications
of the APP are the great aunt, male health care, and male
private doctor. The second comes from the type of mobile
phone information pushed, the frequency of pushing, and so
on. The third comes from the location information such as
the user’s residential address and office address resolved
based on the latitude and longitude of the user’s activities to
identify the income level. The fourth comes from external
data sources such as UnionPay and operators, as well as
public data on the Internet.

3.3. Mobile Phone Positioning Data Processing. Given that
the mobile phone positioning data only records the
movement trajectory of the user in continuous time, it is
impossible to know the actual origin and destination of the
subway trips. Therefore, the trips from the origin to the
subway station and leaving the station to the destination
need to extract according to some principles. In this study,

TaBLE 2: Example of timing report data.

User id Time Longitude Latitude
3d5h### 2020/11/06 19:56:07 104. ### 30. ###
3d5h### 2020/11/06 20:50:16 104. ### 27. ###
3d5h### 2020/11/06 22:05:57 104. ### 30. ###
3d5h### 2020/11/06 22:39:51 104. ### 30. ###

### is used to replace more detailed information for privacy reasons.

a complete subway trip is defined as arriving at a subway
station from the origin through a certain mode of trans-
portation (including walking, cycling, self-driving, and so
on), taking the subway through at least two subway stations,
or leaving the station to reach the final destination through
another mode of transportation. It is important to note that
because of data quality limitations, we are not able to identify
the mode of transportation by which users arrive or leave the
subway station.

Next, trip extraction and screening from Steps 1 to 3 in
Figure 2 are introduced. For a similar trip extraction pro-
cedure, readers can refer to Wang et al. [29] ’s paper.

(i) Step 1: Clean the timing report and scene data. First
of all, some scene data cannot identify detailed POI,
so they are recorded as timing report data by
mistake. For this reason, the timing report data
whose time interval with the previous record is less
than 30 minutes are deleted. Second, when the user
approaches some subway stations built on the
ground, scene data may be generated, but users do
not actually enter the station and take the subway.
Therefore, when the distance between two adjacent
recorded subway stations is more than 5 km, or the
time interval is more than 10 minutes, it is con-
sidered that the subway is not used to reach the
adjacent stations, so these subway records are
deleted.

(ii) Step 2: Trip extraction under space-time constraints.
In this step, the origin and destination of the access
and egress trip are judged according to the moving
and staying state of the continuous track of the
scene and the timing report data. Considering the
data structure of this study (the principle of gen-
erating data every 30minutes by timing report
data), and referring to the related literature on travel
discrimination based on mobile phone cellular
network data [30, 31], this study assumes that users
stay at a position for 30 minutes, and the position is
regarded as a staying point (origin or destination of
the trip). For scene data, when the time difference
between the user’s arrival and departure time in


https://www.cdstats.chengdu.gov.cn/htm/detail_180293.html
https://www.cdstats.chengdu.gov.cn/htm/detail_180293.html

a POI is more than 30 minutes, it is marked as
a staying point. For timing report data, given that
these data only record the time, longitude, and
latitude of every half hour when the screen is
continuously illuminated but do not know the
staying time of the user in this position. Therefore,
a timing report record is assumed that the user stays
in the position for half an hour. For the sake of travel
safety, people rarely use their mobile phones for
30 minutes continuously under a bright screen
when they move continuously by walking or cycling.
In the case of taking the subway, the records gen-
erated during the subway trip are mainly in the ABA
and AAB forms (A is the subway station, and B is
the timing report record). If the time interval be-
tween A and B is less than 30 minutes, B is regarded
as a nonstay point and excluded. Then, for the
records marked as staying points, the trips from the
staying point (origin) to the subway station and
from the subway station to the staying point
(destination) are extracted as access and egress trips.

(iii) Step 3: Trip screening. After extracting subway trips
in step 2, the abnormal trips must be deleted
according to the following rules. First, the trips
whose origin or destination does not belong to
Chengdu are eliminated. Second, the trips that are
not in the subway operation time (00 : 00-6: 00) and
the time difference between the origin (or desti-
nation) and the station of more than 12 hours are
deleted. Third, the outliers of the distance of access
and egress trips are eliminated by using the three
times quantile of the box diagram.

According to the previous three steps, the number of
users extracted from the original data is 166,913, and the
access and egress trips are 840, 312 and 763, 086, re-
spectively. These trips are used as follow-up analysis.

3.4. Variable Description. According to the relevant liter-
ature and available data [7, 12, 13, 19, 20], we have selected
two categories of independent variables that can explain
the dependent variables, namely the built environment
and user characteristics. Their descriptive statistics are
shown in Table 3. The built environment is the statistical
value of various variables within the 1 km (approximately
equal to the average distance of all the extracted trips in
Section 3.4) buffer zone of the subway station, mainly
including land use characteristics, traffic-related facilities,
and other variables. The land-use variables are calculated
using POI data. POI data are collected from Amap (also
known as Gaode Map) through the application program
interface (https://www.amap.com/). The total number of
POI is 416,459. Each POI record usually contains the POI
name, address, scene classification, longitude, and latitude
of the specific location. Some scenes are too few and have
been deleted. Finally, according to the scene classification,
POI is mainly divided into 13 categories for research.
Parking lot data are extracted from POI. Road network
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1. Timing report data: adjacent records should be less
than 30 minutes.

2. Scene data: adjacent subway scene should be less than
5 km or less than 10 minutes.

v

1. Scene data: The location of the POI whose stay time
exceeds 30 minutes is judged as a staying point.

Step 1: Data cleaning

2. Timing report data: The location recorded by a report
data is considered as a staying point. (If a report data is
judged to be moving, delete the data).

Step 2: Trip extraction

3. Extraction trips: the trips from origin to the subway
station and from the subway station to the destination.

v

1. Delete the non-Chengdu trips.

2. Delete the trips that are not in subway operation time
or the time interval of the trips is greater than 12 hours.

Step 3: Trip screening

3. Use the third quantile of box chart to eliminate the
trips with abnormal travel distance.

F1GURE 2: The extraction process of access and egress trips.

data are obtained from OpenStreetMap (OSM) (https://
www.openstreetmap.org/). The bus stop data are obtained
from the Chengdu public platform, including 10,228 bus
stops. Bus stop data record each station’s station name,
longitude, latitude, line number, and line direction
(https://www.cddata.gov.cn/oportal/index). Population
data are obtained from WorldPop, counted at the grid
level of 100 x 100 m in 2020 (https://www.worldpop.org/).
This study takes Tianfu Square in Chengdu as the center
and calculates the distance from each station to the city
center. Finally, user characteristics are the proportion of
different users in each station according to access and
egress trips. In order to reduce repeated displays, the
statistical values of user characteristic variables in the
access trips are only presented in Table 3.

4. Method

In this study, the spatial regression model GWR was used to
explore the spatial variation relationship between the 85th
percentile access and egress distance and travel-related
variables and the above selected built environment vari-
ables. First, the ordinary least squares (OLS) regression
model was used to explore the relationship between ex-
planatory variables and the distances. Then, to analyze the
spatial change of their relationship, we calculated Moran’s I
to test the existence of spatial correlation of variables.


https://www.amap.com/
https://www.openstreetmap.org/
https://www.openstreetmap.org/
https://www.cddata.gov.cn/oportal/index
https://www.worldpop.org/
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TaBLE 3: Description and statistics of variables.
Variables Description Mean SD
Built environment (within the 1km buffer zone)
Hotel The proportion of hotel services (chain hotels, service apartments, and so on) 94.089 169.811
Sport The proportion of sports facilities (gym center, playground, and so on) 64.470 60.775
Public The proportion of public facilities and services (bridges, intersections, and so on) 16.436 16.698
Company The proportion of companies (enterprise, factory, and so on) 16.436 16.698
The proportion of residences (a residence is a place used as a home or dwelling,
Residence where people reside, mainly including commercial residential buildings, and 120.267 147.511
residential communities)
The proportion of life services (life refers to the places or facilities that provide life
Life seryices to ensure the' normal oPeration of people’s daily agivitigs S}lch as express 158.386 148.263
delivery, laundry, mainly including post offices, travel agencies, logistics and express
delivery, and laundries)
Healthcare The proportion of medical services (general and special hospitals, clinics, and so on) 116.297 115913
Government The proportion of government (afiministrative agency, civil service, welfare 77797 97 841
institution, and so on)
Education The proportion of science and e.ducation culture (college, university, high, middle 118.139 127 856
and primary school, and so on)
Shopping The proportion of shopping malls (retailo, rf)hopping mall, convenience store, and so 19.842 16.792,
Finance The proportion of financial sewic§s (banks, insurance companies, financial 58.535 68.825
corporations, and so on)
Tourist The proportion of tourist attractions (parks, museums, historical sites, and so on) 6.426 9.119
Cateri The proportion of catering services (Chinese and foreign restaurants, fast food,
atering 280.460 253.100
coffee house, and so on)
POIMix Shannon entropy of all POI categories 3.164 0.248
Road density Length of all roads (km) 37.065 13.775
Bus station Number of bus stations 33.480 23.420
Parking lots Number of parking lots 160.020 161.447
Population The number of people 42868.607 39434.025
Distance Euclidean distance between each station and city center (km) 10.830 7.529
User characteristics
Age 26-35 The proportion of users aged 26-35 years old (The reference variable of age is 0.428 0.081
16-25 years old)
Age 36-45 The proportion of users aged 36-45 years old 0.053 0.017
Over 46 The proportion of users over 46 years old 0.019 0.008
Male The proportion of male 0.552 0.067
Median education The proportion of college and undergraduate 0.364 0.029
High education The proportion of graduate students or above 0.125 0.030
Middle income The proportion of users with monthly income of 7,000 to 15,000 yuan 0.319 0.042
High income The proportion of users with a monthly income greater than 15,000 yuan 0.124 0.024

Finally, the GWR model is used to quantitatively analyze the
local relationship between access/egress distances and ex-
planatory variables. The following sections briefly introduce
the principle and calculation of the model.

4.1. Spatial Autocorrelation Test. Before using the spatial
regression model, the spatial autocorrelation of variables
should be tested. Moran’s I is a widely used global spatial
autocorrelation measure. Moran’s I can be expressed as
follows:

n 27:12?:11“1']' (y; _?)(J’j _7)
n n X n —\2
Lic1 2 j-1Wij Y (i)
where # is the number of subway stations, ¥ is the average

value of y, and w;; is the spatial weight between station i and
station j. The value of global Moran’s I is usually between —1

I= , (1)

and 1. When Moran’s I is positive, the variables have positive
spatial autocorrelation; if Moran’s I is negative, the variable
has negative spatial autocorrelation; if Moran’s I is 0, it
means that the variable is random to some extent.

The Z-value of Moran’s I can be calculated by the fol-
lowing equation:

P I-E[I] , )
SDII]

where E[I] and SD[I] are the expectation and standard
deviation of the global Moran’s I, respectively. A positive Z
-value indicates that the variable has more spatial aggre-
gation, while a negative Z-value indicates that the variable
has more spatial dispersion. Generally, the significance of
Moran’s I is estimated by pseudo P value. If the pseudo P
value is less than 0.05, the global Moran’s I is statistically
significant at the confidence level of 95%, which means that



the variable is spatially correlated. On the other hand, if the
pseudo P value is greater than or equal to 0.05, it means that
the variable is likely to be randomly and independently
distributed in space.

4.2.  Geographically ~ Weighted  Regression — Model.
Geographically weighted regression (GWR) model is an
extended form of the OLS model, which is used to model
spatial variation. Compared with the general OLS and
GWR allows the coefficients of explanatory variables to
change in space. In order to better understand GWR, this
paper first explains the OLS model.

Assuming that the space surface is uniform, the tradi-
tional global OLS model is often used to explore the re-
lationship between dependent and independent variables.
The model formula is as follows:

yi=PBo+ Z/gkxik +¢&;, (3)
k=1

where y; is the distance of access or egress trips at the station
i, B, is the intercept term, 3, is the estimation coefficient of
the k th independent variable, x; is the environmental
variable, and ¢; is the model error at station i.

Considering the global nature of the OLS model, the
estimated regression coeflicients are the same and constant
in the whole study area. However, since spatial data are
usually heterogeneous and highly dependent on local re-
gional characteristics, the region cannot be completely
homogeneous. As a basic extension of the OLS model, the
geographical location factor is added to the regression pa-
rameters to quantify the spatial effect, and the neighborhood
relationship is simulated by calibrating the model with local
coefficients. The formula is

m
Vi = Bio (up i) + z Bir (> i) X + €5 (4)
k=1

where for the station i, (u;,v;) represents the geographical
coordinates of the subway station, f;, (;, v;) is the intercept
term, By (u;, v;) is the regression coefficient associated with
the k th environmental variable, x;, is the k th explanatory
variable.

According to the first law of geography [32], the in-
teraction between adjacent stations is more significant
than that between distant stations. This location uses the
latitude and longitude location of each subway station.
Therefore, constructing a spatial weight matrix is neces-
sary to estimate the value of B; (u;,v;), which can be
calculated as follows:

Bi(upv) = (X'W,X) X"Wyy, (5)

where for the station i, B; (u;, v;) = (Big» Birs -+ » Bits - Bim)
is the estimated coeflicient of the independent variable k, X,
and Y are the vector-matrix of the independent and de-
pendent variables, respectively, and W, is the spatial
weighting matrix, which can be expressed as follows:
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where w;, represents the spatial weight value between the
station i and others. In this study, the commonly used
adaptive bi-square kernel is used to calculate the spatial
weighting matrix, and the adaptive distance decay simulates
the spatial effect of the surrounding station in the bandwidth
range. It is worth noting that the bandwidth selection is also
important, because it will greatly affect the coeflicient es-
timation. This paper chooses the bandwidth selection
method for the golden section search. The corrected Akaike
information criterion (AIC() is used to evaluate the fitness
to obtain the best bandwidth.

The coeflicients in the OLS model are constant, and the
difference between the OLS model and the GWR model is
that its coefficients vary with geographical location.
Therefore, we use four regression models to discuss the
relationship between subway access/egress distances and
explanatory variables. These four models are represented as
OLS_Access, OLS_Egress, GWR_Access, and GWR_Egress.
In order to further evaluate the spatial nonstationarity of the
coefficients, we use AIC: and adjusted R* to measure the
model performance of OLS and GWR. Lower AIC; and
higher adjusted R* values show better model fitting.

5. Results and Discussions
5.1. Descriptive Statistics and Analysis

5.1.1. Origin and Destination of Trips. Figure 3 shows the
kernel density distribution of the origin and destination of
subway trips, respectively. The display rule of the distri-
bution is quantile. The deeper the red color, the higher the
number of trip generations or destinations. This figure in-
dicates that the trip generation or attraction is mainly
distributed within the loop line (Line 7), and the intensity
outside the loop line is relatively low. The origin and des-
tination of trips mainly fall near the subway station. That is,
the farther away from the subway station, the less the trip. In
addition, the figure also shows that there are different in-
tensities around the same subway station, which may be
related to land use.
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FIGURE 3: Spatial distribution of the origin and destination. (a) Kernal density of access trip and (b) kernal density of egress trip.

5.1.2. Analysis of the Access and Egress Distances.
Table 4 shows the descriptive statistics of the access and
egress distances. The distances are calculated as the Eu-
clidean distances between the origin or destination with the
subway stations. The table indicates the average access
distance is 1.059km, and the 85th percentile distance is
2.031 km. However, the egress distance is lower than the
access distance, with an average distance of 0.998 km and the
85th percentile distance of 1.930 km. In order to obtain the
distance of the total trips, the access and egress trips of each
station are added. Results show the average distance of the
total trips is 1.030km, higher than the walking distance
(0.8 km) often used in practice [5, 6], and lower than the
bicycle distance (2 km) calculated based on GPS trajectory in
Shanghai [19]. The 85th percentile distance is often used as
the threshold for people willing to walk or bicycle to reach
the subway service [7, 10, 19]. The 85th percentile distance of
the total trips is 1.983 km, which indicates that the subway in
Chengdu provides services for most people within this
distance without considering the feeder mode.

Figure 4 is a histogram of access and egress distances.
The left side of the vertical axis is the frequency of trips, and
the right side is the cumulative proportion of trips corre-
sponding to the solid line. The figure shows that both the
access and the egress distances are in the form of decay, and
the farther the distances are, the fewer the trips are. It can
also be found that the commonly used 0.8 km only accounts
for 59% of trips, as shown by the blue dotted line, which
means that a large proportion of trips beyond 0.8 km are still
not covered, which may lead to the underestimation of the
service coverage of subway stations.

5.1.3. Analysis of Different Users’ Access and Egress Distances.
Table 5 shows the descriptive statistics of trips for different
users, including age, gender, educational background, and
income. Both access and egress distances show that the

average distances of different types of users are various. The
average distance between males (1.126 km) is higher than
that of females (0.983km), consistent with most previous
studies. Whether walking or bicycling, the distance between
males is higher than that of females [26, 33]. In terms of age,
the distance of people aged 16-25 is the shortest. With the
increase in age, the distance is longer. The higher the ed-
ucational background, the farther the distance. It is an in-
teresting discovery, which may be related to their travel
purpose. Compared with other income groups, middle-
income people have the longest distance. Because the sub-
way provides an affordable travel choice for people, middle-
income people are more likely to choose the subway. The
egress distances are smaller, but different users show
a similar pattern compared with the access distances.

The Kruskal-Wallis test is used to compare whether
there are statistical differences in the travel distance of
different users. The Kruskal-Wallis test is suitable for
comparing grouping variables with two or more levels (if
there are two levels, equivalent to the Mann-Whitney U
test). In addition, it is possible to judge whether the mean
values of several populations are equal or not without
making any assumptions. The results show that the null
hypothesis that there is no difference between samples can
be rejected (P <0.001), which means that the distances of
different user types are significantly various.

5.1.4. Spatial Distribution of Access and Egress Distance.
Different subway stations may have different access and
egress distance thresholds, considering the spatial hetero-
geneity. We use the standardized circle size of the subway
station to represent the threshold of the 85th percentile
distance shown in Figure 5. It can be found that the access
and egress distances between stations vary obviously.
Generally speaking, the stations with smaller distances are
mainly distributed in the central city, while the stations far
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TaBLE 4: Descriptive statistics of distance (unit: km).

Type Mean SD 25th 50th 75th 85th Max
Access distance 1.059 1.101 0.341 0.645 1.305 2.031 5.282
Egress distance 0.998 1.027 0.318 0.616 1.256 1.930 4.858
Distance of the total trips 1.030 1.067 0.330 0.631 1.282 1.983 5.282
140000 100 found that hotel, residence, life, finance, road density, and
‘ mixed land are negatively correlated with distance, while
120000 - -} 85 other variables are positively correlated with distance.
100000 r7e %
(=%
2 80000 - / 5 5.2.2. Analysis Results of Global Moran’s I. In order to test
= 60000 | >0 g whether the GWR model is suitable for exploring the re-
Eﬁ lationship between subway access/egress distance and ex-
40000 - - s & planatory variables, this study first makes a global Moran’s I
20000 | o through ArcGIS to check whether the selected variables have
[ “] @]l — “ spatial autocorrelation. Table 7 shows the global Moran’s I
0 - A A AR e s | result. This test measures the spatial autocorrelation of
0.0 05 1.0 152025 3.0 3.5 40 4550 5.5 a specific element according to its position and numerical
Distance (km) value. The null hypothesis is that there is no spatial corre-
Access lation. According to the result, this hypothesis is rejected. P
B Egress values of all variables are significant, showing a strong spatial

F1GURE 4: Histogram of access and egress distances.

away from the central city have a longer distance. This result
is logical because the density of subway stations is high in the
central city, and people can reach the nearest subway station
by traveling a short distance. However, in the outlying area
of the central city, the density of the subway and other
transportation facilities is low, and even if it is far from the
subway station, it has to travel long distances to reach the
subway station.

5.2. Model Results

5.2.1. Results of Ordinary Least Squares Regression Model.
In this study, the OLS model is used to model the 85th
percentile access distance to determine which factors may
affect the catchment area of the subway. The Pearson cor-
relation coeflicient and variance inflation factor (VIF) are
used to eliminate the collinearity between variables.

First, if the correlation coefficient between the variables
is greater than 0.7, it is considered that there is a high
correlation between the two variables, and it is deleted. Then,
we calculate the VIF of other variables, which shows that
there is no significant collinearity among variables (VIF < 5).
In order to select variables better, the backward stepwise
regression method is used, which allows a series of re-
gression models to be established by deleting and adding
independent variables and evaluating which variables should
be kept. The results of OLS model are shown in Table 6. The
adjusted R* of the model is 0.510 and 0.505, respectively,
indicating that the independent variables in this study ex-
plain at least 50.5% of the distance variation. If the P value of
avariable is less than 0.05, the null hypothesis that there is no
relationship between variables can be rejected. It can be

correlation. The Z-value is greater than 0, indicating that
each variable presents a spatial aggregation pattern. The
above evidence shows that the global OLS model cannot
effectively analyze the relationship between subway travel
distance and interpretation. Therefore, it is advisable to use
the GWR model to explore the spatial heterogeneity of data.

5.2.3. Results Analysis of the GWR Model. In order to
compare the results of the global regression model, we use all
variables in the OLS model to discuss the influence of spatial
variation of explanatory variables. GWR 4.0 software is used
to model GWR. Tables 8 and 9 show the regression results of
access and egress distance in GWR, respectively. These two
tables show descriptive statistics of regression coefficients:
mean, standard deviation, minimum, lower quartile, upper
quartile, maximum, and range. The R’ adjusted R* and
AICc in statistics are widely used indicators to evaluate the
applicability and performance of the model. Therefore, these
indexes of the GWR model in Tables 8 and 9 are compared
with those of the OLS model in Table 6. As the R* value is
larger and the AICc value in GWR is smaller, the model is
more suitable for observation data, which indicates that the
GWR model is superior to the traditional OLS model in this
case study. In addition, descriptive statistical indicators
provide an overall understanding of the distribution char-
acteristics of regression coefficients. For example, the resi-
dence has a negative impact on the distance of subway travel
(average=-5.460). However, its standard deviation
(SD =2.499) shows that the regression coeflicient distribu-
tion of residence is more dispersed than other variables, and
more than 75% of them have a negative impact on distance.
These results will help decision-makers understand the range
of local coefficients between explanatory variables and
distances and then help to implement targeted planning
measures at different stations.
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TaBLE 5: Descriptive statistics of different users (unit: km).
Access distance Egress distance
Type Percentage (%)
Mean SD P value Mean SD P value

Gender <0.001 <0.001
Female 39.9 0.983 1.039 0.925 0.967

Male 60.1 1.126 1.148 1.062 1.071

Age <0.001 <0.001
16-25 42.7 0.967 1.018 0.912 0.948

26-35 47.3 1.153 1.171 1.083 1.093

36-45 7.0 1.174 1.186 1.115 1.106

Over 46 3.0 1.231 1.222 1.165 1.152

Education® <0.001 <0.001
Low 48.6 1.048 1.092 0.993 1.022

Median 37.2 1.060 1.102 0.997 1.027

High 14.2 1.104 1.129 1.023 1.045

Income® <0.001 <0.001
Low 54.9 1.036 1.080 0.974 1.005

Middle 33.2 1.107 1.137 1.045 1.064

High 11.8 1.044 1.096 0.985 1.019

a: low education: high school and below, medium education: college and undergraduate, high education: graduate and above. b: low income: monthly income
below 7,000 yuan, middle income between 7,000 and 15,000 yuan, and high income above 15,000 yuan.

Access distance (km)
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o 1.519-1.928
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FIGURE 5: Spatial distribution of the 85th quantile distances. (a) Spatial distribution of access distance and (b) spatial distribution of egress

distance.

As the estimation coeflicient of each independent var-
iable varies from station to station, Figures 6-10 show that
subway stations are marked with different colors in the
figure based on the value of their estimation coeflicient to
understand better the influence of the spatial change of
independent variables. Because of the layout limitation, this
paper only shows and discusses that the two GWR models
have common variables. On the whole, the influence of most
variables on the access and egress distances, respectively,
showed similar spatial variation, with only Figure 10
showing some more significant differences.

Figure 6 shows the spatially varying effects of hotel on
subway stations’ access/egress distance. The figure shows
that the relationship between hotel and access/egress

distance is negative, but it varies from space to space. From
the spatial point of view, the hotel has a smaller negative
impact on the distance between the city center and the north.
On the contrary, in areas far away from the city center, the
increase in hotels has a greater negative impact on the service
scope of subway stations. These results indicate that the
increase in the proportion of hotels beside suburban subway
stations shortens the distance between subway stations.
Figure 7 shows the spatially varying effects of residence
on subway stations’ access/egress distance. The figure shows
that the proportion of residence is negatively correlated with
the access/egress distance. This may be because people
usually like to live around subway stations, so the increase in
residential proportion reduces the distance. From the spatial
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TABLE 6: Results of the ordinary least squares regression model.
. OLS_Access OLS_Egress
Variables . .
Coeflicient T-value P value VIF Coeflicient T-value P value VIF

(Intercept) 1.463 1.280 0.201 — 0.170 0.252 0.800 —
Hotel —2.441 -2.678 0.008** 1.190 -3.050 -3.725 <0.001*** 1.202
Residence —4.240 -3.021 0.002** 1.057 -2.921 —2.269 0.024* 1.113
Life — — — — -2.432 -2.191 0.029* 1.306
Education 2.444 1.856 0.064* 1.153 — — — —
Finance — — — — -5.634 -2.152 0.032* 1.292
Road density -0.020 -4.753 <0.001*** 1.497 -0.017 -4.113 <0.001*** 1.867
Mixed land —-0.660 —2.858 0.004** 1.352 — — — —
Age 36-45 — — — — 8.553 2.704 0.007** 1.572
Male 5.648 6.087 <0.001*** 1.585 3.528 3.999 <0.001*** 1.867
High education 3.719 2.197 0.029* 1.144 6.154 4.001 <0.001*** 1.058
R 0.529 0.527
Adjusted R? 0.510 0.505
AICC 439 395
***P<0.001, **P<0.01, *P<0.05.

TaBLE 7: Global Moran’s I result of variables.
Variables Moran’s I Expected I Variance Z-value P value
Access distance 0.474 —-0.004 0.001 12.247 <0.001
Egress distance 0.409 -0.004 0.001 10.574 <0.001
Hotel 0.445 -0.004 0.001 13.309 <0.001
Residence 0.364 —-0.004 0.001 9.735 <0.001
Life 0.381 -0.004 0.001 9.850 <0.001
Education 0.223 -0.004 0.001 5.951 <0.001
Finance 0.323 -0.004 0.001 8.406 <0.001
Road density 0.684 -0.004 0.001 17.601 <0.001
Mixed land 0.430 -0.004 0.001 11.318 <0.001
Age 36-45 ¥ 0.277 -0.004 0.001 7.223 <0.001
Male®““** 0.399 —-0.004 0.001 10.361 <0.001
Male®8™* 0.431 -0.004 0.001 11.175 <0.001
High education®™** 0.077 -0.004 0.001 2.161 0.030
High education®®"* 0.119 —-0.004 0.001 3.286 0.001
Access represents the access distance. Egress represents the egress distance.

TaBLE 8: Regression results of GWR_Access.
Variables Mean SD Minimum Lower quartile Upper quartile Maximum
(Intercept) 2315 2.390 ~2.131 0.539 3.870 6.537
Hotel -2.379 0.845 ~5.148 ~2.805 ~1.705 ~1.442
Residence ~5.460 2.499 ~10.709 ~7.243 ~4.180 1.991
Education 3.378 1.678 0.250 2.195 4.642 6.283
Road density -0.019 0.003 -0.030 -0.020 -0.016 -0.014
Mixed land —-0.695 0.414 —-1.424 —-0.964 —-0.392 0.040
Male 4.357 1.804 1.308 2.819 5.762 7.685
High education 2.430 1.357 -0.252 1.391 3.208 6.987
R 0.609
Adjusted R? 0.548
AICc 434

point of view, the impact of residential on distance is usually
greater in the northeast of the city. These results indicate that
people who live in the city’s northeast are usually more
sensitive to the access and egress distance.

Figure 8 shows the spatially varying effects of road
density on subway stations’ access/egress distance. The
figure shows that the road density is negatively correlated

with the distance. This may be because in areas with high
road density, the traffic accessibility around the subway is
greater, thus shortening the access/egress distance of the
subway station. The access/egress distances have shown
similar results, and the influence of road density on the
distance is usually greater in urban suburbs. This indicates
that the increase in road density around suburban subway
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TABLE 9: Regression results of GWR_Egress.

Variables Mean SD Minimum Lower quartile Upper quartile Maximum
(Intercept) 0.198 0.918 -1.370 —0.525 0.696 2.208
Hotel -3.058 1.368 —8.748 -3.528 -2.181 -1.513
Residence —4.113 1.971 -7.286 —-5.436 -2.871 2.923
Life —1.143 1.477 -4.074 -2.373 0.127 1.422
Finance -7.370 1.492 —-11.680 —8.286 —6.290 —2.808
Road —-0.012 0.005 -0.025 —0.015 —0.008 —0.006
Age 36-45 9.091 2.835 3.486 7.485 10.742 17.309
Male 3.010 1.543 —0.483 1.998 4.184 5.934
High education 5.892 1.119 2.694 5.178 6.651 8.906
R? 0.625

Adjusted R? 0.547

AICe 393

N N
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FIGURE 6: Spatially varying effects of a hotel on the access/egress distance. (a) Effects of the hotel on the access distance and (b) effects of the

hotel on the egress distance.
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FIGURE 7: Spatially varying effects of residence on the access/egress distance. (a) Effects of residence on the access distance and (b) effects of

residence on the egress distance.
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FIGURE 8: Spatially varying effects of road density on the access/egress distance. (a) Effects of road density on the access distance and (b)

effects of road density on the egress distance.

Male
o 1.308 - 2.274
o 2.275-3916
o 3917 -5.162
@ 5.163 -6.008
@ 6.009 - 7.685

Male
o -0.484-1.762
o 1.763 -2.627
o 2.628 - 3.480
o 3.481 - 4.361
@ 4.362-5.935

FIGURE 9: Spatially varying effects of male on the access/egress distance. (a) Effects of male on the access distance and (b) effects of male on

the egress distance.

stations can affect the service coverage of subway stations
more than that in downtown.

Figure 9 shows the spatially varying effects of male on
subway stations’ access/egress distance. The figure shows
that there is a positive correlation between males and dis-
tance. In the previous descriptive statistics (Section 5.1.3),
there are differences in the distance between the gender.
However, their results do not reflect whether there is
a statistical difference in the distance at the station level. In
the GWR model, the coefficient in the north is larger, which
means that in these stations in the north, males are more
inclined to travel a longer distance to the subway station,
thus expanding the coverage of the subway station.

Figure 10 shows the spatially varying effects of high
education on subway stations” access/egress distance. The
figure shows that high education is positively correlated with
distance. In the previous descriptive statistics (Section 5.1.3),
there are differences in the distance between education. The
higher the education, the farther the distance is. The distance
at the station level also shows the same result. In the GWR
model, the access distance model has a larger coefficient in
the north, which means that people with higher education
tend to travel longer distances in these stations in the north.
In addition, it can also be seen that the coefficient of egress
distance is greater in the southern part compared to the
access distance, perhaps because the transportation is not so
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F1GURE 10: Spatially varying effects of high education on the access/egress distance. (a) Effects of high education on the access distance and

(b) effects of high education on the egress distance.

convenient in the southern part of Chengdu, and the highly
educated people are more likely to transfer to other trans-
portation modes to their destinations after leaving the
subway station, which is more likely to increase the egress
distance.

6. Conclusion

As an essential means of transportation in big cities in China,
the subway significantly influences people’s travel. If the
transportation facilities and living environment in the
proper area of the station are improved, more people may be
attracted to the subway. Therefore, this study extracts the
subway access and egress trips from Chengdu’s mobile
phone positioning data to obtain the station’s service dis-
tance. Then, the access/egress distances and the environ-
mental variables related to the trip are calculated. In order to
explore the influencing factors of access/egress distance, this
study applied the GWR model to test the relationship be-
tween access/egress distances and building environment
variables. Finally, the spatially varying effects of these ex-
planatory factors are analyzed. The main results are as
follows:

First of all, the access and egress distance of the subway
station varies with the difference in user characteristics and
the spatial location of the station. Comparing gender, age,
education, and income shows that the average access/egress
distance of males is longer than that of women. The higher
the age and educational background, the longer the distance.
Compared with other income groups, middle-income
groups have a longer distance. These results strengthened
some previous studies, emphasizing that different social and
demographic factors show significant differences in the
subway access/egress distance. The major discovery in space
is that the access/egress distance varies from station to
station, showing significant spatial differences. Generally

speaking, the distance from the city center is shorter, and the
distance in the suburbs is usually longer.

Secondly, this study takes the 85th percentile distance as
the key indicator of the service coverage of the station. The
OLS models are established to find out the key factors af-
fecting the distance: hotel, residence, life, finance, road-
density, and mixed land are negatively correlated with the
access/egress distance of the subway station. In contrast,
education, 36-45years old, male, and high education are
positively correlated.

Finally, the GWR model is used to analyze the spatial
variation relationship between the distance and various
factors. The goodness of fit shows that the GWR model has
better performance than the OLS model for the same var-
iable, AICc is significantly smaller, and the adjusted R* is
higher. The influence of explanatory variables on distance
also varies from space to space.

The above results in this study are obtained based on the
existing stations and the historical behavior of users in
Chengdu and can provide some useful information for
future public transport planning or other urban construc-
tions. In the construction of subway networks, we should
carefully study the characteristics of the built environment of
candidate stations in different spatial locations, and fully
consider the behavioral desires of users to rationalize the
planning and optimize the layout of the surroundings of
different subway stations.

There are also some shortcomings in this study. First,
although this study opens the relationships between the
access/egress distances of the subway station and the built
environment and user characteristics, travel to the subway
station is a complex behavior, depending on various factors
besides these factors. For example, travel purpose greatly
influences access/egress distances, but these data cannot be
obtained. In addition, the availability of other types of public
transport (such as bike-sharing and ride-sharing) is also an
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essential factor affecting the access/egress distance, as these
data are not available and we are not able to quantify what
effect they have on the distances, which provides a direction
for future research.
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The data used to support the results of this study are available
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