
Research Article
Driving Risk Field and Control Strategies for Autonomous
Vehicles at a Signalized Intersection

Hui Xu 1,2 and Jianping Wu 1

1Department of Civil Engineering, Tsinghua University, Beijing 100084, China
2CCDI Exploration & Design Consultant Co., Ltd., No. 276 Dongping Road, Suzhou 215125, Jiangsu, China

Correspondence should be addressed to Hui Xu; xu.hui4@ccdi.com.cn

Received 29 April 2023; Revised 12 June 2023; Accepted 28 July 2023; Published 28 August 2023

Academic Editor: J. Ingda Wu

Copyright © 2023 Hui Xu and Jianping Wu. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Driving pattern has been increasingly researched to improve driving safety and develop autonomous vehicles. Oriented towards
the complex infrastructures at signalized intersections, this research digs into the risk sources brought by diferent kinds of road
elements, including road lane markings, road curbs, median separators, signal timing, and neighboring vehicles around the ego
car. Referring to vehicle speed both in the longitudinal and latitudinal dimensions, risk scope and distribution are quantifed with
the vehicle position of a torus with a Gaussian cross-section. Ten, the risk is summed over all the road elements across all the
points involved by the ego car, the level of which should be controlled within the threshold value when the ego vehicle explores to
minimize trip delay. Tus, autonomous driving strategies are developed with respect to vehicle speed and steering angle. Te
proposed model is validated with NGSIM data, where a signalized intersection on Peachtree Street is selected and vehicles moving
in diferent directions are analyzed. It is found that the proposed model manages to control vehicles with risk at the accepted level
and to enhance the speed level as well as reduce acceleration fuctuations. Tis research contributes to improving autonomous
driving against complex driving conditions for driving safety and efciency.

1. Introduction

Driving through signalized intersection is a complex task,
where drivers are required to pay close attention to many
interruptions and obstacles, either from the road in-
frastructures (e.g., the yellow/white solid/dotted lanes) or
from the neighboring vehicles [1, 2]. Ego vehicles observe
and immediately respond to these road elements with ve-
hicle state adjustment in both speed and steering angle for
safe driving, from which driving patterns can be explored for
the development of autonomous driving. With the accu-
mulated literature on signalized intersection safety, driving
risk evaluations and controls through signalized in-
tersections are increasingly improved to promote more
efcient response strategies.

Driving risks at signalized intersections have long been
explored for driving safety and accident reduction. Statis-
tically, there are over 50% injuries and fatalities that occur

near the signalized intersections, where driver errors are the
leading cause [3]. Based on the k-means cluster analysis and
hierarchical Bayesian random intercept models, driver in-
jury severity patterns of intersection-related crashes fnd that
drivers’ behavioral adjustment to sophisticated external
environmental conditions may compensate for crash loss
but to unstable degrees. Motivated by the complex in-
teractions between the driver and the environment, studies
have been increasingly accumulated, e.g., for the risk per-
ception of roundabouts [4]. Safety performance functions
have been established to predict crash frequencies and re-
ductions with countermeasures on risk exposure. To explore
the impact of driving behaviors, negative binomial models
are developed to explore the relationships of driving crash
frequency with the factors of average annual daily trafc,
speed, deceleration, acceleration, right-turn lanes, left-turn
signal phase, and red-light camera, where right-turn lanes
are negatively correlated to crash frequency, while left-turn
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signal phase has a positive association with crash frequency
[5]. On the confict between right-turn vehicles and pe-
destrian at signalized intersection, male and young pedes-
trians as well as the ones that have waited for a long time take
more risks [6]. At the onset of yellow light at signalized
intersections, drivers may behave with low-risk or high-risk,
where the former are only slightly disturbed by phone calls
and more prone to stop when close to the stop line [7].

Referring to the theory of feld and potential, driving risk
feld (DRF) has been introduced into the evaluation of
vehicle operation risk. DRF is validated to be correlated to
the driver’s perceived risk and manual driving behaviors in
terms of steering angle and speed [8]. Based on the
framework of artifcial feld theory to treat all the obstacles to
the subject vehicle as a fnite scalar risk feld, a better basis to
access driving safety is established, which considers the
uncertainty over future ambient trafc state and the mag-
nitude of crash consequences with the target vehicle in some
position at a certain speed [9]. At signalized intersections,
the efect of yellow light on driving risk feld has been
carefully addressed [10]. Consequently, the vehicle trajectory
planning model is developed to address driver’s dilemma at
yellow light. With the advancement of connected automated
vehicles, we may employ the DRF method based on accurate
real-time data to help adjust vehicle states by considering the
inhomogeneous coefcients of vehicle geometry and di-
rection [11]. Simulation-based confict analyses have also
been established for signalized intersection, where com-
parison is implemented between the simulated and feld-
measured conficts for safety assessment [12].

Te response strategies to the risks at intersections have
also been extensively studied. For minimal fatalities and
property loss in crashes, infrastructure-cooperative in-
tersection accident warning system has been developed to
predict vehicle state evolution based on dynamic Bayesian
networks for temporal stochastic process, with the input of
the factors of trafc light state, vehicle position, speed, ac-
celeration/deceleration, and heading, as well as driver’s
behavioral variable. Te model is validated to warn the
driver when potentially dangerous driving behaviors are
detected [13]. For driving safety and efciency as well as fuel
saving, deep reinforcement learning is employed to train the
connected and automated vehicles, which can accurately
communicate with the surrounding vehicles and signal light,
from the scratch for cooperative vehicular operation at
signalized intersections on the simulation platform [14]. A
generalized critical turning point-based hierarchical
decision-making and planning method is developed in
various shapes of intersections with median strips and
multiple road lines, which is calibrated with real-driving
dataset [15]. Furthermore, to examine whether the advanced
driving warning system has increased risky behaviors, the
hierarchical logistic regression model and the random forest
algorithm are developed to fnd that, when the driver is
distracted, speeding, or driving in high-density trafc, the
likelihood of hard-braking behaviors can be signifcantly

increased [16].Temotion-planningmethod with intelligent
driver model for autonomous vehicles has also been de-
veloped to drive through unsignalized intersections, where
future vehicle states are predicted with appropriate clearance
and time of collision [17].

When looking onto the complex driving conditions on
the urban roads, we are motivated to examine the combined
efects of all kinds of road elements, including road lane
lines, median barriers, road signs, access, intersection ge-
ometry, and signal control, in addition to the moving ele-
ments such as neighboring vehicles [18, 19]. Despite the
accumulated research in driving risk, still there are few
works attempting to reveal the vehicle risk at signalized
intersection, a typical motorized environment [20]. Te
response strategies to the established risks from the
abovementioned road elements are also called for to fexibly
address all kinds of obstacles to the ego vehicle [21, 22], that
is, the vehicle should follow the pipe defned by road fur-
niture or road markings and to keep distance from the
neighboring vehicles on the same or diferent lanes, under
the objective of minimal trip delay with driving risk at the
reasonable level [23]. Tus, a comprehensive analysis
framework is established to decode the efect of diferent
types of road elements on driving risks and lay a foundation
for the development of autonomous driving for safety and
efciency.

Te contributions of the research are three-fold. First, all
the basic elements at a typical signalized intersection are
analyzed with respect to the possible risks they bring about.
Tese elements include the static ones, including multiple
road-lane lines, road curbs, median separators, turning
curves, and signal timing. Risk from each element is
decoded, which decreases as the ego vehicle moves away
from them, with the probability of the ego vehicle at each
neighboring point obeying Gaussian distribution. Second,
response strategies from the ego vehicle are established to
avoid the abovementioned obstacles, where the signal
driving strategy is developed to address the dilemma caused
by yellow light, and the longitudinal and latitudinal driving
strategies are proposed for vehicle state adjustment. Fur-
thermore, the proposed risk quantifcation method and the
obstacle response strategies are validated with the NGSIM
data [24], proving its accuracy and efciency of guiding the
vehicle to move downward safely.

Te remaining of the research is organized as follows:
Section 2 illustrates the risks source of all kinds of road
elements at a typical signalized intersection and risk dis-
tribution against vehicle state of direction, speed, and
steering angle, Section 3 establishes the response strategies of
vehicles against diferent scenarios, considering the opera-
tion constraints to the ego vehicle of either road geometry,
road markings, signal timing, and neighboring vehicles,
Section 4 employs NGSIM data to validate the proposed risk
evaluation method and obstacle response strategies, and
Section 5 briefy concludes the study with the research plan
in future.
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2. Road Elements and Potential Risk Field

2.1. Conceptual Framework and Basic Assumptions.
Figure 1 shows the layout of typical signalized intersections,
including both static and moving road elements. It is ob-
served that the lane lines on the approach change from
dotted white to solid white around tens of meters upstream
of the stop line. Amber double solid lane lines are employed
to separate the vehicles of opposite directions. Signal light
controls the movement of straight and left-turning vehicles,
while the movement of right-turning vehicles is not con-
trolled. Here, the interruptions from pedestrians and bi-
cyclers are not specifcally considered for model
simplifcation. Instead, we focus on the movable elements of
neighboring vehicles either on the same or diferent lanes.
Te basic assumptions of the research are as follows:

(1) Only vehicles are considered for moving road ele-
ments, while pedestrians and bicycles are not con-
sidered. Signal control includes green light, amber
light, and red light, without fashing light.

(2) Autonomous driving system may accurately observe
the dynamics of neighboring vehicles and the design
of the road infrastructures against stable commu-
nication conditions, based on which driving risks can
be accurately calculated to develop vehicle control
strategies.

(3) Autonomous driving system explores to minimize
travel delay through the signalized intersection with
driving risk not higher than the threshold.

Figure 2 gives the basic procedure of implementing the
analyses of driving risk feld at the signalized intersection.
First, the research scope is defnes vehicle trajectories, which
are extracted for left-turning, straight, and right-turning
trafc. Ten, the static and moving road elements around
the ego vehicle are identifed as risk source, the risk dis-
tribution of which is quantifed in proportion to the distance
between the ego vehicle and each road element. In the
following, we will dig into the efects of each road element on
driving adjustments for driving safety and efciency.

2.2. Road Elements and Risk Sources

2.2.1. LaneMarkings. Lanemarkings can be categorized into
various types, which can be yellow or white and solid or
broken. Yellow lines separate trafc in the opposite di-
rections, whereas the broken yellow lines can be crossed if
necessary, while solid yellow lines should never be crossed.
White lines separate the lanes in the same direction, whereas
the broken white lines mean that one may move across it
when safe, while the solid white lines require one to stay in
the lane. Figure 3 shows the cost of crossing diferent lane
markings. It is observed that, crossing white broken lines
brings the least cost, followed by crossing yellow dotted lines,
while crossing the white solid lane brings appreciable cost
due to the penalty of violating trafc rule and crossing
a yellow solid line corresponds to even higher cost [25].
Parameters Cws andCys are employed to represent the cost of

wheel rolling on the solid white lane line and solid yellow
lane line, respectively; and parameters Cwd and Cyd mean the
cost of moving onto white dotted and yellow dotted lines.

2.2.2. Median Separator and Road Curb Stone. Vehicle
collision with median separator can cause serious damage to
both the vehicle and separator, the cost of which is dem-
onstrated in Figure 4 against diferent kinds of road median
separators. Hitting the green division or metal division may
cause the vehicle’s serious deformation and wheel damage,
similar to the collision with the curb stone in Figure 5.

Note in the literature, one may introduce the defnition
of road boundary potential fled, which extends to infnity as
the ego vehicle approaches the road curb or median sepa-
rator [26]. Actually, the cost of colliding with the road
boundary can be quantifed with the average cost, instead of
being set infnite. Tat is closely related to vehicle class and
speed. Te confict severity can be given by the following:

M � m × 1.566 × 10− 14
× v

6.687
+ 0.3345 , (1)

where M represents the expected confict severity and v

represents the vehicle speed. Tat is, the larger the vehicle’s
actual mass and the higher the vehicle’s speed, the higher the
expected confict severity. Te cost of colliding with road
boundary is given by the following:

Cb � M × Eb, (2)

where parameter Eb represents the unit cost of colliding with
road boundary per equivalent vehicle weight.

2.2.3. Road Signs. Road signs guide vehicles to operate on
the proper path at suitable state, including vehicle weight,
height, and speed. For example, if one vehicle runs at the
speed higher than the limit, it may receive a speeding ticket
or fail to be controlled in case there is emergency. Terefore,
vehicles may only operate not higher than the speed limit
and always keep the rule.Te cost of breaking the trafc rules
by road signs can be given by the following:

Cs � 
n

Esn × dsn, (3)

where n refers to the nth signs faced by the ego car, Esn refers
to the unit cost from violating the trafc rule given by sign n,
and dsn means the degree level of violating trafc rules. For
example, if the speed limit is set at 50 km, 10% higher than
the limit is not punished, while speeding between 10% and
20% is punished to a lesser degree than that between 20%
and 30%, etc.

2.2.4. Signal Light. Te potential feld of signal light starts
ahead of the stop line. Te frst road segment involving
driving cost is the dilemma zone, where vehicles have dif-
fculty in both moving through and stopping ahead of the
stop line [27]. If the vehicle chooses to stop ahead of the stop
line at the yellow light, the distance that the vehicle drives
through can be given by the following:
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Figure 1: Illustration of moving and static road elements at a signalized intersection.

Define the effect scope of the selected
signalized intersection

Identify the trajectory of each vehicle

Extract the static road elements related to the
ego vehicle at each time step

Left-turning Straight Right-turning

Lane lines

Extract the moving road elements related to the
ego vehicle at each time step

Vehicles on the
adjacent lane

Vehicles on the
same lane

Longitudinal & latitudinal driving strategiesSignal driving strategy

Signal lightBoundary

Figure 2: Framework of recognizing the risks of diferent road elements.

Figure 3: Risks of crossing the road line markings.

(a) (b)

Figure 4: Risks of colliding with road median separators. (a) Median separator of green division. (b) Median separator of metal isolation
barrier.
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Xs � v0 × τ1 +
v0

2

2d
, (4)

where v0 is the initial vehicle speed, τ1 represents the re-
action time to brake, and d means the maximum de-
celeration speed. Instead, if the vehicle chooses to move
through the intersection, the maximum distance that the
vehicle can drive through is given by the following:

Xc � v0 × τ2 +
1
2

a τ − δ2( 
2

− (W + L), (5)

where τ2 is the reaction time to decide to drive through, a is
the maximum acceleration, τ is the yellow time interval, W is
the intersection width, and L is the vehicle length. Te di-
lemma emerges when Xs >Xc, as shown in Figure 6. In
contrast, if Xs ≤Xc, the driver may choose to stop or to move
downstream of the stop line.

In the case of Xs >Xc, when amber light is on, if the ego
vehicle is more than Xs from the stop line, the ego vehicle
should choose to stop.Tus, the cost of moving past the stop
line at the second that yellow light turns on (i.e., Csyr) is set
sufciently large. Otherwise, if the distance of it from the
stop line is less than Xs, the ego vehicle may adjust the
driving state to seize the chance to move through the stop
line. Tus, the risk from yellow light is given by the
following:

Csyr �

CM, if Xd >Xs &Xs >Xc,

Cx, if Xd ≤Xs &Xs >Xc,

CM, if Xd >XC &Xs ≤Xc,

0, if Xd ≤XC &Xs ≤Xc,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(6)

where Xd represents the distance of the target vehicle from
the stop line. Parameters CM and CX represent randomly
large driving cost, and adjustable driving risk, respectively.

2.2.5. Moving Road Elements and Potential Field. Here, we
focus on the vehicular dynamics for simplifcation because
the description of pedestrian and bike crossings can make
the model much more complex. Referring to the Yukawa
potential [28] proposed in physics, short-range force is
employed here to describe the interactions among the
surrounding vehicles, risks from which pose direct efect on
the driving strategy of the ego vehicle.

Figure 7 shows the vehicles that directly interact with the
ego car (i.e., the green one). In addition to the leading and
following vehicles of the ego car on the same lane, the ve-
hicles most close to the ego vehicle on the adjacent lanes are
also included, that is, the vehicles not behind and the vehicle
immediately behind the ego car on the adjacent lane are

considered as the related moving elements. Note the moving
elements may change from time to time as vehicles change
lanes. Tus, the related moving elements should be selected
each time interval.

Note the collision cost between the ego and the
neighboring vehicles is also dependent on the vehicle speed,
which is given by the following:

Cv � Me × Mn × ev, (7)

where the parameters Me and Mn refer to the equivalent
mass of the ego vehicle and its neighboring vehicles, con-
sidering their speed, and parameter ev refers to the unit cost
of vehicle collision per equivalent vehicle weight.

2.3. Risk Field

2.3.1. Risk Distribution of Road Elements. With vehicle
longitudinal and lateral speed, if the driver fails to control
the vehicle in time, it may run onto road obstacles or
markings and be involved with diferent driving costs. Tus,
the risk source of road elements can be delivered to the ego
vehicle when their distance is shorter than the following:

dx0 � vx × T +
vx

2

2d
  + ε,

dy0 � vy × T +
vy

2

2d
⎛⎝ ⎞⎠ + ε,

(8)

where dx0 and dy0 are the distances traveled by the ego
vehicle after it recognizes the driving cost and manages to
brake to stop in the lateral and longitudinal direction, re-
spectively, parameters vx and vy are the vehicle speeds in the
lateral and longitudinal directions, respectively, T represents
driver’s reaction time, and ε is the stop distance between the
ego vehicle and road elements. Parameters vx and vy are
given by the following:

vx � v × cos δ,

vy � v × sin δ,
(9)

where parameter δ is the vehicle heading angle, which is
initiated with the road angle and updated using the
following:

δ � δ0 + k × ∆δ, (10)

where δ0 refers to the vehicle heading angle in the previous
step, parameter k represents the coefcient of vehicle angle
adjustment, and ∆δ means the diference from vehicle
heading to road direction. Te longer the distance between

Figure 5: Risks of colliding with the curb stone.
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the ego vehicle and the road obstacle, the smaller the cost
that can be added to the vehicle. Tus, driving risk from
diferent road elements to the ego vehicle is given by the
following:

Cx �

Cn ×
dx0 − dx

dx0
, if dx0 > 0, dx0 ≥dx,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Cy �

Cn ×
dy0 − dy

dy0
, if dy0 > 0, dy0 ≥dy,

0, otherwise,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(11)

where parameter Cn refers to the cost from the nth road
elements in the previous section, dx and dy are the actual
distance between the edge of the road cost and the ego
vehicle in the lateral and longitudinal directions, re-
spectively. Te fnal risk incurred by the ego vehicle is given
by the following:

C � min Cx, Cy . (12)

2.3.2. Probability Distribution of Vehicle Position. Tis re-
search takes the method of a torus with Gaussian cross-
section to calculate the probability of the ego vehicle moving
to the position (x, y), which is then multiplied with the risks
caused by diferent road elements. Tat is, the total risk for
the ego vehicle can be given by the following:

R � 
(x,y)

zxy × C,
(13)

where zxy represents the probability of the ego vehicle
moving to point (x, y), given by the following [29]:

z(x, y) � a × exp −
dxy − R 

2

2σ2
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦, (14)

which is a torus with a Gaussian cross-section. Parameter a

is the height of the Gaussian, dxy is the distance between the
risk point and the ego car point, R is the vehicle turning
radius, and σ is the Gaussian width.

Gaussian height a is given by

a(s) � p(s − v × T)
2
, (15)

where p is the slope of Gaussian curve, s is the curve length
between the risk point and the car position, and v is the
vehicle speed. Curve length is given by

s � R ×|θ|, (16)

where R represents the circle radius of the ego vehicle, and θ
is the angle intersected by the lines connecting the circle
center (xc, yc) and the ego vehicle position (x, y) or con-
necting the circle center and the risk position (x′, y′). Circle
radius R is given by the following:

Dilemma

Minimal stop distance

Maximum running
distance

Choice distance

Maximum running distance

Minimal stop
distance

Xs

Xc

Xc

Xs

Figure 6: Illustration of dilemma zone and the choice zone.

Figure 7: Cost incurred by the surrounding vehicles based on
short-range force.
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R �
L

tanφ
,

θ � arccos
x − xc(  x′ − xc(  + y − yc(  y′ − yc( 

�����������������

x − xc( 
2
+ y − yc( 

2


×

������������������

x′ − xc( 
2
+ y′ − yc( 

2
⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠,

(17)

where φ is the vehicle steering angle to be updated with the
new vehicle heading angle, given by the following:

φ � φ0 + dt ×
v

L
  × tan δ, (18)

where φ0 refers to the vehicle heading angle in the previous
step and dtmeans the length of the control step.Te distance
between the vehicle and the risk point in equation (14) is
given by the following:

dxy �

����������������

x′ − x( )
2
+ y′ − y( 

2


. (19)

Gaussian width σ is given by the following:

σi � q + ki|δ|( s + c, (20)

where i represents the inner and outer side of the vehicle, i.e.,
i � 1 for the inner side and i � 2 for the outer side, parameter
q is Gaussian width slope, ki is the slope of the variability
brought by vehicle steering angle of the inner and outer side
of i � 1 or i � 2, and parameter c is the Gaussian width at the
vehicle location, which is related to the car width (w) and
takes the value of w/4 to make ± 2σ account for 95% risk.

3. Response Strategies against Risk
Potential Field

3.1. Vehicle Control Framework. Figure 8 shows the logic
framework for vehicle response strategies against the po-
tential feld from various road elements. For the trajectory of
the ego vehicle, the involved trafc elements, static or
moving, are outlined with their potential risks. Ten, the
critical problem of evaluating the driving strategy at sig-
nalized intersection is to identify the phase switch from
green light to yellow light, at which the driving risk increases
greatly if the vehicle cannot move through the remaining
distance from the stop line. Tus, the signal driving strategy
is developed frst to examine the cost exerted by the start of
yellow light. In the following, the longitudinal driving
strategy is developed to guide the vehicles to operate on the
same lane or change onto the adjacent lanes. Ten, the
latitudinal driving strategy takes the decisions from signal
and longitudinal driving strategies to return the vehicle
speed and steering angle.

Figure 9 shows the relationship of signal, longitudinal,
and latitudinal driving strategies. First, the signal driving
strategy explores to take stronger acceleration or smaller
headway. Ten, the longitudinal driving strategy explores
vehicle intention of car-following, lane-changing, and ac-
celerating based on the current vehicle state. Te

requirements from signal and longitudinal driving strategies
are incorporated into latitudinal driving strategy against the
objective of minimal driving delay and proper risk level via
adjustment in vehicle speed and steering angle.

3.2. Driver’s Algorithm. Figure 10 illustrates the signal’s
driving strategy. When yellow light turns on, if the ego
vehicle is following some car, it may explore for smaller
headway if possible. If the ego vehicle is the leading car, it
may take stronger acceleration than in the general case as
long as the speed is not higher than the speed limit to seize
the yellow light.

Figure 11 shows the longitudinal strategy to control
vehicle states in diferent situations. Referring to road
conditions, the driving state of the ego vehicle is extracted, to
which the adoption of signal driving strategy is judged frst.
If there is no additional driving strategy, we come to the
point to judge if there is leading vehicle of the ego car. If the
ego car is leading on the current lane, it will explore for the
possibility of acceleration; if the ego car is following another
car, it will search for a faster lane, which means that the
leading vehicle on the adjacent lane runs at a higher speed. If
there is a faster lane and the lane-change gap is available, the
ego car will come to the latitudinal driving algorithm;
otherwise, the ego vehicle continues to follow the leading car
on the current lane.

Taking the decisions from signal driving strategy and
longitudinal driving strategy, latitudinal driving strategy is
developed together with speed adjustment. Tat is, driving
strategies from signal and longitudinal state just add general
guide to the vehicles, instead of accurate directions on ve-
hicle state changes. When it comes to latitudinal driving
strategies, vehicle speed and steering angle are optimized
against the specifc driving risk feld.

Figure 12 shows the framework of latitudinal driving
strategy. When the perceived driving risk is lower than the
threshold and vehicle speed is lower than the speed limit, the
algorithm explores to enhance vehicle speed within the
speed limit, where parameter ∆vn means the increase in the
rate of vehicle speed in the nth situation; if the signal driving
strategy is adopted to require more stronger acceleration,
∆vn can be set at a larger value as indicated with n� 1; if not,
∆vn takes a small value with n� 2. If the perceived driving
risk is higher than the threshold, while the speed limit is not
reached, we may explore the necessity of deceleration, i.e.,
whether steering itself may reduce driving risk to the ex-
pected level. Tis is achieved by performing grid search, an
optimization algorithm that is computationally efcient to
return a satisfying solution, especially to the sophisticated
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Ego vehicle trajectory t=0

Signal timing

Extract related road elements

Update t with (t+1)

Potential field from
neighboring vehicles
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Figure 8: Procedures of signal, longitudinal, and latitudinal driving strategies.
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Figure 9: Te relationship of signal, longitudinal, and latitudinal driving strategies.

Is the car
following some

car?
Follow the leading car.

Take stronger
acceleration

Is speed higher
than limit?

Keep the acceleration

Release accelerator
and stay at the limit

Next time interval

Y

N N

Y

Is smaller head-
way possible?

Accelerate to reduce headway
Y

N
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8 Journal of Advanced Transportation



problems with noise or nonsmoothness. Grid search frst
generates uniform grid inputs for the objective function to
identify the areas of the search space that deserve more
attention. Ten, each variable is enumerated in turn, from
which the best performing point is identifed and reported.

Tus, the optimal steering angle at the vehicle’s current
speed is explored and returned. If the optimal θ manages to
reduce the risk lower than the threshold and deceleration is
not necessary, vehicle steering angle is updated for risk equal
to threshold, and vehicle speed increases within the limit.
Otherwise, if deceleration is necessary, vehicle speed de-
creases in proportion to the gap between risk threshold and
risk at current, and steering angle takes the value to reduce
risk to the risk threshold. Furthermore, if vehicle risk is
higher the threshold and speed is higher than the limit,
vehicle decelerates proportional to the gap both in risk
and speed.

4. Case Study

4.1. Scenario Design. NGSIM database is adopted on
Peachtree Street (Atlanta) for detailed car trajectory, which
was collected between 12:45 p.m. and 13:00 p.m. on No-
vember 8, 2006. Vehicle trajectories are recorded, with real-
time speed, acceleration, x and y position, the following/
leading car, time headway, spacing headway, and time stamp
with the interval of one-tenth second. Figure 13 shows the
signalized intersection selected for calibrating and validating
the proposed model. Here, many static road elements can be
observed, including the yellow solid lane line, white solid

lane line, white dotted lane line, curb stone, pedestrian
crossing, and signal light. Te road markings can be ob-
tained with the CAD fle, and the signal timings are collected
via CSV fles.

Taking the northbound approach for example, solid
yellow line is set in the road center to separate the vehicles in
the opposite direction. Te frst lane on the northbound
approach is exclusively for left turning, which is marked with
the central solid yellow line and the right-side white solid
lane. Te second lane is exclusively for straight vehicles,
which is separated with dotted lane line from the third lane
that serves both straight and right-turning vehicles. Te frst
lane connects to the left-turning curve, which starts im-
mediately downstream of the pedestrian crossing, while the
third lane connects to right-turning curve, which is parallel
to the curb stone. Figure 14 shows the trajectory of vehicles
on each lane of the selected intersection, where the co-
ordinates of road elements are identifed. Figure 15 gives the
signal timing control of the four phases, the cycle of which is
95 s with all-red time being 1.9 s. Note the green light for left
turning on the 10th street starts at the 36th time interval.

Figure 16 shows the procedure to preprocess vehicle data
and to extract vehicle trajectory. Data preprocessing is
implemented with respect to the vehicle speed change, ve-
hicle displacement, and vehicle steering angle. Te range of
reasonable steering range is calculated with the maximum
steering angle of 20 degrees, and the ratio of steering wheel
and wheel turning being 50. With the processed data, data
are selected with vehicle position on y axis no more than 400
feet, which fully covers the selected intersection. Vehicles are

Driving state Road conditions

Is there
leading vehicle on the same

lane?

Signal driving
strategy?

Identification of
related road elements

N

Y

Is the speed
of ego vehicle close to speed
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Y
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Is lane-
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Latitudinal driving
algorithm
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Y

N

Y

Y

N

N Accelerate
Stay on the lane
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Compare the speed of the
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Figure 11: Te algorithm of longitudinal driving strategy.
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v(t+1)=vt+Δvn (vl-vt) n=1,2
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Signal driving strategy

Longitudinal driving strategy

Figure 12: Te algorithm of latitudinal driving strategy.
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Figure 13: Te selected signalized intersection on Peachtree Street in NGSIM database.
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identifed with the attributes of vehicle ID, total frames
count, vehicle length, vehicle width, vehicle origin, and
vehicle destination. Te frame count of each vehicle is
calculated with the last frame ID minus the frst frame ID.

Table 1 summarizes the parameters of risk modeling of
diferent road elements, with the parameter values of the
Gaussian torus borrowed from the literature [23]. Table 2
gives the parameter values of driver’s algorithm, which are
obtained with grid search by establishing support vector
machine for the regression of these model parameters for
maximal likelihood. In this step, 70% of the selected data are
employed for model training, while the remaining 30% are
employed to test the proposed model.

4.2. Results and Discussions. Tis section analyzes the re-
sults of the proposed driving strategy against the de-
veloped driving risk feld from the comprehensive road
elements at the signalized intersection. Figure 17 shows
the curves of vehicle latitudinal position, longitudinal
position, speed, and acceleration against time of the
typical vehicles in the test dataset. It is observed that the
model can generally replicate vehicle trajectories, where
the simulated vehicle’s longitudinal and latitudinal po-
sitions from the proposed model are close to the real-data.
Note that the proposed driving strategy can be returned to
the vehicle within 0.01 second, sufciently efcient to
guide vehicle driving.
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Figure 14: Vehicle trajectory at the selected signalized intersection.
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Figure 18 summarizes the beneft of the proposed model
with respect to vehicle speed and acceleration, where the
proposed autonomous driving strategies manage to improve
the vehicle speed and reduce acceleration fuctuations. It is
observed that the straight and right-turn vehicular

movements are better improved compared to left-turning
movements. Tis can be explained with more constraints of
road elements for straight and right-turn movements, e.g.,
more neighboring vehicles for straight vehicles and road
curb for right-turn vehicles. In contrast, left-turn vehicles are

8 s

26 s

9 s

30 s

3.6 s

Figure 15: Signal timing at the selected intersection with phase 2 starting at the 36th time interval.
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Figure 16: Te framework for extracting vehicle trajectory and data preprocessing.
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Table 1: Parameters of risk feld model.

No. Notation Explanation Value
1 Cws Cost of wheel rolling on the solid white lane line 1
2 Cys Cost of wheel rolling on the solid yellow lane line 3
3 Cwd Cost of wheel rolling on the dotted white lane line 0.3
4 m Vehicle weight of motorcycle, automobile, truck/bus 0.3 t, 1.5 t, 10 t
5 Eb Unit cost of colliding with road boundary 1
6 Esn Unit cost of speeding over the limit of 50 mile/h 1
7 dsn Level of violating speed limit: 0–10%, 10%–20% 0, 1
8 τ1 Reaction time to brake to stop 1.5 s
9 τ2 Reaction time to decide to drive through 1.5 s
10 d Maximum deceleration 5m/s− 2

11 a Maximum vehicle acceleration 3m/s− 2

12 W Intersection width of Peachtree Street and 10th street 110 feet, 90 feet
13 L Vehicle length As in NGSIM
14 Csyr Cost of moving past the stop line before green light 1000
15 ev Unit collision cost with neighboring vehicle 2
16 T Driver reaction time 1.5 s

17 ε Safe distance between the vehicle and road elements
(i) 100m for road sign
(ii) 0.3m for road lines
(iii) 2m for signal light

18 A A randomly large constant 10000
19 p Slope of Gaussian curve 0.0064
20 q Gaussian width slope 0.001

21 ki Variability slope by vehicle steering angle (i) k1 � 0 for inner turning
(ii) k2 � 1.38 for outer

Table 2: Parameters of driver model.

No. Notation Explanation Value
1 C Risk threshold 1.96
2 v1 Speed limit 50mile/h

3 ∆vn Acceleration slope by the gap from speed limit (i) 0.31 for strong acceleration (n � 1)
(ii) 0.14 otherwise (n � 2)

4 ∆vc Acceleration slope to reduce the gap from speed limit 0.07
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Figure 17: Continued.
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open to more freedom to adjust operation trajectory. Tus,
there is smaller space for the autonomous driving strategies
to make use of higher speed of left-turn vehicles, where
acceleration fuctuation is the most reduced with persistent
and reliable control.

5. Conclusions

Driving safety is basic to every driver, for whom driving
efciency is also pursued. In this process, drivers must re-
spond to various interruptions and follow the constraints
posed by all kinds of road elements, either movable or
nonmovable. With the increasing research on driving risk
evaluation and driving assistance system, the comprehensive
model of driving risk feld has been developed to refect the

efect of various road elements on vehicle operation, instead
of being limited to one or a few elements. Tis research
extends the theory of driving risk feld at the signalized
intersection, where driving risks from all kinds of road lane
lines, neighboring vehicles, and signal timings are analyzed
systematically. Te cost of each kind of road lane lines is
analyzed based on the possible cost from touching or
crossing the road element. Specifcally, the cost of passing
the solid lane line is evaluated with the penalty of violating
the trafc rule, while the cost of colliding with the road curb
is evaluated with the cost to vehicle damage and to road
furniture repair. Te cost of signal timing is carefully
addressed since the start of the yellow light, when the vehicle
may have difculty in deciding to move across the stop line
to stop upstream of it. Moreover, the cost from the
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Figure 17: Vehicle states from the proposed model in comparison to that in the test dataset. (a) Vehicle latitudinal position. (b) Vehicle
longitudinal position. (c) Vehicle speed. (d) Vehicle acceleration.
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Figure 18: Benefts of the proposed autonomous driving strategies based on risk feld.
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neighboring vehicles is calculated with reference to the
short-distance force theory, where the nearby vehicles are
recognized to be following or leading the ego vehicle on the
same lane or on the right/left-side lane.

In the following, driving strategy against various
driving risks is developed. First, the control framework is
developed to examine vehicle’s distance to diferent road
elements and the state of signal light.Ten, the longitudinal
and latitudinal driving strategies are developed to respond
to the constraints on vehicles’ downward movement and to
the constraints on vehicles’ adjustment within or beyond
one lane. Model calibration and validation is implemented
based on NGSIM data of an urban street, where a typical
four-legged signalized intersection is selected. After pre-
processing of the selected data, the parameters are cali-
brated for the proposed model. Te accuracy of the
proposed model is evaluated with RMSE for the vehicles on
all the legs of the selected intersection. It is found that, the
accuracy of the proposed model is lower on the intersection
approach compared to that on the exit, with RMSE being
14.2%, 19.3%, and 11.6% for vehicle speed, longitudinal
position, and latitudinal position on the approach, com-
pared to 16.9%, 19.7%, and 23.1% on the exit. Tis can be
explained with more driving freedom on the
intersection exit.

Limitations of the research are three-fold. First, driving
behavior and driver’s characteristics are not specifcally
considered in the proposed model, which may afect drivers’
perception and evaluation of road risks to cause the dif-
ference in the driving strategy adoptions. Second, the in-
fuence of pedestrians and bicyclers is not addressed for
model simplicity, which may radically change the driving
mechanism. For example, when the driver senses the pos-
sibility of colliding with a man or a rider, he may change
driving trajectory much earlier and fully secure the gap
between the planned trajectory and the predicted confict
points. Tird, the proposed model should be further vali-
dated in extensive road conditions, validating its perfor-
mance against diferent driving environments.

Future research may extend the research to incorporate
the impact of driver’s characteristics into the evaluation of
and response to the driving risk feld, to better refect driving
dynamics along the selected road. Another fruitful avenue is
to integrate driving assistance system into the driving risk
feld to guide vehicles to better adapt to the changing road
environment for safety enhancement, especially against
immediate interruptions.
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