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Teoretical research is conducted on fnding the shortest path with stochastic and time-dependent characteristics of link travel
time in urban road networks. Considering the infuence of signalized intersections on travel time, the research frst presents
a function of waiting time at signalized intersections and analyzes its characteristics. Ten, considering the reliability of travel
time, the travel time model under the min-max theorem is established, and a mathematical proof that the stochastic time-
dependent trafc networks can be reduced to a deterministic time-dependent network is presented by using the frst mathematical
induction. Finally, based on analyzing the characteristics of the shortest path and minimum travel time, which vary with the start
time, we propose solving the shortest path problem with a shortest path algorithm based on Dijkstra’s algorithm that takes the
waiting time at signalized intersections into consideration. Te research results showed that the algorithm proposed in this study
does not depend on the acquisition of the probability distribution of travel time compared with the traditional algorithm. Te
range of uncertain travel time can be derived from historical data and travelers’ experiences, and the obtained shortest path has
more robust time reliability.

1. Introduction

With the rapid development of the economy and the ac-
celeration of urbanization, the number of motor vehicles and
road trafc has dramatically increased, which has led to
a series of problems such as trafc congestion. Choosing the
optimal path can, to a certain extent, reduce travel time, cost
waste, and resource loss. Terefore, travelers must formulate
the optimal travel plan and route before departure [1].

Te urban trafc network is dynamic rather than static.
In the stochastic time-dependent (abbreviated as STD)
trafc networks, the travel time changes with trafc fow. For
example, the sudden increase of trafc fow in the morning,
noon, and evening rush hours and the decrease of trafc fow
at night will more or less lead to corresponding changes in
travel time, thus showing the time-dependent characteristics
of travel time [2]. In addition, urban trafc networks are

susceptible to bad weather, emergencies, trafc control, and
occasional trafc congestion, thus showing stochastic time
characteristics [3]. Te time dependence and stochasticity of
trafc networks constitute the stochastic time-dependent
characteristics of the travelers’ travel time. Te existence
of such uncertainty leads to the uncertainty of travelers’
travel time, signifcantly afecting travelers’ travel plans and
increasing travel time and cost as well as waste and con-
sumption of resources. As a result, travelers demand not
only safety, convenience, and punctuality for each road
section but also economy and reliability for each intersection
of the road system, that is, higher requirements for the
reliability of path travel time. In the classical shortest path
(SP) problem in graph theory, the intersection is usually
studied as a location point, and only the sum of travel times
of each segment on the path is considered, but the waiting
time delay at the signal intersection is not considered [4].
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However, in the urban road network, the driver’s waiting
time at the signalized intersection accounts for a large
proportion of its travel time, and most of the optimal path
planning algorithms only consider the travel time of the
section, resulting in a signifcant diference between the
desired optimal path and the actual optimal path. Terefore,
the waiting time at the signalized intersection must be taken
into account when calculating travel time to reduce the
diference between predicted travel time and actual travel
time. Tis article focuses on studying the shortest reliable
route in urban commuting where the travel time is random
and uncertain, but the travel time has a time window re-
quirement. A holistic consideration of the infuence of
signalized intersections on travel time allows the pre-
sentation of the waiting time function of signalized in-
tersections and the road network transformation method,
which transforms a stochastic time-dependent trafc net-
work into a deterministic time-dependent trafc network to
solve the shortest reliable path problem.

In the following, Section 2 analyzes the research status at
home and abroad. Section 3 describes the shortest path
problem and the waiting time at signalized intersections
under STD networks and expresses the characteristics of
waiting time at signalized intersections through functions.
Ten, the shortest reliable path model is established and
a mathematical proof that the STD network can be trans-
formed into a deterministic time-dependent network is put
forward. Section 4 proposes a shortest path algorithm that
accounts for waiting time at signalized intersections. Section
5 sets up numerical experiments. Section 6 analyses the
experimental results. Section 7 summarizes the full text.

2. Literature Review

Te research on the SP problem in the feld of transportation
started relatively early. Since it was put forward, domestic
and foreign trafc scholars have done extensive research on
the problem, continuously extending many variants based
on existing research, such as the K-short path problem and
reliable path problem. With the development and deepening
of relevant research, many scholars not only continuously
improve and innovate on the model but also continuously
optimize the model-solving algorithm, providing a theoret-
ical basis and new methods for other research in the feld of
transportation.

In 1959, Dijkstra [5] frst studied the SP problem and put
forward the traditional Dijkstra’s algorithm to solve the
problem in static trafc networks. After that, many scholars
conducted in-depth research and improvement on this
topic. Xue and Chai [6] improved Dijkstra’s algorithm and
verifed the efectiveness of the algorithm in solving the
shortest path under uncertain weather conditions through
experiments. Liu et al. [7] applied the Dijkstra algorithm as
the global path planning algorithm and the dynamic window
approach as its local path planning algorithm to the smart
car, enabling it to successfully avoid obstacles from the
planned initial position and reach the designated position.
Wang et al. [8] proposed a three-dimensional Dijkstra’s
optimization algorithm, which can generate a global optimal

ship path in a poor marine environment, and the solution
obtained by the generated multiobjective function is exact.
Wang et al. [9] put forward an improved Dijkstra-ant colony
algorithm by combining a greedy algorithm with a heuristic
algorithm. It turns out that the algorithm has strong global
search ability and good convergence performance, thus
improving global search efciency. However, these tradi-
tional SP problem algorithms all take static, deterministic
transportation networks as the research object. Te obtained
solutions are exact solutions with high computational
complexity, so they are not suitable for large-scale networks.

Considering the stochasticity and uncertainty of the
urban road network, many scholars [10–13] have begun to
study the stochastic network. Tey have studied the routing
optimization problem under a class of uncertain conditions
to fnd the optimal route solution that meets the time
window requirements under the condition of uncertain
travel time. However, the above scholars do not consider the
time-dependent characteristics of link weights, which can-
not meet the travel needs of travelers.

Liu [14] established the sum of the carbon emission cost,
transportation cost, penalty cost for exceeding the time
window, and the damage cost of the cold chain cargo as the
objective function and established a route optimization
model of cold chain container multimodal transportation.
Xu and Li [15] researched the time-dependent vehicle
routing problem and proposed an unconventional path
optimization approach, known as the fssile ripple spreading
algorithm (FRSA). Liu and Zhang [16] considered the time
dependence of link weights and optimized the shortest path
within a time window with time-dependent driving risk. By
analyzing the time-dependent characteristics of urban road
networks, Zhao et al. [17] designed an electric vehicle
routing problem (EVRP) model under time-dependent
trafc conditions for route planning of fresh products in
urban cold chains. However, the above scholars have only
considered the stochastic or time-dependent characteristics
of link weights but ignored the comprehensive stochastic
time-dependent characteristics.

Few scholars comprehensively consider the stochastic
and time-dependent characteristics of urban road net-
works. Many scholars [18, 19] built optimization models
under stochastic time-dependent networks and used im-
proved labeling algorithms to fnd optimal paths. Con-
sidering the difculty of solving the optimal path problem
in the stochastic time-dependent networks, Sun et al. [2]
adopted a robust optimization method to take the path
with the highest cost as the optimal path and transformed
the stochastic time-dependent networks into a de-
terministic time-dependent network. Because it is difcult
to know the probability distribution of travel time in the
travel process of a section, Yang et al. [20] put forward
a route selection algorithm considering risks and actual
trafc fow conditions on the current road. Although the
above scholars have considered the stochastic time-
dependent characteristics of urban road networks, they
have not yet considered the reliability of travel time, and
therefore they could not realize that path planning meets
the reliability requirements.
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Asakura and Kashiwadani [21] frst proposed a defni-
tion of travel time reliability in 1991, using probability to
express travel time reliability and studying the probability of
travelers arriving at destinations within the desired travel
time to measure potential travel delays. Te Florida De-
partment of Transportation studied the Florentine method
of travel time reliability and defned travel time reliability as
the probability that the travel time of a road section is less
than or equal to the sum of the desired travel time and the
acceptable delay time. In 2002, the Texas Department of
Transportation used the Bufer Index to describe trip time
reliability, defned as the ratio of travel time to the average
travel time required to ensure that travelers arrived at their
destination on time. Later on, Tu et al. [22] investigated the
constrained reliable shortest path problem for electric ve-
hicles in the urban transportation network. Tey proposed
an algorithm that can obtain the exact solutions within
satisfactory computational time. Arun Prakash [23] pre-
sented a decreasing order-of-time algorithm and a label-
correcting network pruning algorithm to determine the
most reliable routes on stochastic and time-dependent
networks. Te above scholars have studied the shortest
reliable path problem of STD networks, but they usually
regard intersections as nodes on the path, without consid-
ering the link weight on the nodes. However, in real road
conditions, because of the existence of signalized in-
tersections, the vehicle will generate waiting time when
passing the node, and the waiting time at signalized in-
tersections accounts for a large proportion of the overall
vehicle travel time, so the waiting time at signalized in-
tersections must be considered in the travel time of the road
network.

In the existing shortest path problem considering in-
tersection delay, diferent researchers have proposed various
algorithm models from diferent angles [24]. Qin et al. [25]
used a reliable energy consumption path-fnding algorithm
for signalized trafc networks, and the result showed that
accounting for the delays at signalized intersections can
improve the prediction accuracy of vehicle energy con-
sumption. Ju and Du [26] suggested the periodic change of
intersection signals in urban road systems which is the
leading cause of uncertain delays and proposed a hyperpath
search method based on intersection signal timing. Tere-
fore, the application of the algorithm to the trafc feld has
limitations. Kamal et al. [27] presented a novel adaptive
trafc signal control scheme, which aims at minimizing the
total crossing time of all vehicles. Liang et al. [28] extended
a real-time trafc signal control algorithm based on the
Internet for vehicles at isolated intersections to minimize the
average vehicle delay, which can improve fairness at in-
tersections with minimal loss of efciency. However, this
study looked at individual signalized intersections and did
not take into account signal timing at intersections, where
vehicles may change routes based on delays encountered.

Based on the previous research on the routing problem
in STD networks, this article further considers the waiting
time at signalized intersections, studies the shortest reliable
path in the worst case, and transforms the STD network into

a deterministic time-dependent network to solve the shortest
reliable path problem.

3. Problem Description

3.1. Shortest Path Problem of Stochastic Time-Dependent
Networks. Te shortest path problem of travelers from the
starting point to the destination can be described as the
optimal path selection problem in an STD network. Given
a directed graph G(N, A, tij), where N � N1, N2, . . . , Nn 

is the set of the nodes and A � A1, A2, . . . , Am  is the set of
links. Assume that the number of nodes is n and the number
of links is m, (m, n � 1, 2, 3 · · ·), as shown in Figure 1. Te
path is the non-empty node set of the directed graph, which
is arranged in order from the starting point through the
nodes until the end, where i, j � 1, 2, . . . , n and i≠ j. T is the
set of time periods, which can be discretized into a set of
periods t ∈ T with the same time interval. tij(t)(i≠ j) is
a piecewise function associated with the departure time,
which indicates the travel time on the link (Ni, Nj) and its
value will change with diferent departure moments,
refecting the time-dependent characteristics of the STD
network. To refect the stochastic properties of the stochastic
time-dependent network, let tij(t) � Ct

ij + Rt
ij, where Ct

ij is
a constant in period t, and Rt

ij is a non-negative random
variable not more than the constant et

ij(et
ij ≥ 0), that is,

0≤Rt
ij ≤ et

ij, so Ct
ij ≤ tij(t)≤Ct

ij + et
ij.

3.2. Waiting Time Function at Signalized Intersections.
Te time dissipation at signalized intersections can be di-
vided into two parts: one is the time delay, mainly man-
ifested as low-speed driving and parking caused by vehicles
queuing at intersections or slowing down upstream of the
intersections; the other is the waiting time, mainly refected
in the time when vehicles wait for the permission to pass at
the signalized intersections. Te waiting time at the sig-
nalized intersection is related to waiting for the target phase
and selecting the subsequent path [4]. In this article, by
selecting the phase to represent the vehicle’s turning con-
dition, vehicles passing through a signalized intersection
necessitate representation through phases, such as “go
straight,” “turn left,” and “turn right.” As shown in Figure 2,
taking a typical intersection as an example, when a vehicle is
waiting for a signal light instruction, because only vehicles in
one direction are allowed to pass in each phase, the selection
of the subsequent path is also related to the waiting time,
which is not considered in the traditional shortest path
algorithm. Terefore, this research will consider the infu-
ence of this factor while studying the waiting time at the
signalized intersections.

Te waiting time at the signalized intersections is related
to the time of arrival at the intersection, and the parameter
settings are shown in Table 1.

t
arrive
j � t

leave
i + tij(t), (1)

t
leave
i � t

arrive
i + t

wait
i , (2)
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k

L�1
tL,i � Ti. (3)

Assuming that the required phase when the vehicle
arrives at a signalized intersection is x, the current phase
when the vehicle arrives at the signalized intersection is y,
and meeting the condition that x≤ k, y≤ k. Te waiting time
at the signalized intersection can be discussed in two cases:

(1) When x � 1, the required phase of the vehicle is the
frst phase; when y � 1, the vehicle can pass without
waiting; when y≠ 1, the vehicle needs to wait from
phase y until the end of the signal cycle and the
beginning of the next cycle, as shown in Figure 3(a).
Also, the waiting time at the signalized intersection is

t
wait
i �

0, x � y � 1,



k

L�y

tL,i − Ti
′, x � 1<y.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(4)

(2) When x≠ 1, the waiting time at the signalized in-
tersection can be discussed in three cases:

(i) When x � y, indicating that the vehicle can pass
without waiting when it arrives at the signalized

intersection, the waiting time at the signalized
intersections is twait

i � 0.
(ii) When x<y, the vehicle needs to wait from the

current phase y to the phase x of the next signal
cycle after arriving at the signalized intersection,
as shown in Figure 3(b). Te waiting time at
signalized intersections is

t
wait
i � 

x−1

L�1
tL,i+ 

k

L�y

tL,i − Ti
′. (5)

(iii) When x>y, the vehicle arrives at the signalized
intersection to wait from phase y to the phase x

of the cycle, as shown in Figure 3(c).Te waiting
time at signalized intersections is

t
wait
i � 

x−1

L�y

tL,i − Ti
′. (6)

Assume that a signalized intersection Ni has k in-
dependent phases and each phase duration of the signalized
intersection is t1, t2, . . . , tk. Te waiting time function of
each phase at the signalized intersection Ni is shown in
Figure 4: the horizontal coordinate is the time tarrivei when
vehicles arrive at the signalized intersection, and the vertical

N1 N2 N3 Nn-1 tn-1,n

Nn

AmA2

t23t12

A1

Figure 1: A graphical representation of a path.

start point

road

stop line

end point 1

end point 2

end point 3

Figure 2: Schematic diagram of intersection path selection.

Table 1: Parameters and interpretations.

Parameters Interpretations
tarrivei Te moment the vehicle reaches node Ni

tleavei Te moment the vehicle leaves node Ni

twaiti Te waiting time for the vehicle at node Ni

Ti Signal cycle length of node Ni

Ti
′ Te time spent on the current phase when the vehicle reaches node Ni

tL,i Green time of the L phase of node Ni, L � 1, 2, . . . , k

tij(t) Te time the vehicle passes through link (Ni, Nj)
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coordinate is the waiting time required at diferent phases at
the signalized intersection.

Te following conclusions can be drawn from the
waiting time function image of signalized intersection:

(1) At any signalized intersection Ni, within a signal
cycle, the signalized intersection waiting time
function is a piecewise function. When the required
phase is x, the waiting time function is

t
wait
i �



x−1

L�1
tL,i − t

arrive
i , 0≤ t

arrive
i ≤ 

x−1

L�1
tL,i,

0, 
x−1

L�1
tL,i ≤ t

arrive
i ≤ 

x

L�1
tL,i,



x−1

L�1
tL,i + Ti − t

arrive
i , 

x

L�1
tL,i ≤ t

arrive
i ≤Ti.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

(2) Te waiting time at the signalized intersection is
related to the current phase of the vehicle and the
required phase.

(3) Te waiting time range of signalized intersection is

0, max Ti − t1, Ti − t2, . . . , Ti − tk, 
k−1

L�2
tL,i

⎧⎨

⎩

⎫⎬

⎭
⎡⎣ ⎤⎦. (8)

3.3. Shortest Reliable Path Model. Average commuting time
consumption signifcantly afects residents’ intuitive per-
ception of commuting and quality of life. Tat is why it has

been included in the “urban experience indicator system” as
a prominent indicator to measure urban trafc convenience.
Te traditional SP problem usually takes travel time, cost, or
resource consumption as the defnition criteria of the op-
timal path. According to the Commuting Monitoring Report
of China’s Major Cities in 2021, the average one-way
commuting time in major cities in China is 36minutes.
When faced with uncertain travel conditions, the com-
muting time may be longer. For travelers, lateness will ruin
their established plan and result in penalty costs, loss of
opportunities, etc., while on the other extreme, early arrival
will waste travelers’ time. Terefore, this research introduces
the early arrival time penalty factor α(α> 0) and the in-
transit time factor β(β> 0) to fnd the path with the most
reliable travel time from the starting point to the destination
as the optimal path under the condition that lateness is not
allowed.

Let Tc,t be the travel time from the starting point W to
the endpoint c of the selected path N1 starting from period
Nn and be time-dependent. Under the STD trafc network,
the shortest reliable path is studied in this research to fnd
the path with the minimum travel time in the worst case
among the candidate paths as the optimal path, so as to
realize that the route will not be deteriorated by the change
of uncertainties. Te shortest reliable path model in this
study is as follows.

Objective function:

Z � min
c∈P

max α t
∗

− Tc,t − t1  + βTc,t , (9)

which can be rewritten as

Z �
min
c ∈P αt

∗
− αt1 +(β − α)maxTc,t 

�
min
c∈P αt

∗
− αt1 +(β − α)max 

(i,j)∈c

t∈T

C
t
ij + e

t
ij  + 

i∈c
t
wait
i

⎛⎝ ⎞⎠v
t
ij

⎛⎝ ⎞⎠,
(10)

x 2 3 ... ... y k... ...

arrive

(a)

1 2 3 ... ... x y... ... ... ... k

arrive
(b)

1 2 3 ... ... y x... ... ... ... k

arrive
(c)

Figure 3: Phase diagram. (a) x� 1<y, (b) x< y, (c) x> y.
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S.t:

v
t
ij �

1, Road segment (i, j) is occupied at time t,

0, Road segment (i, j) is not occupied at time t,


v
t
ij − v

t
ji �

1, i< j,

−1, i> j.


(11)

3.4. Network Conversion. Due to fuctuation in the STD
network, the description of the trafc conditions of the real-
time road network and problem solving have a certain
complexity. Terefore, this study uses the frst mathematical
induction to derive the proposition that “A stochastic time-
dependent network can be simplifed into a deterministic
time-dependent network,” so as to simplify the real-time
trafc problem.

Proof Process. Assume that the time of arrival of the vehicle
at node Ni is tarrivei , the departure time from node Ni is
period tleavei , the waiting time of the vehicle at nodeNi is twaiti ,
and the travel time of road section (Ni, Nj) is tij(t). Te

travel time is now studied using the frst mathematical in-
duction method.

Step 1. Assuming that the vehicle starts from node N1
at time tleave1 , the travel time through the link (N1, N2)

is t12(t), and t12(t) ∈ [Ct
12, Ct

12 + et
12], and then the

uncertain tleave2 can be converted into a deterministic
period with an interval range: [tleave1 + twait2 + Ct

12, tleave1
+twait2 + Ct

12 + et
12].

Step 2. Assuming that the vehicle starts from node N2
at time tleave2 , the travel time through the link (N2, N3)

is t23(t), and t23(t) ∈ [Ct
23, Ct

23 + et
23], tleave2 � tleave1

+ twait2 + t12(t).

Terefore,

t
leave
3 � t

leave
2 + t

wait
3 + t23(t)

� t
leave
1 + t

wait
2 + t12(t) + t

wait
3 + t23(t)

� t
leave
1 + 

3

i�2
t
wait
i + 

2

i�1
j�i+1


t∈T

tij(t).

(12)

21 3 m

Ti – t1

Ti – t3
Ti – t2

Ti – tm

t1 + t2

t2

t1

0 t1 + t2t1 Ti

m

3

21

3

2

m–1

L=1
tL

m

m–1

L=1
tL

m

L=1
tL

Figure 4: Waiting time function of signalized intersection.
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Ten,

t
leave
1 + 

3

i�2
t
wait
i + 

2

i�1
j�i+1


t∈T

C
t
ij ≤ t

leave
3 ≤ t

leave
1 + 

3

i�2
t
wait
i + 

2

i�1
j�i+1


t∈T

C
t
ij + e

t
ij .

(13)

So, the uncertain tleave3 can be converted into a de-
terministic period with interval range:

t
leave
1 + 

3

i�2
t
wait
i + 

2

i�1
j�i+1


t∈T

C
t
ij, t

leave
1 + 

3

i�2
t
wait
i + 

2

i�1
j�i+1


t∈T

C
t
ij + e

t
ij 

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

Step k− 2. Assuming that the vehicle starts from node
Nk−2 at time tleavek−2 , the travel time through the link
(Nk−2, Nk−1) is tk−2,k−1(t), and tk−2,k−1(t) ∈ [Ct

k−2,k−1,

Ct
k−2,k−1 + et

k−2,k−1].
Terefore,

t
leave
k−1 � t

leave
k−2 + t

wait
k−1 + tk−2,k−1(t)

� t
leave
1 + 

k−1

i�2
t
wait
i + 

k−2

i�1
j�i+1


t∈T

tij(t).
(15)

Ten,

t
leave
1 + 

k−1

i�2
t
wait
i + 

k−2

i�1
j�i+1


t∈T

C
t
ij ≤ t

leave
k−1 ≤ t

leave
1 + 

k−1

i�2
t
wait
i + 

k−2

i�1
j�i+1


t∈T

C
t
ij + e

t
ij . (16)

So, the uncertain tleavek−1 can be converted into a de-
terministic period with interval range: tleave1 + 

k−1
i�2 twaiti

+ 
k−2

i�1
j�i+1

t∈TCt
ij, tleave1 + 

k−1
i�2 twaiti + 

k−2
i�1

j�i+1
t∈T(Ct

ij +et
ij)].

Step k− 1. Assuming that the vehicle starts from node
Nk−1 at time tleave

k−1 , the travel time through the link
(Nk−1, Nk) is tk−1,k(t), and tk−1,k(t) ∈ [Ct

k−1,k, Ct
k−1,k+ et

k−1,k].

Terefore,

t
leave
k � t

leave
k−1 + t

wait
k + tk−1,k(t)

� t
leave
1 + 

k−1

i�2
t
wait
i + 

k−2

i�1
j�i+1


t∈T

tij(t) + t
wait
k + tk−1,k(t)

� t
leave
1 + 

k

i�2
t
wait
i + 

k−1

i�1
j�i+1


t∈T

tij(t).

(17)

Ten,

t
leave
1 + 

k

i�2
t
wait
i + 

k−1

i�1
j�i+1


t∈T

C
t
ij ≤ t

leave
k ≤ t

leave
1 + 

k

i�2
t
wait
i + 

k−1

i�1
j�i+1


t∈T

C
t
ij + e

t
ij . (18)
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So, the uncertain twaitk can be converted into a de-
terministic period with interval range: tleave1 + 

k
i�2t

wait
i +


k−1

i�1
j�i+1

t∈TCt
ij, tleave1 + 

k
i�2t

wait
i + 

k−1
i�1

j�i+1
t∈T(Ct

ij+ et
ij)].

Terefore, a propositional STD network can be sim-
plifed into a deterministic time-dependent network.

Total time � t
leave
k − t

arrive
1 � t

leave
k + t

wait
1 − t

leave
1 ,

max Total time � 
k

i�1
t
wait
i + 

k−1

i�1
j�i+1


t∈T

C
t
ij + e

t
ij .

(19)

Terefore, the objective function (9) can be rewritten as

Z �
min
c ∈P αt

∗
− αt1 +(β − α)max 

k

i�1
t
wait
i + 

k−1

i�1
j�i+1


t∈T

C
t
ij + e

t
ij 

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠v
t
ij

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (20)

S.t:

v
t
ij �

1, Road segment (i, j) is occupied at time t,

0, Road segment (i, j) is not occupied at time t,


v
t
ij − v

t
ji �

1, i< j,

−1, i> j,



(i,j)∈c


t∈T

C
t
ij + e

t
ij v

t
ij + 

i∈c
t
wait
i + t1 ≤ t

∗
.

(21)

Te travel time of the path in the STD network can be
transformed into a deterministic time-dependent network
by the frst mathematical induction. Ct

ij + et
ij is a de-

terministic variable, which is the maximum value of the link
travel time tij(t). Terefore, the objective function can be
converted to solve the deterministic time-dependent net-
work under the constraint of the time window t∗, seeking the
route with the minimum 

k
i�1t

wait
i + 

k−1
i�1

j�i+1
t∈T(Ct

ij + et
ij).

4. The Shortest Path Algorithm

Te shortest path algorithm that accounts for waiting time at
signalized intersections based on Dijkstra’s algorithm is used
to solve the model. For a given origin node in the graph, the
algorithm can fnd the shortest reliable path between it and
every other node.

Step 1: initialization.
Before implementing the algorithm, it is necessary to
initialize each signalized crossing node and assign every
node a tentative distance value. Set the initial node to
zero, which is the starting coordinate of the traveler,
and all other nodes to infnity. Create sets W, Pi, and S.
W is the set of unvisited nodes, consisting of all the
unvisited nodes except the source node. Let S be the set
of visited nodes and Pi be the set of all predecessors of
node i.

Let∀i≠ j, li � 0, lj � +∞, Pi � 0{ }, l
max
i � l

min
i � 0.

(22)

Step 2: update labels.
For the current node i, consider all nodes except the
nodes in Pi. Ten, the departure time, tentative max-
imum travel time lmax

i , and minimum travel time lmin
i of

subsequent nodes are calculated according to equations
(1)–(6). If lmin

i is less than the previously recorded time,
then overwrite the tag. Even if the node has been
checked or marked as visited, it should remain in the
unvisited set at this point.
Step 3: move to the next node.
Set the node with the best travel time marked lmin

i as the
next “current node i” and add this node to the set S.
Consider all nodes in the set W except those nodes in Pi

to fnd the node with the minimum travel time from the
initial node. Calculate the tentative minimum travel
time lmin

j , and if lmin
i is less than the previously recorded

distance, update the label and update the set W.
Step 4: stop and fnd the best path.
If W is empty and all node labels cannot be updated in
Step 2, then stop. Otherwise, go back to Step 3 and
continue updating the label to fnd a better path. After
completing the label update of the last node in set W, the
optimal path from the starting point to the end point is
found in the opposite direction starting from the last node.

5. Computational Test

To solve the shortest reliable path problem in the STD
networks, this research conducts a computational test with
the small trafc network described in Figure 5. Te network
contains 12 one-way road sections and 9 signalized in-
tersections. Te set of signalized intersection nodes is
W � A, B, C, D, E, F, G, H, I{ }, including a cross-shaped
intersection and 8 T-shaped intersections.

In order to ensure fairness between each phase, the green
light duration of each phase is evenly allocated, so it is
assumed that the green light duration of each phase at the
same signalized intersection is the same. Te signal starts at
the moment of arrival at the starting point of 0, the phase

8 Journal of Advanced Transportation



sequence appears randomly, the properties of each signal-
ized intersection are shown in Table 2, and the link weights
are shown in Table 3. Now search for the shortest reliable
path from the starting point A to the end point I.

Traditional Dijkstra’s algorithm and the improved
shortest path algorithm based on Dijkstra’s algorithm
considering the waiting time of signalized intersection are,
respectively, used to calculate the shortest reliable path
problem of this small trafc network. According to the
results of the proof in Section 3 that the STD networks can be
transformed into a deterministic time-dependent network,
the original problem can be transformed into the shortest
path problem in a deterministic time-dependent network.
Te transformed trafc network is shown in Figure 6, and
the link weight is the upper limit of the original range.

5.1. Solving the Shortest Reliable Path. Visual Studio C/C++
6.0 is used to calculate the shortest path and travel time
between the starting and ending nodes for diferent de-
parture times with the shortest path algorithm that accounts
for the waiting time of signalized intersections based on
Dijkstra’s algorithm, as shown in Table 4.

From Table 4, the shortest paths at diferent departure
times can be obtained. As can be seen from Figure 7, the
travel time varies periodically at diferent departure times,
and the period duration is 48. Te minimum travel time is
35, and the maximum travel time is 50. For the same origin
destination (OD) matrix, 141 sets of experimental results are
selected from the table to compare with the traditional
Dijkstra’s algorithm without accounting for waiting time at
signalized intersections, and the results are shown in Figure
7. Te travel time obtained by the traditional shortest path
algorithm is a fxed value of 35, which does not vary with the
departure time, while the shortest travel time obtained by
improved Dijkstra’s algorithm without accounting for
waiting time at signalized intersections varies with the
departure time.

5.2. Solving Travel Time Range. Te shortest path and travel
time range at diferent departure times can be obtained by
using the upper and lower limits of road weight, respectively.
Te lower limit weights of the section are used to fnd the
arrival moments and shortest path at diferent departure
moments, as shown in Table 5.

From Table 5, the shortest path and travel time obtained
by the lower limit of link weights can be obtained. Te travel
time range is the time interval obtained by the upper and
lower limits of the road weight.

As can be seen from Figure 8, the travel time varies
periodically at diferent departure times, and the period
duration is 48. Te minimum travel time is 29, and the
maximum travel time is 39. For the sameODmatrix, 142 sets
of test results in the table are compared with traditional
Dijkstra’s algorithm without accounting for the waiting time
at signalized intersections. Te travel time obtained by the
traditional shortest path algorithm is a fxed value of 29,
which does not change with the departure time, while the
shortest travel time obtained by improved Dijkstra’s

algorithm with intersection waiting time varies with the
departure time. Figure 9 shows the travel time range that
accounts for the waiting time at signalized intersections and
the traditional travel time range that does not account for the
waiting time at signalized intersections, respectively.

5.3. Contrast Trials with Varying Weights. A road section is
randomly selected in the road network to simulate road
congestion, and the experiment is repeated several times by
changing the weight of the road section.Te weight of the E-
F section was set as [7-15], and the obtained results were

A B C

D E F

G H I

(6) (8) (10)
[9, 10] [11, 13]

[7, 9]

[6, 7][7, 8]

[7, 8]

[10, 12]

[5, 6]

[10, 12] [10, 11]

[8, 10] [9, 10]

(6) (5) (6)

(6)
(6)

(4)

Figure 5: STD network test example (the fgure in the chart is the
weight of link).

Table 2: Property table of signalized intersections.

Node Phase quantity Green time of each
phase Signal cycle

A 2 6 12
B 2 8 16
C 1 10 10
D 2 6 12
E 4 6 24
F 2 4 8
G 1 6 6
H 2 5 10
I Null Null Null

Table 3: Link weight table.

Section number Nodes Weight (s)
1 0-1 [9, 10]
2 1-2 [11, 13]
3 0–3 [10, 12]
4 1–4 [7, 8]
5 2–5 [6, 7]
6 3-4 [5, 6]
7 4-5 [7, 9]
8 3–6 [8, 10]
9 4–7 [9, 10]
10 5–8 [7, 8]
11 6-7 [10, 12]
12 7-8 [10, 11]
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compared with previous experimental results. Te shortest
path and travel time between the starting and ending points
under diferent departure times were obtained, as shown in
Table 6.

From Table 6, the shortest reliable path and travel time
can be obtained by randomly changing the E-F weight value
of the road section. As can be seen from Figure 10, the
minimum travel time varies periodically at diferent de-
parture times, and the cycle time is about 48. Te exper-
imental results of 152 groups in the selected table are
compared with the traditional Dijkstra algorithm results
that do not consider the waiting time at the intersection,
and the results are shown in Figure 10. Te travel time
obtained by the traditional shortest path algorithm is
a fxed value of 38, regardless of departure time. However,
the minimum travel time obtained by the improved
Dijkstra algorithm, which includes waiting time at in-
tersections, varies with the departure time. Te comparison
test shows that the travel time can meet the requirements of
rigid arrival time after randomly changing the weight of the
road section, and the efectiveness and robustness of the
algorithm are verifed.

 . Result Analysis

Te accuracy and efectiveness of the model and algorithm
were demonstrated through computational testing. Te
analysis of the results of the computational testing led to the
following conclusions:

(1) A stochastic time-dependent network can be
transformed into a deterministic time-dependent
network through the maximum-minimum crite-
rion, and the travel time range from the starting
point to the end point can be obtained through the
link weights.

Minimum reliable travel time
Dijkstra's algorithm_minimum travel time
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Figure 7: Minimum reliable travel time, obtained by the upper
limits of link weight.
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(8) (10)

(6) (5) (6)

Figure 6: Deterministic time-dependent network test example.

Table 4:Te shortest reliable path and corresponding travel time at
diferent departure time.

Departure time Arrival time Route
0 41 A-D-E-F-I
1–3 41 A-D-E-F-I
4–6 41 A-B-E-F-I
7 42 A-B-E-F-I
8 43 A-B-E-F-I
9–11 48 A-B-E-F-I
12-13 56 A-B-E-F-I
14–17 56 A-D-E-F-I
18–22 57 A-B-E-F-I
23 58 A-B-E-F-I
24–26 64 A-B-C-F-I
27–29 65 A-B-E-F-I
30–45 80 A-B-E-F-I
46–51 89 A-D-E-F-I
52–54 89 A-B-E-F-I
55 90 A-B-E-F-I
56 91 A-B-E-F-I
57–59 96 A-B-E-F-I
60 98 A-B-C-F-I
61 99 A-B-C-F-I
62 100 A-D-E-F-I
63–65 104 A-D-E-F-I
66–70 105 A-B-E-F-I
71 106 A-B-E-F-I
72–77 113 A-B-E-F-I
78–93 128 A-B-E-F-I
94–99 137 A-D-E-F-I
100–102 137 A-B-E-F-I
103 138 A-B-E-F-I
104 139 A-B-E-F-I
105–107 144 A-B-E-F-I
108–110 152 A-B-E-F-I
111–113 152 A-D-E-F-I
114–118 153 A-B-E-F-I
119 154 A-B-E-F-I
120–122 160 A-B-C-F-I
123–125 161 A-B-E-F-I
126–141 176 A-B-E-F-I
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(2) Te change of departure time will cause the shortest
path of the vehicle from the starting point A to the
endpoint I to change. For example, when the de-
parture time is 0, the shortest path is A-D-E-F-I, and
when the departure time is 20, the shortest path is A-

Table 5: Te shortest path and corresponding travel time at dif-
ferent departure time.

Departure time Arrival time Route
0–2 31 A-D-E-F-I
3–5 39 A-D-E-F-I
6–9 39 A-B-E-F-I
10 40 A-B-E-F-I
11 41 A-B-E-F-I
12 42 A-B-E-F-I
13 47 A-B-E-F-I
14 47 A-D-E-F-I
15–19 50 A-D-E-F-I
20–25 55 A-B-E-F-I
26 55 A-D-E-F-I
27-28 63 A-B-C-F-I
29-30 63 A-B-E-F-I
31 63 A-D-E-F-I
32–38 71 A-D-E-F-I
39-40 73 A-B-C-F-I
41–44 74 A-B-E-F-I
45-46 79 A-B-E-F-I
47–50 79 A-D-E-F-I
51–53 87 A-D-E-F-I
54–57 87 A-B-E-F-I
58 88 A-B-E-F-I
59 89 A-B-E-F-I
60 90 A-B-E-F-I
61 95 A-B-E-F-I
62 95 A-D-E-F-I
63–67 98 A-D-E-F-I
68–73 103 A-B-E-F-I
74 103 A-D-E-F-I
75–78 111 A-B-E-F-I
79 111 A-D-E-F-I
80–86 119 A-D-E-F-I
87 120 A-B-C-F-I
88 121 A-B-C-F-I
89–92 122 A-B-E-F-I
93-94 127 A-B-E-F-I
95–98 127 A-D-E-F-I
99–101 135 A-D-E-F-I
79 111 A-D-E-F-I
80–86 119 A-D-E-F-I
87 120 A-B-C-F-I
88 121 A-B-C-F-I
89–92 122 A-B-E-F-I
93-94 127 A-B-E-F-I
95–98 127 A-D-E-F-I
99–101 135 A-D-E-F-I
102–105 135 A-B-E-F-I
106 136 A-B-E-F-I
107 137 A-B-E-F-I
108 138 A-B-E-F-I
109 143 A-B-E-F-I
110 143 A-D-E-F-I
111–115 146 A-D-E-F-I
108 138 A-B-E-F-I
109 143 A-B-E-F-I
110 143 A-D-E-F-I
111–115 146 A-D-E-F-I
116–121 151 A-B-E-F-I
122 151 A-D-E-F-I

Table 5: Continued.

Departure time Arrival time Route
123-124 159 A-B-C-F-I
125-126 159 A-B-E-F-I
127 159 A-B-E-F-I
128–134 167 A-D-E-F-I
135 167 A-B-E-F-I
136–140 170 A-B-E-F-I
141-142 175 A-B-E-F-I
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Figure 8: Minimum reliable travel time, obtained by the lower
limits of link weight.
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B-E-F-I. Tis is mainly because diferent departure
times cause the vehicle to reach the signalized in-
tersections at diferent times, which makes a signif-
icant change in the waiting time at the signalized
intersections according to the phase change and the
subsequent path selection.

(3) Te change of departure time will cause the shortest
travel time of the vehicle from the starting point A to
the endpoint I to change periodically. For example,
when the departure time is 0, the travel time range is
[31, 41], and when the departure time is 20, the travel
time range is [55, 57]. As shown in Figure 7, the
shortest travel time shows a periodic change within
a certain range, and the change period is 48. Te
reason for this change is that the waiting time for any
phase at the signal intersection is a periodic function.
Te waiting time for any desired phase is charac-
terized by a periodic cycle with the periodic duration
of the signal intersection.

(4) With diferent departure time, the minimum travel
time shows amonotonic variationwithin a certain time
range. Te reason is that diferent departure times lead
to diferent time for vehicles to arrive at the signalized
intersection, which makes the waiting time at the
signalized intersection change signifcantly according
to the phase change and the subsequent path selection.

(5) Te minimum travel time of the optimal path is 29,
and the worst case can be calculated as 50, indicating
that the reliability of the travel time on the optimal
path is poor, which may violate the constraints of the
time window and cause commuters to be late. For
example, the traveler needs to arrive at the desti-
nation before t� 35 under the constraint of a time
window; otherwise, it will be regarded as late. If the
traveler only considers the minimum travel time and
does not consider the worst case and reliability of
travel time, it may not meet the requirements of rigid
arrival time.Tus, although the optimal path enables
the traveler to reach the destination with the min-
imum expected travel time, for conservative trav-
elers, the rigid arrival time requirements are not
surely met due to the lack of consideration for the
worst-case travel time and reliability.

Table 6: Te shortest path and the shortest travel time after
changing the weight of the section.

Departure time Arrival time Route
0–3 45 A-D-E-H-I
4–6 45 A-B-E-H-I
7 48 A-B-E-H-I
8 49 A-B-E-H-I
9 50 A-B-E-H-I
10-11 51 A-B-E-H-I
12-13 56 A-B-C-F-I
14–17 59 A-D-E-F-I
18–22 61 A-B-E-H-I
23 62 A-B-E-H-I
24–26 64 A-B-C-F-I
27–29 71 A-B-E-H-I
30–42 80 A-B-C-F-I
43 81 A-B-C-F-I
44 82 A-B-C-F-I
45 83 A-B-C-F-I
46–51 93 A-D-E-H-I
52–54 93 A-B-E-H-I
55 94 A-B-E-H-I
56 95 A-B-E-H-I
57-58 96 A-B-C-F-I
59 97 A-B-C-F-I
60 98 A-B-C-F-I
61 99 A-B-C-F-I
62–65 105 A-D-E-H-I
66–71 111 A-B-E-H-I
72–77 115 A-B-C-F-I
78–86 128 A-B-C-F-I
87–92 131 A-B-E-H-I
93 132 A-B-E-H-I
94–99 141 A-D-E-H-I
100–102 141 A-B-E-H-I
103 142 A-B-E-H-I
104 143 A-B-E-H-I
105 144 A-B-E-H-I
106 144 A-B-C-F-I
107 151 A-B-E-H-I
108-109 153 A-B-E-H-I
110–113 153 A-D-E-H-I
114–119 160 A-B-E-F-I
120–122 160 A-B-C-F-I
123 161 A-B-C-F-I
124 162 A-B-C-F-I
125 163 A-B-C-F-I
126–138 176 A-B-C-F-I
139 177 A-B-C-F-I
140 178 A-B-C-F-I
141 179 A-B-C-F-I
142–147 191 A-D-E-H-I
148–152 191 A-B-E-H-I
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Figure 10: Minimum travel time after changing the E-F weight
value.
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7. Conclusion

Considering the impact of stochastic time-dependent char-
acteristics of urban road networks on daily travel, the shortest
reliable path problem in stochastic time-dependent networks
was studied. First, in the STD network, this article proposes
a waiting time function at the signalized intersection and
analyzes the waiting time characteristics at the signalized
intersection and draws the conclusion that the waiting time at
the signalized intersection is a continuous non-diferentiable
periodic function.Ten, a method of network transformation
is proposed, and the frst mathematical induction method is
used to prove that the stochastic time-dependent network can
be reduced to a deterministic time-dependent network, and
the feasibility of this method is verifed. Finally, a shortest path
algorithm that accounts for waiting time at signalization
intersections is proposed. Compared with the traditional
probabilistic methods, this article does not need the accurate
probability distribution of uncertainty data, since the range of
uncertainty can be derived from the historical data and the
experience of decision makers. By setting up a simple nu-
merical experiment that takes into account the reliability
requirements of the time window and the travel time, the
reliable travel time and path corresponding to diferent de-
parture times are obtained, and the rigid arrival time re-
quirements of travelers are satisfed. Terefore, the algorithm
can more accurately describe the real trafc conditions.

Te defciency of the paper is that the treatment of
phases at signal intersections does not take into account the
yellow light time and all-red time, which is still a restrictive
assumption in this case. Moreover, the test lacks the analysis
of the efect of dynamic real-time trafc volume on travel
time. How to apply the algorithm proposed in this paper to
a larger trafc network to verify the efectiveness of the
proposed model and algorithm may be the content of
subsequent research.
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