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Driven by technologies and demands, the modern transportation system has developed from intelligent transportation systems
(ITS) to autonomous transportation systems (ATS) to resolve intertwined demands and supplies with few human interventions.
In ATS, personal mobility service (PMS) is the service that can sense real-time trafc conditions comprehensively, learn travelers’
preferences accurately, recommend multimodal travel options appropriately, and provide service responses timely to elevate the
level of personalization and intelligence in smart mobility services. Since current PMS widely employs centralized approaches
(CPMS) to process massive sensitive data from individuals and support diverse edge devices, resulting in high pressure in privacy
protection and performance balancing, this paper presents a federated PMS (FPMS) and its design architecture in logical and
physical views by adopting federated learning to provide multimodal, dynamic, and personalized travel options with system-
saving safety and efciency guaranteed. Moreover, through an extensive evaluation, the performances of CPMS and FPMS are
compared to reveal the merits of FPMS in reducing costs and latency.

1. Introduction

Presently, our travel activities have relied on intelligent
transportation systems (ITS) for over 50 years, and the
development of ITS technologies has been abundant and
comprehensive. However, with the vast application of ad-
vanced technologies (e.g., artifcial intelligence, big data, and
Internet of Tings), travel patterns are diversifed over time,
impacting the evolution of the modern transportation sys-
tem. Gradually, ITS becomes incapable of keeping a balance
between the demands of the public and the supplies of the
system, and hence, a next-generation system, called au-
tonomous transportation system (ATS), is being put forward
to renovate ITS services. In general, ATS aims to bridge user
demands and system supplies through an automated and
integrated workfow, which can precept system statuses,
learn insightful knowledge, make optimal decisions, and
control corresponding components to transform the overall
system towards fve goals to be safer, more efcient, more
convenient, more environmental, and more economic

unobtrusively, seamlessly, and automatically, as shown in
Figure 1.

Tomake the system to be less human-centric, ATS with its
components, i.e., demands, technologies, services, functions,
and participants, shall be renewed to gradually elevate its level
of intelligence and autonomy. Personal mobility service
(PMS) [1] can be renovated to help travelers fnd the most
suitable and personalized route choices quickly during the
route planning step, to support various travelers with user
preferences fulflled and system objectives addressed at the
same time. Accordingly, there arise three challenges: (1) how
to process massive sensitive data (e.g., personal preferences,
trajectories, and activities) for travelers’ preference analysis,
(2) how to ensure data security, especially protecting user
privacy while processing unconsented data from travelers,
and fnally, (3) how to harness plentiful and growing re-
sources located at the edge (e.g., personal smart devices) as
a means to reduce the burden of the server.

Presently, there are related solutions studying the
above challenges; however, most of the solutions
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concentrate on big data processing to better profle the
users and provide more accurate travel suggestions by
using centralized approaches that, in turn, implement
centralized PMS (CPMS) [2–4], instead of considering
user privacy protection and idle resource usage. Hence,
this paper presents an FPMS (federated PMS) and its
design architecture, making trip planning more personal,
intelligent, and efcient. In general, FPMS is integrated
with multimodal travel options and is implemented in
ATS to support dynamic and personalized services.
Compared to the limited and general options provided by
traditional route planning services, FPMS can address the
specifc needs and preferences of travelers together with
system supplies optimized. To achieve that, FPMS not
only needs to sense the macro trafc conditions but also
needs to accurately analyze the micro user behavior to
assist in decision-making and service planning and pro-
vide dynamic and personalized solutions to improve
system efciency and efectiveness [5, 6].

Te main contributions of this paper can be concluded
as follows: (1) the emerging requirements and challenges
of PMS to support the development of ATS are sum-
marized, (2) a reference architecture to design an FPMS
for ATS, with functional, logical, and physical views that
distinguish it from the CPMS, and (3) through an ex-
tensive experiment, the performances of CPMS and FPMS
are compared to reveal the merits of FPMS in improving
the service quality by manipulating and orchestrating the
massive smart devices.

Te remainder of this paper is organized as follows:
Section 2 provides an overview of PMS, CPMS, and FPMS
and also discusses related challenges and solutions. Next,
Section 3 describes the architecture design methodology
with multiviewed architectures (e.g., functional, logical, and
physical architectures) between CPMS and FPMS. Section 4
analyzes the performance diferences between CPMS and
FPMS through three indicators (e.g., training time, resource
consumption, and average outage probability). Section 5
concludes the achievements of our research and gives
suggestions for future studies.

2. Overview

In this section, PMS is, frst, introduced, and accordingly, the
diferences between CPMS and FPMS are explained as prior
knowledge to discuss current research challenges and
solutions.

2.1. Introduction of PMS. Personal mobility service (PMS),
as a service enabling mobility as a service, primarily em-
phasizes the integration of real-time demands and multi-
modal travel modes, which can assist individual mobility by
recommending suitable travel options. In addition, as one of
the core characteristics of PMS, it requires rerouting timely
based on sensed changes in user and system statuses, e.g., the
travel destination altered during a trip, or congestions
caused by accidents. Besides that, personalization is ensured
by building and interpreting user profles and disclosed by
providing and serving individuals according to their in-
terests and expectations. Terefore, the quality of PMS
highly relies on the advancement of recommendations,
which can handle individuality (e.g., identity, preferences,
and constraints) to capture relevant users’ attributes and
characteristics (e.g., users’ behaviors).

As a facade for PMS, typical user interfaces (UIs) are
required in PMS. Specifcally, when users start to travel, they
can timely access the personal travel menu (see Figure 2)
through a variety of channels such as smartphone apps,
tablets, and computers, to determine their mode, time, cost,
etc. Compared to the traditional route planning service,
which provides travel options based on the availability of
various travel modes (which can be integrated as well), PMS
has the potential to not only provide user-oriented routes
according to travelers’ preferences but also optimize the
usage of currently available system supplies.

As shown in Figure 3, PMS can enable collaboration
between the physical and virtual worlds. Tere are two
important modules to assist the running of PMS, namely, (1)
dynamic route planner and (2) personalized recommen-
dation engine. Specifcally, the dynamic route planner re-
ceives basic traveler requests (e.g., origins and destinations)
and real-time trafc conditions to provide multimodal route
schemes meeting the objective of the system. After receiving
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Figure 1: A workfow in ATS.

Figure 2: A typical PMS UIs on smartphones.
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multimodal route schemes, the personalized recommen-
dation engine returns best-ft routes by analyzing user needs
and preferences according to the information extracted from
users’ profles and travel histories. After these recommended
trips are presented to each individual throughmobility hubs,
the actual travel will be performed by travelers by selecting
one of the travel options and also act as an impulse to the
system, which will change its running status accordingly.
Since the trip executed by travelers is recommended and
optimized by PMS with user preferences and system ob-
jectives both considered seamlessly, PMS can be an efcient
and efective user-oriented and long-running service to el-
evate the intelligence and autonomy of the transportation
system.

2.2. Diferences between CPMS and FPMS.
Conventionally, PMS widely adopts a centralized mecha-
nism, called centralized PMS (CPMS), which manages
massive user data and collaborates with diverse user devices
through a central server. Since user-sensitive data need
a high bandwidth network to transmit and a high-
performance server to process, issues about information
leakage and single-point failure may occur and become the
bottleneck of PMS. To address these issues, PMS is adopting
a distributed operation mechanism, which forms federated
PMS (FPMS). Specifcally, FPMS employs federated learning
and computing to not only bridge data silos in a private-

preserving manner but also utilize distributed computing
resources at the edge in a collaborative approach. Compared
to CPMS in Figure 4, FPMS can enable local data processing
at each client, and instead of exchanging raw data, it only
requires desensitized parameters for knowledge fusion, e.g.,
to train a machine-learning model [7]. In this way, FPMS
can not only ensure data security and privacy but also
improve resource utilization. To sum up, FPMS is one step
ahead of CPMS in optimizing mobile demand and supply in
a new way, by allowing the integration of multiple types of
open and private data.

2.3. Emerging Requirements and Related Solutions. Tis
section summarizes (1) requirements in designing and
implementing PMS and (2) related solutions addressing
these specifc challenges to better support PMS.

2.3.1. Challenges. Personal mobility service (PMS) could be
considered an advanced and intelligent route planning
service, which represents one form of travel information
service [8] to provide various and valuable travel in-
formation through the interactions between travelers and
public transport operators. Conventionally, static data are
mainly the information source for route planning, such as
fnding the shortest paths [9]. Along with the rapid devel-
opment of emerging technologies and increase in traveling
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demands, real-time data sensed from the system and users
are processed to provide more accurate and user-friendly
travel options [10]. To achieve such a goal, during the
transformation from ITS to ATS, PMS needs to fulfll the
following essential requirements:

(i) Real-time data [9, 11]: Te combination of static
data and real-time data could assist travelers in
interpreting trafc situations and remedying the
perception of unreliability from the user per-
spective. Efective collection and use of real-time
data in PMS can help travelers feel more in
control of their trips, including their time spent
and money cost.

(ii) Multimodal route [12, 13]: Te multimodal route
refers to the extrapolation of routes using diferent
modes of transportation within a given time in-
terval, which is usually provided by most com-
mercial tools and applications, such as Google and
Baidu Maps. Travelers usually ask for an optimal
route, including all available transportation modes,
and this needs a more efcient and advanced
routing mechanism.
Multimodal routing refers to the extrapolation of
routes using diferent modes of transportation
within a given time interval, which is usually pro-
vided by most commercial tools and applications,
such as Google and Baidu Maps.

(iii) Dynamic routing [14, 15]: Dynamic routing implies
that the routing algorithm can process sensed in-
formation about passengers and transportation
systems in real-time and also react to it through
rerouting. Based on real-time trafc data, dynamic

routing in PMS can guide travelers to their desti-
nation in a timely and cost-efcient way.

(iv) Personalization aspect [16, 17]: Both trafc condi-
tions and personal characteristics are essential for
personalization. Such that, PMS is required to
capture and analyze individual characteristics and
real-time trafc situations and recommend the most
suitable options matching users’ preferences with
less latency and error.

(v) Privacy protection [1, 18]: Since PMS needs to
process large amounts of sensitive data, the leakage
of information may occur, if these data are collected
and managed by a central server. Moreover, due to
the various laws and regulations that countries have
put in place to protect personal data, data silos with
unshareable datamay incapacitate the application of
PMS by using centralized solutions.

(vi) Service performance [5, 19]: At present, PMS needs
to implement most of its functions and process large
amounts of disparate data collected from many
participants in a centralized cloud, which can be
a performance bottleneck for the timely processing
of related requests, especially when the number of
service users is growing exponentially [20]. It is
required to renovate the service operation paradigm
to further improve the efciency and efectiveness
of PMS.

2.3.2. Related Solutions. To address these challenges, various
solutions have been proposed as summarized and evaluated
in Figure 5. Initially, the traditional route service used static
data to plan routes and inform travelers’ travel information
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Figure 4: Te workfow of CPMS and FPMS.
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(e.g., time, cost, and distance) studied, such as TransPlus
[21]. After that, KAMO [22], as a mobile public trans-
portation guide application, is proposed to support route
planning for public transportation passengers based on real-
time data. More advanced, multimodal routes are addressed
by OneRide [10] and in-vehicle application for multimodal
route planning (IVA-MAP) [15], which can also support
dynamic routing to further enhance the functionality
of PMS.

Moreover, recently, personalization has been empha-
sized, and accordingly, several solutions have been proposed
to implement trip recommendations, e.g., TRIP [23], ap-
proach CTRR [2], and BR2 [24]. As a comprehensive so-
lution to not only address the real-time data and multimodal
travel modes but also support on-demand route (re-)plan-
ning, MaaS is studied to provide travelers fexible, person-
alized, and seamless mobility via a single interface [25].

Since most of the current solutions for PMS adopt
centralized approaches to collect and process massive sen-
sitive data to better analyze user preferences, it may sufer
issues about user privacy as data transmitted through the
network are vulnerable and single-point failure as most of
the tasks are implemented and executed at the central server,
such that the requirements to improve service quality start to
be discussed. For example, OR2P [26] protects trajectory
privacy and PIR [27] protects location privacy.

Finally, as for the service performance, a novel location
obfuscation method (DLOM) for online route planning was
proposed by Corcoran et al. [28], which can protect user
privacy and allocate workload to the edge according to
a distributed mechanism, which is also applied in a driver
preference-based route planning (DPRP) model to speed up
the search process in recommending personalized
routes [29].

In summary, the requirements to handle real-time data,
multimodal routes, dynamic routing, and personalization
have been widely studied in related solutions; however,
solutions to protect user privacy and improve service per-
formance are still partial. To further evaluate the intelligence
of PMS, this paper proposes a novel architecture by

incorporating federated learning to address emerging issues
about privacy protection and performance improvement.
Federated learning (FL) was proposed by Google in 2016, to
build machine-learning models based on datasets that are
distributed across multiple devices while preventing data
leakage [30]. AbdulRahman et al. [31] presented a deep
investigation and analysis of the FL architecture, design, etc.,
and proposed future challenges and research directions.
Especially, they explain why and how centralized learning
develops to FL and point out the issues of CL: latency and
data transfer cost. Ben Sada et al. [32] also mentioned the
centralized framework that sends data from local devices to
the cloud for processing is facing many challenges such as
latency and privacy.Terefore, FL has the advantages such as
protecting privacy and improving performance, which make
FL applications comprehensive.

3. From CPMS to FPMS: The Proposed
Design Architecture

To create a standardized architecture of PMS for ATS, the
design methodology will be frst introduced. Accordingly,
the required components are defned and described, and the
logical and physical architectures demonstrating the re-
lationships between functions and the interactions among
physical objects (e.g., travelers and the information center)
are presented, respectively.

3.1. Design Methodology. Developing a common PMS ar-
chitecture that captures the features of ATS is essential.
Hence, the design methodology is proposed, as shown in
Figure 6, which consists of (1) component design to defne
functions and elements required in PMS and (2) architecture
design to illustrate the workfow of function in a logical
architecture and the interactions among physical objects in
a physical architecture. In general, as one of the core services
in ATS, PMS aims to satisfy the demands of people and
goods by organizing related supplies of the system, which are
frst defned in the component design. As shown in
Figure 6(a), PMS comprises diferent elements, which are
basic physical entities, such as users, infrastructures, and
vehicles, and also various functions.

Moreover, based on these defned components, the ar-
chitecture design illustrates the data fow among functions
and information interaction among physical objects (e.g.,
elements). Accordingly, the logical architecture (LA) and the
physical architecture (PA) are defned, respectively, as
shown in Figure 6(b). In general, LA presents data fow
among functions to defne the operation logic of the system.
Similarly, PA presents information interaction between el-
ements to illustrate the logic among physical objects (POs) in
the real world.

Notably, even though LA defnes logical fow among
function modules and PA forms physical fow among POs,
LA and PA are correlated, as LA can be converted into PA by
associating functions with POs, and vice versa. As shown in
Figure 7, while functions in LA are associated with related
POs, they could form PA, which demonstrates the
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information interaction between POs. For example, the
functions, namely, collecting incident information and
collecting dynamic trafc situation data, are supported by
POs, namely, roadway monitoring equipment and emer-
gency management center, respectively. Te functions,
namely, fusion processing data, identifying road network
conditions information, and generating trafc control in-
formation, are provided by one PO, namely, the trafc
management center. Normally, functions are provided by
various POs; thus, interaction among diferent functions in
LA is similar to that in PA, and the physical fow below can
map to the logical fow above.

3.2. Components of CPMS and FPMS. Te components of
PMS consist of (1) elements, such as users, vehicles, and
infrastructures, and (2) functions required by the elements.

3.2.1. Elements. Te elements of FPMS and CPMS are the
same as summarized in Figure 8, which are the stakeholders,
vehicles, and infrastructures on the left. Te stakeholder
section refers to people taking part in the operation with 7
objects, e.g., users and travelers, the vehicle section refers to
transit vehicles, and the infrastructure section is facilities to
maintain the regular transportation operation with 10 ob-
jects, e.g., roadway monitoring equipment and trafc in-
formation center.

3.2.2. Functions. Tere are 25 functions in FPMS and 22
functions in CPMS, which are summarized in Figure 9.
Importantly, functions are divided into 4 categories based on
their characteristics and attributes, which are associated with
the processes of “autonomous perception, autonomous
learning, autonomous decision-making, and autonomous
control.” Note that the functional diference between CPMS
and FPMS is highlighted in red.

(i) Te autonomous perception process is to monitor
trafc conditions, in which the sensing functions
actively collect environmental data and obtain
travelers’ statuses.

(ii) Te autonomous learning process includes learning
functions that extract valid information and
knowledge from sensed data (e.g., data fusion and

data analysis). Te diference between CPMS and
FPMS is that CPMS processes data and FPMS ag-
gregates local models uploaded from clients to train
the global model.

(iii) Te autonomous decision-making process gener-
ates personalized travel options according to the
learned knowledge. In general, both CPMS and
FPMS focus on multimodal and personalized route
generation.

(iv) Te autonomous control process produces highly
automated execution to fulfll the needs of users and
ensure the optimization of system operations. It
encompasses the responding capacities that enable
the implementation of chosen travel options while
providing valid information.

3.3. Multiviewed Architectures of CPMS and FPMS.
According to the components defned, the logical archi-
tecture (LA) and the physical architecture (PA) can be
defned for CPMS and FPMS. LA mainly describes the in-
formation interaction and data fow among function
modules and provides construction guidance for PA. PA
implements data fow in LA, to generate the architecture
with various physical objects (POs) and information in-
teractions. PAmaps the function modules in LA into the real
world and forms various information interactions and data
fow among diferent entities. In general, LA provides
construction guidance for PA; therefore, LA is a general
design, while PA is a detailed design.

3.3.1. Logical Architecture. LA illustrates the workfow be-
tween two connected functions with operation logic high-
lighted. Te fow is to exchange data between functions in
four kinds, namely, open data, consented data, desensitized
data, and operational data.

First, as shown in Figure 10, LAs of FPMS and CPMS
contain 4 layers, namely, the autonomous perception layer,
autonomous learning layer, autonomous decision-making
layer, and autonomous control layer, with 8 steps:

(i) Step 1: Data collection describes the data acqui-
sition process implemented in related sensing
devices; e.g., surveillance cameras collect license
plate recognition data.

PMS (Service)

ElementsFunctions

Logical Architecture

Physical Architecture

 Components design Architectures design
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Figure 6: Te relationship between component design and architecture design.
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(ii) Step 2: Data extraction describes the data extrac-
tion process, e.g., extracting meteorological in-
formation from environmental data.

(iii) Step 3: Data fusion describes the data fusion
process, e.g., aggregating multisource heteroge-
neous data and dispatching global trafc
condition data.

(iv) Step 4: Data analysis describes the data analysis
process that diferent participants communicate
with the server. In FPMS, instead of requiring raw

data, the server receives desensitized parameters
from clients and aggregates them for the fused
knowledge, e.g., the global model.

(v) Step 5: Option generation outlines the process
where the travel optimization models are used to
create multimodal routes.

(vi) Step 6: Option personalization outlines the pro-
cedure of producing customized travel options by
utilizing the optimal global travel selection models
to tailor global options based on user preferences.
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Figure 8: Elements of CPMS and FPMS.
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(vii) Step 7: Option execution outlines the option ex-
ecution process which assists travelers through
interactive user interfaces (UIs) during their trips.

(viii) Step 8: Option feedback outlines the option
feedback process which gathers user experiences
for ongoing enhancement of PMS.
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While most steps between FPMS and CPMS are similar,
there are diferences in the data analysis, option generation,
and option personalization steps. First, in FPMS, based on
the global trafc condition information, it trains the global
travel optimization models and transmits models to support
the generation of multimodal routes. However, CPMS
transmits unimodal route data directly to the server for route
planning. Second, in FPMS, based on the personal travel
preference information, it trains the local trip choice models
for each client and aggregates local models at the server for
the global choice models. After the global model is gener-
ated, it is transmitted to the client to support the generation
of personalized travel options. In CPMS, it requires all raw
data, e.g., travelers’ needs, historical trajectories, and system
running status, to the central server to train the global
model, which may sufer the issue of data leakages and
performance bottlenecks.

3.3.2. Physical Architecture. PA of FPMS and CPMS de-
scribes the information interaction among diferent POs, as
shown in Figure 11.Te PO refers to physical objects, such as
vehicles and infrastructures. POs of FPMS and CPMS can be

categorized into three categories: entity, module, and system,
according to their complexity and functionality:

(i) Entity: It is the basic PO and the primary in-
formation source in ATS, which interacts with the
internal functions provided by the system. In
general, an entity is usually a single element, such as
stakeholders and vehicles that exchange in-
formation with other POs. Entities in PA are
marked in yellow in Figure 11, mainly including (a)
stakeholders (e.g., travelers and users) consuming
the service and (b) vehicles (e.g., bus and metro)
supporting the service for the movement of users.

(ii) Module: It is the intermediate PO between entities
and systems, based on elements that provide simple
functionality embedded and exploited at the edges.
Modules in PA are marked in red in Figure 11,
mainly consisting of (a) roadside monitoring
equipment (RME) that collects dynamic trafc
situation data, (b) transit vehicle on-board equip-
ment (TVOBE) that collects transit vehicle situation
data and transit schedule information from the bus
and metro, and (c) the personal information device
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(PID) that enables travelers to access personalized
travel menus.

(iii) System: It is the compound PO, which comprises
multiple modules, entities, and corresponding
functions. Systems in PA are marked in blue in
Figure 11, mainly containing (a) weather service
system (WSS), which provides weather information,
(b) emergency management center (EMC), which
provides incident information, (c) maintenance and
construction management center (MCMC), which
provides work zone information, work plans, and
roadway maintenance status, (d) transit manage-
ment center (TSMC), which manages transit ve-
hicles and provides transit vehicle situation data and
transit schedule information, (e) trafc information
center (TIC), which serves as a data hub, (f ) trafc
management center (TMC), which manages mas-
sive and various vehicles on the road, and (g)
personalized recommendation center (PRC), which
optimizes the running of the system according to
the personal travel choice model.

In general, PA of FPMS and CPMS has diferent be-
haviors in communication between PIDs and PRC. In
centralized learning of CPMS, data are transmitted to the
server; however, in FPMS, model parameters are trans-
mitted. You et al. [7] proposed the FL life cycle in a dis-
tributed manner: (1) raw data are kept on-devices, and each
selected client locally trains a model and sends its model
parameters to the server, (2) the aggregation of the received
models for the global model is performed on the server, and
(3) distribution of the updated model to the clients. Since PA
of CPMS is designed based on the centralized mechanism,
PIDs need to transmit massive sensed data to PRC, as shown
at the bottom of Figure 11. Terefore, user privacy could be
exposed, and PRC computation workload could be full of
pressure. On the contrary, PA of FPMS can deal with data
security and privacy challenges through decentralized
mechanisms, as shown at the top of Figure 11. After re-
ceiving training instruction from PRC, PIDs can train the
local travel choice models and send them to PRC for ag-
gregation rather than directly exchanging personal data.
Ten, PRC returns the latest global travel choice model to
PIDs for another round of learning. Te above training
rounds will be repeated until the global model gets
converged.

4. Performance Evaluation

Te variations between CPMS and FPMS are (1) CPMS
processes data with centralized approaches and (2) FPMS
processes data with decentralized approaches. As the
workload is allocated to the participants rather than the only
server, FPMS is expected to have better performance in
communication and computation modules. Hence, this
paper defnes a common training task to reveal their per-
formance diferences by three indicators: (1) training time,
(2) resource consumption, and (3) average outage
probability.

4.1. Evaluation Setting. Tis study uses the publicly available
dataset Swissmetro [33], which is widely used in research on
choice-based estimation of individual travel preferences.
Specifcally, the data were collected in Switzerland con-
taining 10,729 samples on the trains between St. Gallen and
Geneva in 1998. Te dataset refects the travel choice on
options of the private car, Swissmetro, and train, and three
attributes (e.g., travel cost, time, and distance) were con-
sidered [20]. Moreover, Gibbs sampling [6] is applied, and
each personal information device (PID) is to train a model
analyzing user choice behavior.

One personalized recommendation center (PRC) and
200 PIDs are visualized and connected through the network
in the training procedure. In order to simulate a realistic
scenario in which users gradually engage with the service
until saturation is reached, we assume that the number of
clients and their local data will increase gradually and dy-
namically in each round. While the number of PIDs in-
creases from 1, the related data will increase as well in
a learning round. Te common constraints used in dynamic
data assignment, e.g., the increasing rate of the PID number
(Pmin and Pmax) and the growth rate of new data (Imin and
Imax), are defned in Table 1.

4.2.Evaluation Indicator. With the increase in PIDs and also
their assigned data, multiple iterations are necessary to run
the model with ideal accuracy to reach a stable state. Under
the circumstances, 200 rounds are executed, and the training
time, resource consumption, and average outage probability
at the fnal round are used as the evaluation index.

Te performance of computation and communication is
afected by the size of data samples in each learning round
[20]. i and k indicate PID and the round of iteration, and
Table 2 shows the description and value of the related
hyperparameters. For example, Vi,k is the sample size
contained by the ith PID in the kth learning round. Vsum,k is
the sample size utilized by PRC of CPMS, which is the sum
of Vi,k.

As FedAvg [34] is utilized, the aggregation process in
FPMS can be ignored in the computation phase, whose
computation complexity is 0. fi and fc are the CPU fre-
quency of the ith PID and PRC, respectively. Q and εc are the
training workload per sample and the computation co-
efcient [20]. According to the measures in [35], the energy
consumption and the computation time of the ith PID under

Table 1: Te common constraints.

Variables Description Value
Dmin Data (minimum amount) 30

Pmax
Minimum number of newly added PIDs per

round 1%

Nmin Primary data (minimum portion) 1%
Imin Minimum portion of new data per round 1%
Dmax Data (maximum amount) 80

Pmin
Maximum number of newly added PIDs per

round 5%

Nmax Primary data (maximum portion) 5%
Imax Maximum portion of new data per round 6%
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FMPS in the kth round and PRC under CPMS are expressed
as follows:

T
cmp,CPMS
k,PRC �

QVsum,k

fc

,

E
cmp,CPMS
k,PRC � εcQVsum,kf

2
c ,

T
cmp,FPMS
i,k,PID �

QVi,k

fi

,

E
cmp,FPMS
i,k,PID � εcQVi,kf

2
i .

(1)

pi, bi, gi, and no denote transmit power, bandwidth,
channel gain of each client, and the power spectral density of
the Gaussian noise, respectively. We assume that bi is al-
located uniform bandwidth bi � B/ncur, where ncur repre-
sents the number of currently participated ones. Moreover,
the channel gain is modeled through combined path loss
and shadowing [36], e.g., gi(dB) � 10 log10 K −

10c log10di − ψdB, where c is the path loss exponent,
ψdB ∼ N(0, σ2dB) is shadowing, di is the distance to the
server, and K represents a unitless constant. Te uplink
transmission capacity of each client is

ci � bilog2 1 +
pig

2
2

bino

 ,∀i ∈ N. (2)

As for the communication phase, the size of the model
parameter to be uploaded, the record size of simple, the
communication coefcient, and the wireless bandwidth are
denoted as Sm, Ss, εt, and B, respectively. According to
measures in [37], the energy consumption E and the
communication time T of FPMS and CPMS in the kth round
are expressed as follows:

T
com,CPMS
i,k,PID �

Ss Vi,k − Vi,k− 1 

ci

,

E
com,CPMS
i,k,PID �

2εtSs Vi,k − Vi,k− 1 

ci

2 ri/B( )− 1
,

T
com,FPMS
i,k,PID �

Sm

ci

,

E
com,FPMS
i,k,PID �

2εtSm

ci

2 ri/B( )− 1
.

(3)

In conclusion, the energy consumption E and total
time T of FPMS and CPMS per round can be expressed as
follows:

T
sum,CPMS
k � T

cmp,CPMS
k,PRC + max

i∈n
T
com,CPMS
i,k,PID ,

E
sum,CPMS
k � E

cmp,CPMS
k,PRC + 

n

i

E
com,CPMS
i,k,PID ,

T
sum,FPMS
k � max

i∈n
T
cmp,FPMS
i,k,PID + T

com,FPMS
i,k,PID  ,

E
sum,FPMS
k � 

n

i

E
cmp,FPMS
i,k,PID + E

com,FPMS
i,k,PID .

(4)

As for the outage probability during communication,
since the server collects data from clients with diferent
volumes, and the growth of clients is at diferent rates, trafc
congestion in the network may lead to upload outages.
Hence, the average upload outage probability in the 200
rounds is utilized as the evaluation indicator.

Let si mark the size of the data to be transferred.
Noteworthy, since the model parameters are uploaded in FL,
si,FL � Sm, while the original data are uploaded in CL;
therefore, si,CL � Ss, in which Sm and Ss are the size of model

Table 2: Te hyperparameters.

Variables Description Value
Vi,k Sample size of the ith PID under FPMS According to the evaluation setting
Vsum,k Sample size of the PRC under CPMS According to the evaluation setting
Q Training workload per sample 10
εc Computation coefcient 1
B Bandwidth 1MHz
εt Communication coefcient 50
pi Transmit power 0 − 1w (0 − 30 dBm)

no Power spectral density of the Gaussian noise − 174 dBm/HZ
K A unitless constant − 31.54
Sm Model size 1 kb
Ss Data size per sample 7 kb
fc CPU frequency of the PRC 0.5–2.5 GHz
fi CPU frequency of the ith PID 3GHz
c Path loss exponent 3
di Distance to server 0–500m
σ2dB Covariance of channel shadowing 3.65
τmax Maximum delay 0.5ms
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parameters and data per sample, respectively. We assume
that the uplink transmission is lower than the maximum
delay τmax; then, the minimum transmission rate is

ri,min �
si

τmax
. (5)

As a result, if the transmission capacity ci is lower than
the minimum transmission rate ri,min, the transmission
outage will occur with a certain probability [36]:

qi � 1 − Y
pi

σdB

 , (6)

where Y(x) � 1/
���
2π

√
exp(− 1/2Z2)dz and ρi ≜ 10 log10

(2ri,min/bi − 1)bino − [pi]dB − 10 log10 K + 10c log10di.

4.3. Evaluation Results and Discussion. According to the
above confguration, the evaluation is conducted, and related
results about training time, resource usage, and service
outage are analyzed and discussed.

4.3.1. Training Time. Te evaluation results of training time
about computation and communication in CPMS and FPMS
are illustrated in Figure 12. Since FPMS can train the local
model by using the vacancy resources of each PID and
transmitting only model parameters, Figures 12(a) and 12(b)
show that FPMS spends less time in computation and
communication, compared to CPMS. Moreover, the com-
munication time is much lower than the computation time;
thus, the sum of training time for FPMS is much lower than
the sum for CPMS as well, which can be seen in Figure 12(c).

4.3.2. Resource Consumption. Figure 13 demonstrates the
results of resource consumption about computation and
communication in CPMS and FPMS. Similarly, FPMS can
separate the training tasks and assign them to each PID. Such
that the workload of the server can be signifcantly reduced
compared to CPMS, which only consumes resources in PRC.
Hence, FPMS consumes fewer resources in computation and
communication, compared to CPMS, as illustrated in
Figures 13(a) and 13(b). Although the communication
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Figure 12: Evaluation results of training time for FPMS and CPMS.
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Figure 13: Evaluation results of resource consumption for FPMS and CPMS.
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consumption of CPMS drops of as less raw data are to be
transmitted along with the growth of the learning round,
FPMS can still maintain its advantages to optimize the
utilization efciency of resources, as shown in Figure 13(c).

4.3.3. Average Outage Probability. Te average outage
probability is also used as an indicator for CPMS and FPMS,
respectively. As shown in Figure 14, since FPMS only
transmits model parameters through the network, it requires
much less bandwidth and thus has a low probability of
outage only when it has extremely low latency constraints
(0.05ms) and the maximum number of clients. Moreover,
this excellent performance does not diminish with an in-
crease in data, which corresponds to the demand for low
latency and high reliability of PMS. As the new data steadily
increase per round, CPMS occupies more bandwidth
gradually, and correspondingly, the outage probability in-
creases. Ten, the outage probability of CPMS will reach the
peak and lastly decrease to the bottom, as all data have been
transmitted.

In summary, FPMS can not only outperform CPMS with
a decrease in resource consumption and training time but
also be able to serve more clients requiring seamless con-
nections. Such a result reveals the advantages of FPMS in
utilizing service resources efciently and efectively to
support PMS with sensitive data protection.

5. Conclusion

Te paper presents federated PMS (FPMS), which can
provide dynamic and personalized services with the in-
tegration of multimodal travel options and real-time trafc
situations under the regulation of user privacy for ATS.
Trough the architecture design (logical architecture and
physical architecture) and components design (elements and
functions), the diferences between CPMS and FPMS are
summarized to demonstrate how FPMS can behave better
than CPMS to support travelers in a collaborative and
privacy-preserving manner. Moreover, an extensive

evaluation between CPMS and FPMS is conducted by an-
alyzing their performances according to three indicators,
namely, training time, resource consumption, and average
outage probability. Compared with CPMS, FPMS can spend
less time and resources on computation and communication
and maintain better communication stability.

Based on the proposed architecture, FPMS will be
implemented with a multimodal data integration mecha-
nism to combine public and private data in diferent res-
olutions in the future [20]. In addition, an FL-based travel
recommendation algorithm will be proposed to coordinate
various heterogeneous devices in an asynchronous manner
to overcome the collaboration obstacles among clients.
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