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Te operational aircraft maintenance routing problem (OAMRP) plays a critical part in producing considerable cost reductions
for airlines, since its solution directly infuences the number of operating leased aircraft. To reduce the quantity of required
aircraft, adopting cruise speed control in OAMRP is a good strategy. In this paper, we investigate the OAMRP with cruise speed
control. Te objective is to minimize the required quantity of aircraft by fnding the optimal aircraft routes through cruise time
optimization. Te focus is on solving two issues simultaneously: (i) optimization of cruise times and (ii) determination of aircraft
routes. Since the combination of two intricate sets of decisions poses signifcant methodological challenges, the difculty lies in
how to efciently solve it. Accordingly, the goal of this study is twofold: (i) to design a preprocessing step to reduce the network
size and (ii) to develop an improved ant colony optimization (IACO) algorithm with a new state transition mechanism to provide
the guidance for cruise times optimization and a new pheromone updating mechanism to enhance the search efciency and
precision. Using data from the Bureau of Transportation Statistics (BTS), we demonstrate the computational efciency of the
preprocessing step and the IACO algorithm.

1. Introduction

1.1. BackgroundandMotivation. Te airline scheduling plan
plays an indispensable role in both the smooth operation and
market competitiveness of airlines [1–3]. Given its large size
and high complexity, it has been disaggregated into four
sequentially solved stages in practice. Tey include the fight
scheduling problem (FSP), the feet assignment problem
(FAP), the aircraft maintenance routing problem (AMRP),
and the crew scheduling problem (CSP) [4–9]. Among them,
we are particularly interested in the AMRP, which seeks to
identify the assignment of available aircraft to fy full range
of fights while simultaneously complying with maintenance
requirement. Tese requirements necessitate that an aircraft
receives a maintenance check before exceeding the limita-
tion for accumulated fying hours, takeofs, and fying days.
Tere are four types of maintenance checks, denoted by the
letters A, B, C, and D, respectively, each with a diferent
scope, frequency, and duration. A-checks are taken into

account in the AMRP because they are the most frequently
performed [4–9]. Inefcient fight connection or in-
appropriate maintenance arrangement may cause un-
necessary ground time for an aircraft, which can be
considered as a loss for an airline. Hence, research and
development on the AMRPwith the objective of maximizing
aircraft utilization have attracted increasing attention.

Notably, the importance of improving aircraft utilization
is becoming more prominent in the context of the growing
trend of aircraft leasing. It is known that purchasing an
aircraft requires huge up-front capital investment. More-
over, airlines must cover the depreciation costs during the
useful life of an aircraft. To reduce the fnancial burden,
airlines have shifted to aircraft leasing as their main channel
for feet acquisition [10–12]. In the past decades, the share of
the leased aircraft has increased exponentially from 5% in
1970 to 51% in 2021 [13]. Additionally, it is anticipated that
the global aircraft leasing market will even reach a value of
29,580,000,000$ in 2029 [14].
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Among all types of aircraft lease, the operating lease is
the most favourable type for airlines due to its operational
fexibility [11, 15]. It is adopted to acquire additional feet
capacity for a short period of time, thereby enabling the feet
composition and size to be managed closely to the actual
operation [10]. In this connection, airlines can make more
accurate aircraft leasing decisions by consulting their op-
erational schedules. Based on interviews with employees of
low-cost airlines (i.e., China West Air and Spring Airlines)
whose feet is predominantly on operating leases, the
number of leased aircraft is determined by the required
quantity of aircraft to cover all fights in an airline’s network,
which is decided in the operational AMRP (OAMRP). It is
worth noting that the rental costs of operating lease are
higher when compared with other leasing alternatives and
increase with the rising demand for operating leases in the
market [16], which lead to further shrunk of the already low
proft margin of airlines. Improving the usage of aircraft and
thereby reducing the quantity of required aircraft can sig-
nifcantly cut airline costs, which motivates the authors to
conduct this research.

In this paper, we investigate a new variant of the
OAMRP, i.e., the OAMRP incorporating cruise speed
control, which was frst proposed by Zhang et al. [17] to
decrease the required quantity of aircraft. By changing cruise
times of fights in the OAMRP, the unconnectable fights can
be transformed into connectable ones, resulting in a larger
solution space and hence the opportunity for more efcient
routing. Nevertheless, the combination of two intricate sets
of decisions, namely, cruise time decisions and aircraft route
decisions, poses signifcant methodological challenges.

Since the AMRP is NP-hard, heuristics and meta-
heuristics are much more preferred [18–31]. Among these
approaches, ACO is particularly appropriate for the OAMRP
in terms of two considerations. On the one hand, consid-
ering the source nodes and the sink nodes on the connection
network as the nests and the food resources, respectively,
searching for optimal aircraft routes is quite similar to the
foraging behavior of ants. On the other hand, the OAMRP is
a heavily constrained problem. As ACO is a constructive
meta-heuristic, all constraints can be easily satisfed during
the solution construction phase, making coding of ACO for
the OAMRP much more straightforward. As a result, ACO
algorithms have been widely and successfully applied in
various variants of the AMRP [6, 7, 32, 33]. Despite the
efciency of ACO, applying the traditional ACO in the
OAMRPwith cruise speed control is insufcient and unwise.
Te conventional ACO selects the next covered fight leg
only utilizing the attractiveness of fight connections, while
ignoring the information regarding the individual fight leg
(i.e., fexible cruise times), which fails to optimize the cruise
times. Moreover, the performance of the conventional ACO
decreases dramatically in tackling large-scale problems. To
model the fexible cruise time, each fight leg is allocated
a cruise time window, within whichmultiple copies of the leg
are positioned at a discretized interval. Flight leg copies and
thus additional fight connections result in an explosion in
the problem size, which poses greater challenge for the
conventional ACO.

Terefore, we develop an efective solution method
including a preprocessing step for reducing the network
size and the improved ACO (IACO) approach to tackle the
problem. Computational experiments are performed to
demonstrate the efciency of the proposed solution
method.

1.2. Main Contributions and Results. Te following is
a summary of the primary contributions and results:

(1) A preprocessing step is designed to decrease the
exploded size of the network caused by fexible
cruise times.

(2) A new ACO algorithm is applied to the domain of
the OAMRP, which can tackle the proposed problem
efciently. Te improvements over the traditional
ACO algorithm are described as follows:

(i) Firstly, a new state transition strategy is adopted.
In addition to the heuristic information on arcs,
the heuristic information associated with the
fight connection opportunities on nodes is
incorporated into the state transition rule. Ac-
cordingly, the priority will be given to the nodes
with improved fight connection opportunities,
allowing for maximum utilization of the cruise
time compression.

(ii) Secondly, a novel global pheromone updating
mechanism is applied. Tree new multipliers
indicating three new strategies are applied to the
term of pheromone increments so that the ef-
fcient communication among ants can be
achieved.Te frst strategy, inspired by the study
of Naimi and Taherinejad [34], is used to de-
crease the pheromone increments from the start
point to the ending point of a tour, as the
freedom of fights selection is gradually re-
stricted during the process of the route con-
struction. Ten, to better balance the trade-of
between the exploration and the exploitation,
the pheromone increments in each iteration are
associated with current number of iterations
performed, which is achieved by the second
strategy. At last, to provide more precise di-
rective information for subsequent searches, we
distinguish the contribution of each route to the
solution. Hence, the third strategy gives more
pheromone increments on the arcs in the route
covering more fight legs.

(iii) Finally, the pheromone structure and the heu-
ristic function are modifed to bemore problem-
specifc. Firstly, two diferent pheromone
structures are set for maintenance arcs and
nonmaintenance arcs, respectively. Secondly, an
objective-oriented heuristic function, which
gives the priority to the feasible fight connec-
tions brought by cruise time compression, is
employed.
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By conducting the experiments using the data from BTS,
we frst show that the preprocessing step decreases the
amount of nodes on the connection network by approxi-
mately 70%, thus proving its advantage. Ten, the superior
performance of the IACO algorithm is testifed. It can
quickly provide the exact solutions for small-size test cases
and reach the best upper bound provided by the CPLEX
solver for medium and large-size test cases. Moreover, it
remarkably surpasses the existing promising meta-heuristic
approaches in terms of solution quality, i.e., the conventional
ACO, simulated annealing (SA), and genetic algorithm
(GA), while the computation time is slightly longer in
medium and large-size test cases, which is acceptable, when
compared to the conventional ACO and SA.

1.3. Structure of Tis Study. Section 2 reviews the literature
regarding the OAMRP and cruise speed control. Section 3
provides the problem statement in detail. Section 4 gives
mathematical model formulation. Te solution method is
presented in Section 5. In Section 6, the data sets, experi-
ments, and computational results are described. Finally,
Section 7 discusses the conclusion and future research.

2. Literature Review

Recently, there has been a rich set of literature on the
OAMRP. In this section, we provide a summary of the most
related works in respect to the objective and the solution
method.

In terms of the objective, many researches have been
conducted on the AMRP with the intention of lowering the
number of used aircraft or unutilized fight hours, which can
signifcantly enhance aircraft utilization. Sarac et al. [35]
investigated the daily OAMRP, considering the goal of re-
ducing the overall daily maintenance costs. Because quanti-
fying the daily maintenance costs is challenging, the reduction
of the total unutilized fying time was chosen as a surrogate
objective. Tis objective was also investigated in the studies of
Başdere and Bilge [4] and Al-Tani et al. [5]. Başdere and
Bilge [4] discriminated between the critical and noncritical
aircrafts to reduce the amount of decision variables in the
model formulation. Al-Tani et al. [5] constructed a weighted
directed graph, in which an aircraft node served as the
representation for an aircraft. Tus, a more compact OAMRP
model was developed. In addition to the goal of decreasing the
unutilized fying hours, Cui et al. [8] optimized the number of
used aircraft for the frst time in theOAMRP.However, in this
study, the fxed fying time during route construction reduced
the options for fight connections, thus afecting the im-
provement in aircraft utilization. To overcome this limitation,
in the study of Zhang et al. [17], they adopted the strategy of
cruise speed control during the construction of aircraft routes.
Computational experiments demonstrate that aircraft utili-
zation was improved signifcantly at an expense of a slight
increase in the fuel-burn related costs. However, the ACO-
based algorithm with limited improvement over the tradi-
tional ACO was employed, leading to lengthy computational
times and inferior results.

Regarding the solution method, the ACO algorithm has
been adopted by the growing literature to efciently deal
with the OAMRP. Eltoukhy et al. [6] studied the OAMRP
with fight delay consideration (OAMRPFD). To represent
the nonpropagated delay more explicitly, this study con-
sidered several potential scenarios rather than relying on the
expected value. Hence, a novel scenario-based stochastic
framework for the OAMRPFD was developed. Although
considering various scenarios greatly enlarged the problem
size, the ACO algorithm could efectively solve the proposed
model. Eltoukhy et al. [33] developed a bilevel nested ACO
algorithm so that a Stackelberg game bilevel optimization
model could be solved. One specifc ACO dealt with the
individual level. Te dependence between the two levels of
the ACO was captured by the feedback of decision variables
between two levels. Te results proved the efciency of the
proposed ACO algorithm. Eltoukhy et al. [32] incorporated
the turnaround time reduction approach into the AMRP
model to achieve robustness, and the ACO algorithm was
deployed to solve it. Bulbul and Kasimbeyli [9] defned the
big-cycle maintenance routing problem, which was solved
by the hybrid algorithm combining Gasimov’s modifed
subgradient algorithm and the ACO algorithm. Herein, the
ACO was adopted to tackle the subproblem, which mini-
mized the sharp augmented Lagrangian function. Tey
found that ACO is not only simple to implement but also
easy to incorporate with other algorithms.

3. Problem Formulation

In this section, the OAMRP with cruise speed control is
described frst, followed by the presentation of a modifed
connection network that serves as the foundation for the
model formulation and fnally the formulation of a novel
MILP model for the proposed problem. All notations used
are summarized as follows for ease of reference.

Sets

i, j, l ∈ L: set of fight legs
k ∈ Ki, n ∈ Kj, v ∈ Kl: set of copies for fight leg i, j, and
l, respectively
t ∈ T: set of aircraft
m ∈M: set of maintenance stations
c ∈ 1 . . . . . . C{ }: number of maintenance checks
a ∈ A: set of airports

Parameters

FTik: fying time of the kth copy of fight leg i.
crsik: cruise time of the kth copy of fight leg i.
Skn

ijt: idle time between the kth copy of fight leg i and the
nth copy of fight leg j successively operated by an
identical aircraft t.
FTmax: maximum allowable fying hours since the last
maintenance check.
TOmax: maximum allowable number of takeofs since
the last maintenance check.
Cdaily: aircraft daily usage cost.
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Cidle: unit idle time cost.
d: planning horizon.
AC: the aircraft type.

3.1. ProblemDescription. Given a set of fight legs L and a set
of aircraft of an identical type T, our study tackles the aircraft
routing problem on a four-day basis, considering the
maintenance requirements and the fexible fight fying
times. In the problem, the reason for adopting a four-day
planning horizon is two-fold: (i) it is more practical than
a daily horizon, as it allows for daily fight schedule varia-
tions to accommodate fuctuating passenger demand and (ii)
it is less sensitive to disturbances than a weekly horizon [7].
Te maintenance requirements are mandated by the Federal
Aviation Administration (FAA) and specify that each air-
craft must obtain an A-check at a maintenance station before
its cumulative fying hours, cumulative number of takeofs,
or cumulative number of fying days reach the maximum
values. In contrast to the traditional OAMRP study, each
fight leg’s cruise time is allowed to be adjusted within
a specifed range using cruise speed control. A typical fight
fying time is made up of two parts: cruise and noncruise
time. In this regard, fexible fight fying time is taken into
account for each fight leg.

Te objective of this study is to create aircraft routes with
high usage of aircraft and thus fewer required aircraft using
cruise speed control. Te rationale behind is interpreted as
follows: For two fights, which can be covered sequentially by
the identical aircraft, the latter one’s departure time and the
former one’s arrival time must be separated by enough time.
Terefore, there is a lower bound for the departure time of
the latter fight. However, this lower bound can be adjusted
by changing the former fight’s arrival time, which can be
accomplished by cruise speed control. Tus, some infeasible
fight connections can be changed into feasible ones,
allowing more new routes with higher aircraft utilization to
be generated.

3.1.1. Numerical Example. Tis section provides a numerical
example to demonstrate the problem defnition and the
model mechanics. First, we present a fight schedule com-
prised of 12 fight legs in Table 1 and the turnaround times
for involved airports in Table 2. Each fight leg has six
features, including departure airport, destination airport,
departure time, arrival time, fying time, and cruise time. To
cover this fight schedule, four aircrafts are required, as seen
in Figure 1 where the routes of diferent aircrafts are
depicted by lines of diferent colours. When incorporating
cruise speed control, it is assumed that the noncruise time is
20minutes and the cruise time can be reduced to a maxi-
mum of 85% of the planned values. In this context, it is
intuitive to observe that the required number of aircraft
decreases from 4 to 3, which is shown in Figure 2, and

correspondingly, the changes in cruise time, arrival time,
and fying time of each fight leg are displayed in Table 3.
Accordingly, with this example, the positive impact of
fexible cruise times on aircraft utilization improvement has
been illustrated.

3.2. Network Structure. In the feld of aircraft routing, the
connection network structure has been widely used [35–37].
Based on the traditional connection network, we propose
a modifed connection network to present the AMRP in-
corporating cruise speed control. Tis connection network,
shown in Figure 3, is comprised of two main elements, i.e.,
the node set and the arc set, which are created as follows:

Te node set consists of the following:

(i) o, s{ } where o and s represent the dummy source
node and the dummy sink node, respectively.

(ii) i1, ..., ik, ..., j1, ..., jn, ...  where node ik represents
the kth copy (k ∈ Ki) of fight leg i (i ∈ L). Referring
to Marla et al. [38], the fexible cruise time is
modelled as below. First, a cruise time window is
assigned to each fight leg i defning the range within
which its cruise time can be shifted. Ten, several
copies are placed at a predetermined interval within
this time window. Each copy represents a cruise time
option, and only one copy is allowed to be chosen for
each fight leg during route construction.

Regarding the arc set, it includes the following:

(i) Flight connection arcs (ik, jn) which are designed
for an aircraft to begin a route connect two fight leg
copies successively or terminate a route.

(ii) Maintenance arcs (jn, lv) which are used to schedule
a maintenance operation between two successive
fight leg copies.

From the modifed connection network, it can be ob-
served that modelling fexible cruise times brings a large
number of additional nodes and arcs, thereby signifcantly
enlarging the network size.

3.3. Model Formulation. Using the aforementioned nota-
tions and the modifed connection network as a basis, we
defne the following decision variables and mathematical
model:

Decision Variables

σik σik � 1 if the kth copy is chosen for the fight leg i

and otherwise σik � 0.
xkn
ijtc ∈ 0, 1{ }xkn

ijtc � 1 if the aircraft t operates the kth
copy of fight leg i and the nth copy of fight leg j

successively before receiving the cth maintenance
check, and otherwise xkn

ijtc � 0.
ykn
ijtc ∈ 0, 1{ } ykn

ijtc � 1 if the aircraft t operates the kth
copy of fight leg i and the nth copy of fight leg j
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Table 1: A fight schedule.

Flight From To Departure time Arrival time Flying time Cruise time
f1 PHL MSP 08:30 10:31 121 101
f2 MSP PHL 12:20 15:56 216 196
f3 PHL IAH 06:00 08:59 179 159
f4 IAH PHL 10:30 14:56 266 246
f5 PHL CMH 16:00 17:37 97 77
f6 PHL DCA 15:10 16:18 68 48
f7 DCA CLT 18:30 20:16 106 86
f8 PHL CVG 07:00 08:53 113 93
f9 CVG PHL 13:31 15:20 109 89
f10 PHL BUF 16:20 17:46 86 66

Table 2: Turnaround time of airports.

Airport Turnaround time
PHL 41
MSP 51
IAH 50
DCA 46
CVG 40

06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

IAH
MSP
CLT

DCA
PHL
BUF

CVG
CMH

19:00 20:00 21:00

f1

f2f3
f4

f5

f6

f7

f8 f9

f10

Route 1: f1 – f2
Route 2: f3 – f4 – f5

Route 3: f6 – f7
Route 4: f8 – f9– f10

Figure 1: Te aircraft routing schedule without considering cruise speed control.

06:00 07:00 08:00 09:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00

IAH
MSP
CLT

DCA
PHL
BUF

CVG
CMH

19:00 20:00 21:00

f1

f2f3
f4

f5

f6

f7

f8 f9

f10

Route 1: f1 – f2 – f10
Route 2: f3 – f4 – f6 – f7
Route 3: f8 – f9 – f5

Figure 2: Te aircraft routing schedule after incorporating cruise speed control.
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successively and receives the cth maintenance check in
between, and otherwise ykn

ijtc � 0.

min 
j∈L


n∈Kj


t∈T


c∈C

Cdaily x
n
ojtc d + 

i∈L∪ o{ }


k∈Ki


j∈L∪ s{ }


n∈Kj
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c∈C

S
kn
ijt x

kn
ijtc + y

kn
ijtc Cidle + 

i∈L


k∈Ki

σikF
AC
ik crsik( 

(1)


k∈Ki
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kn
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FTjny
kn
ijtc + 
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k∈Ki

FTjnx
kn
ijtc+1 ≤FTmax, ∀t ∈ T,∀c ∈ C,
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k∈Ki
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kn
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x
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ijtc ≤TOmax, ∀t ∈ T, c � 1,

(5)


j∈L


n∈Nj


i∈L


k∈Ki

y
kn
ijtc + 

j∈L


n∈Nj


i∈L


k∈Ki

x
kn
ijtc+1 ≤TOmax, ∀t ∈ T,∀c ∈ C,

(6)


i∈L


k∈Ki


j∈L


n∈Nj


c∈C

y
kn
ijtc ≥ 1, ∀t ∈ T,

(7)

σik ∈ 0, 1{ }, ∀i ∈ L,∀k ∈ Ki, (8)

Table 3: Te comparison of fight features with and without cruise speed control.

Flight Arrival time Flying time Cruise time
Incorporating cruise speed control

Arrival time Flying time Cruise time
f1 10:31 121 101 10:31 121 101
f2 15:56 216 196 15:31 191 171
f3 08:59 179 159 08:59 179 159
f4 14:56 266 246 14:21 231 211
f5 17:37 97 77 17:37 97 77
f6 16:18 68 48 16:18 68 48
f7 20:16 106 86 20:16 106 86
f8 08:53 113 93 08:53 113 93
f9 15:20 109 89 15:11 100 80
f10 17:46 86 66 17:46 86 66

flight connection arc

source node

i ∈ L, k ∈ Ki i2i1 ik..... .....j2j1 jn

m maintenace arc

o

s
sink node

l1 l2 lv

m ∈ M

l ∈ L, v ∈ Kl

j ∈ L, n ∈ Kj

.....

Figure 3: Te modifed connection network.
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x
kn
ijtc, y

kn
ijtc ∈ 0, 1{ }, ∀i, j ∈ L,∀k ∈ Ki,∀n ∈ Kj,∀t ∈ T,∀c ∈ C. (9)

In the model, we identify the following: (i) the cruise
time for each fight leg, (ii) the allocation of the
available aircraft to cover all the fight legs, and (iii) the
maintenance arrangement for each aircraft. As a result,
three decision variables, i.e., σik, xkn

ijtc, and ykn
ijtc, repre-

senting the nodes, fight connection arcs, and main-
tenance arcs, respectively, are defned.

3.3.1. Objective Function. Te purpose of this study is to
generate aircraft routes with increased usage of the aircraft by
considering the fexible cruise times during routes con-
struction. However, additional fuel consumption expenses
will be induced. Terefore, a critical trade-of between the
increased usage of aircraft and the extra fuel consumption
expenses should be made. To quantify aircraft utilization, we
consider aircraft usage costs and idle time costs, as increased
aircraft utilization results from less idle times of aircraft and
fewer aircraft required to cover full range of fight legs. When
an aircraft fies two fight legs consecutively, there exists
a ground time in between the arrival of the frst fight leg and
the departure of the second fight leg. Tis ground time
consists of a turnaround time and an idle time. Te turn-
around time is defned as the necessary time for a landed
aircraft to be prepared for its next fight leg.Te idle time of an
aircraft is the time it spends waiting to operate the next fight
leg, which is a waste of a valuable resource. To calculate the
idle time costs, we multiply idle times with the unit idle time
cost. Aircraft usage costs refer to the expenses induced when
the corresponding aircraft is used, which include the fxed
operating costs and the lost opportunity cost [39]. As a result,
the objective function, explained by equation (1), includes
three terms: aircraft usage costs (the frst term), idle time costs
(the second term), and fuel consumption expenses (the third
term). Herein, how to estimate the fuel consumption expenses
(i.e., FAC

ik (crsik)) is described as follows:

(1) Fuel Consumption Expenses. Te infuence of cruise time
on fuel consumption is investigated by employing the fuel
fow model of the cruise stage developed by EURO-
CONTROL [40]. For the kth copy of fight leg i operated by an
aircraft t of type AC, considering its cruise time to be CTik,
the fuel consumption in kg can be calculated as follows:

FC
AC
ik crsik(  � c

ik,AC
1

1
crsik

  + c
ik,AC
2

1
crsik( 

2
⎛⎝ ⎞⎠

+ c
ik,AC
3 crsik( 

3
+ c

ik,AC
4 crsik( 

2
,

(10)

where cik,AC
1 � (1/2)/ · Cf1 · Cfcr · CD0,CR · ρ · ws · cdik

2,
cik,AC
2 � (1/2)/ · Cf1 · Cfcr ((CD0,CR · ρ · ws · cdik

3)/Cf2),
cik,AC
3 �((1/2) · Cf1 · Cfcr · (4 · CD2,CR · ma2 · g2)/ρ · ws · cos

(ϕ)2 · cdik
2), and cik,AC

4 � (1/2) · Cf1 · Cfcr(·(4 · CD2,CR

·(ma2 ·g2)/Cf2 · ρ · ws · cos(∅)2 ·cdik
2). Herein, Cf1, Cf2,

Cfcr, CD0,CR, and CD2,CR are the fuel consumption co-
efcients from the Base of Aircraft Data (BADA) user
manual [40]. ρ, g, ϕ , ws, ma, and cdik refer to the air density
of the given altitude (kg/m3), gravitational acceleration
(m/s2), bank angle (degree), wing surface area (m2), mass of
the aircraft (kg), and the distance (m) fown at the cruise
stage. According to EUROCONTROL [41], 3.15 kilograms
of CO2 can be emitted by one kilogram of fuel burnt.
Consequently, fuel consumption expenses can be defned as
follows:

F
AC
ik crsik(  � Cfuel + εCco2

 FC
AC
ik crsik( , (11)

where Cfuel is the unit fuel price, Cco2
is the unit CO2

emission cost, and ε is the constant associated with CO2
emission.

3.3.2. Constraints. Te constraints defned in this model
involve the traditional AMRP constraints and the problem-
specifc constraints. To highlight the novel features of the
proposed problem, their relevant constraints are discussed
as follows, while the details of traditional AMRP constraints
are provided in the supplementary material.

To model the fexible cruise times, several copies, each
with a diferent cruise time, are allocated to a fight leg. For
each fight leg, only one copy is allowed to be selected so that
its cruise time can be determined.Tis requirement is defned
by the constraint (2). Besides, constraints (3)–(7) defne the
three maintenance requirements considered in this study.
Tey denote that an aircraft must receive amaintenance check
prior to (i) exceeding the maximal fying time (constraints (3)
and (4)), (ii) exceeding the maximal number of takeofs
(constraints (5) and (6)), and (iii) exceeding the maximal
number of days (constraint (7)). Herein, it is worth noting
that constraint (7) ensures that an aircraft must receive at
a minimum of one maintenance check during the planning
horizon, i.e., 4-day planning horizon; thus the maintenance
requirement of one visit every four days, i.e., maximal number
of days, is satisfed. For each aircraft, the accumulated amount
of fying time, takeofs, and fying days are assumed to be 0 at
the beginning of the planning horizon.

At last, we defne the decision variables’ domain in
constraints (8) and (9).

4. Solution Method

Te network size becomes enormous after modelling the
fexible cruise time. Section 5.1 introduces a preprocessing
step to simplify the network’s structure, and then Section 5.2
presents the IACO algorithm to tackle the presented model.

4.1. Preprocessing. Te preprocessing step simplifes the
network’s structure by removing the redundant nodes. In
our study, the fight connection opportunities are improved
at the expense of more fuel consumption expenses incurred.
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However, for the same fight leg, the nodes incurring more
fuel consumption expenses may not necessarily bring more
fight connection opportunities. Te preprocessing step
focuses on these nodes. To be specifc, nodes of the same
fight leg are compared from two aspects: the number of
connectable nodes, denoting its fight connection oppor-
tunities, and the degree of cruise time compression, denoting
the extra fuel consumption expenses incurred. Among all
nodes of the same fight leg, the nodes that cannot increase
the number of connectable nodes and have larger degree of
cruise time compression will be removed.Tis preprocessing
step can achieve large network size reduction without af-
fecting the connection network’s characteristics, particularly
when copies are placed in a fner interval.

4.2.An IACOAlgorithm. TeACO, as originally designed by
Dorigo, was encouraged by the behaviour of real ant colonies
searching for food. An ant deposits one special type of se-
cretion, called pheromone, on the way from their nest to
food source, and in turn this pheromone trail is used to guide
the successor ants. By this indirect but useful communi-
cation form, positive feedback can be achieved, and thereby
the shortest path between the nest and the food resource can
be found. In the ACO algorithm, artifcial ants mimic this
foraging behaviour. Tey walk on a weighted and con-
strained graph, over which the combinatorial optimization
problem is modelled. Ten, they identify the optimal paths
based on the pheromone trails that they laid to record the
promising searching space and the problem-dependent
heuristic information.

In our study, an IACO algorithm is developed. Next, we
will explain the main elements of the proposed algorithm.
Te notations required for the IACO are defned as follows:

Attrikjn: the attraction of arc (ik, jn) for an ant
q0: a predefned parameter (0< q0 < 1)
q: a random number (which is uniformly distributed in
the range of 0 to 1)
ρ: the parameter that controls the evaporation rate
(0< ρ< 1)
τikjn: the pheromone trail deposited on arc (ik, jn)

ηikjn: the heuristic information on arc (ik, jn)

φjn: the heuristic information on node jn

α, β, c: the parameter to adjust the relative infuence of
τikjn, ηikjn, and φjn

∆τbestikjn: the pheromone increments on arc (ik, jn) which
is contained in the current best-found solution at each
iteration
Nik: set of feasible nodes which can be connected with
node ik.

4.2.1. State Transition Mechanism. When an ant is on the
node ik, the following state transition mechanism will be
utilized to select the next node jn:

f(x) �
arg maxjn∈Nik

Attrikjn , if q≤ q0,

pikjn, if q> q0.

⎧⎨

⎩ (12)

When q is less than the predefned parameter q0, the ant
will choose the node jn with the biggest Attrikjn as the next
node. Otherwise, the ant will select the next node based on
the probability pikjn defned by the formula, which is as
follows:

pikjn �
Attrikjn

dw∈Nik
Attrikdw

if jn ∈ Nik. (13)

And the attraction value of arc (ik, jn) for an ant is as
follows:

Attrikjn � τikjn 
α
ηikjn 

β
φjn 

c
. (14)

In the conventional ACO algorithm, an ant in-
crementally constructs solution on the graph, where all the
nodes must be visited at least once and only once. Ac-
cordingly, only the attractiveness of arcs is considered in the
state transition mechanism and the sequencing is the only
issue to be concerned. However, in our study, due to the
existence of the fexible cruise time, each fight leg has several
leg copies and only one copy is allowed to be chosen, im-
plying that not all the nodes on the modifed connection
network are to be covered. Te node selection is also crucial.
Terefore, the heuristic information of the node jn (φjn) is
introduced as a guide for node selection. Subsequently, we
will address the τikjn, ηikjn, and φjn in detail.

(1) Pheromone Information of Arc (ik, jn): τikjn. Te pher-
omone information represents the ants’ search experience
and directs the future ants to search in the promising space.
Traditionally, only one pheromone structure is involved as
all arcs are of the same character. However, the proposed
connection network is made up of two distinct types of arcs
including nonmaintenance arcs and maintenance arcs so as
to comply with mandatory maintenance requirements.
Consequently, two pheromone structures are set for two
types of arcs, thus allowing for more accurate representation
of search experience.

(2) Heuristic Information of Arc (ik, jn): ηikjn. Typically, the
heuristic information is based on the problem’s character-
istic. Te arcs with less idle time are favoured because the
objective of this study is to minimize the quantity of nec-
essary aircraft, and as a result, they have a higher heuristic
value.Terefore, the heuristic value is inversely proportional
to the value of idle time.Moreover, when an ant is positioned
on the node with cruise time compression, it is reasonable to
give the priority to the arcs that are only feasible after this
cruise time compression. In the new heuristic function, these
arcs are distinguished from the originally feasible arcs and
their heuristic values are doubled. Te addition of one is
utilized to avoid division by 0. Te heuristic function is
defned as follows:
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, otherwise.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(15)

(3) Heuristic Information of Node jn: φjn. In the list of
feasible nodes to be next covered, the nodes of the same
fight leg involve the identical heuristic information of arc
(ik, jn). However, they have diferent cruise times, resulting
in diferent fight connection opportunities that have direct
impact on the route construction. Te node with improved
fight connection opportunities can bring more efcient
fight connections and thus be more preferred. Terefore,
the heuristic information of node jn (φjn, eq. (16)) is
introduced.

φjn �
FCOjn

FCOjr

, (16)

where the FCOjn and the FCOjr denote the number of nodes
that node jn and node jr can connect, respectively. Node jr

represents the rth copy of fight leg j that does not have
cruise time compression.

4.2.2. Global Pheromone Trail Update. After each iteration,
the pheromone trail on the arcs is updated using the fol-
lowing equation:

τikjn⟵ (1 − ρ)τikjn + ∆τbestikjn , (17)

where the frst term reduces the amount of pheromone on all
the arcs and the second term gives the pheromone in-
crements on the arcs of the current best-found solution. Te
pheromone increments are calculated using the formula
which is as follows:

∆τbestikjn � A × B × C ×
Q

cost Rbest( 
 , (18)

A � e
− 5((nr+nd)/(NR+ND))

, (19)

B �
1

1 + 0.95it
 

, (20)

C � ND. (21)

In the conventional ACO, the pheromone increments on
the arcs included in the current best-found solution are set to be
Q/cost(Rbest). cost(Rbest) is the best objective value found
from the start till the present iteration. Q is the control pa-
rameter that is used to adjust the amount of deposited
pheromone and thus helps the algorithm avoid local optimal
convergency or excessively random search. To increase search
efciency and precision, three multipliers A, B, and C are
applied to the term of pheromone increments. In the following,
we will introduce these three multipliers in detail.

(1) Multiplier A. As was mentioned and proved in the study
of Naimi and Taherinejad [34], giving all the arcs the same
pheromone increments is not a good strategy for pheromone
updating. At the initial stage of route construction, an ant
has greater freedom in choosing the next fight leg to be
covered since few fight legs have been covered and are
prohibited to be chosen. In contrast, at the fnal stage, most
of the fight legs have been covered which strongly con-
strains the available fight legs. Accordingly, a poor decision
made at the initial stage may lead to a series of poor choices
and, eventually, a disastrous solution.Terefore, it is rational
to allow up-to-now best ant to have greater impact on
pheromone updating at its initial stage of a tour and less
impact when it is about to fnish its tour. Based on above
discussion, the multiplier A is proposed. In this eq. (20), NR

is the number of routes in the solution, nr denotes the nrth
route that the arc (ik, jn) is in, ND is the amount of nodes
covered in nrth route, and nd signifes the amount of nodes
covered before choosing arc (ik, jn) in nrth route. Appar-
ently, both nr and nd increase from the beginning to the
ending of a solution. Terefore, the multiplier A decreases
towards zero (e− 5 ≈ 0), accurately refecting the gradually
diminishing role of the up-to-now best ant from the be-
ginning to the ending of a tour in the pheromone updating.

(2) Multiplier B. During the process of iterations, the so-
lutions’ quality will be greatly improved, and the ants will
gradually shift their focus from the exploration to the ex-
ploitation. Terefore, fewer pheromone increments should
be applied to the earlier iterations to increase the solutions’
diversity and avoid a rapid fall into the local optimal, while
more pheromone increments should be applied to the later
iterations to strengthen the exploitation and accelerate the
convergency. To achieve this purpose, multiplier B (eq. (20))
is introduced, where it denotes the iteration index. Tis
multiplier increases the pheromone increments during the
process of iterations, allowing for dynamically balancing the
exploration and the exploitation so as to improve the search
efciency.

(3) Multiplier C. Te routes covering more fight legs are
more favourable due to its higher aircraft utilization.Tus, it
is logical to allocate more pheromone increments to the
route covering more fight legs, which enables the sub-
sequent ants to perform more delicate searches in a more
favourable area in the next iteration. Terefore, we propose
the multiplier C (eq. (20)), which denotes the total amount
of nodes covered by the nrth route which contains the arc
(ik, jn).
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4.2.3. Te Proposed Algorithm. Te algorithm Pseudocode 1
is summarized as follows:

In this algorithm, the mechanism of the global phero-
mone trail update is defned in Section 4.2.2 while the
Pseudocode 2 of route construction is described as follows:

5. Computational Experiment

Te computational study is carried out in this section with
two objectives: (i) to evaluate the efciency of the pre-
processing step and (ii) to validate the efectiveness of the
IACO algorithm. All the algorithms were programmed in
MATLAB R2016a, whereas the MILP model was pro-
grammed in CPLEX 12.1. Te experiments were conducted
on a Windows 10 laptop with Intel Core i7, 2.6GHz CPU,
and 16GB RAM.

5.1. Test Instance and Experimental Setup. To our best
knowledge, there are no standard benchmarks in the liter-
ature for the AMRP with cruise speed control. Terefore, we
collect ten cases of fight schedules from the BTS [42] da-
tabase. Table 4 presents the main characteristics of the
collected test cases involving small-size, medium-size, and
large-size cases to demonstrate that the presented algorithm
is applicable to real-world problems. Generally, the majority
of airlines consider schedules with fewer than 250 fight legs
to be small-size cases [7]. Consequently, test cases 1 to 5 and
test cases 6 to 10 are classifed as small-size cases and
medium-size and large-size cases, respectively.

Based on airlines’ recommendation, we assume that the
maximal fying hours are 40 hours, the maximal number of
take-ofs are 8, and the duration of the maintenance check is
6 hours for all test cases. According to Duran et al. [43], we
assume that the unit CO2 emission cost is $0.02/kg, the
scheduled noncruise time is 20minutes, the cruise time
window is [85% × original cruise time, original cruise time],
and the copy interval is 5% × original cruise time. Referring
to the IATA fuel price monitor, the unit fuel cost is assumed
to be $0.33/kg. Tis study considers the most representative
aircraft type, A320 111, for which Table 5 provides the
specifc information. Herein, it is worth noting that diferent
aircrafts of the same type may have diferent fuel con-
sumption coefcients due to diferent maintenance history
and engine efciency. However, these diferences are hard to
quantify. According to Aktürk et al. [44], we assume that
aircrafts of the same type have the same fuel consumption
coefcients.

Before adopting the IACO algorithm, a parameter
tuning process is necessary due to the direct infuence of
parameters on the performance of the IACO algorithm. By
using the Taguchi method, the best parameters are set as
α � 1, β � 1, c � 1 q0 � 0.95, ρ � 0.15, colony size� the
amount of nodes on the connection network after the
preprocessing step, and iter max� 500. To examine the
average performance, the algorithm runs 30 times for each
test case since no better result could be obtained by in-
creasing the number of runs.

5.2. Impact of the Pre-Processing Step. For the purpose of
examining the efectiveness of the preprocessing step in the
reducing network size, we compare the amount of nodes on
the connection network before and after the preprocessing
step. Te fndings are displayed in Table 6. It is intuitive to
observe that the amount of nodes on the connection network
is reduced by approximately 70% in all test cases. Addi-
tionally, it is of great signifcance to note that the solution
quality is unafected because only copies that do not improve
the fight connection opportunities were deleted, as men-
tioned in Section 4.1.

To make a fair comparison, all the solution methods are
implemented after applying this preprocessing step.

5.3. Performance Validation of the IACO Algorithm. Tis
subsection frst compares the solutions obtained from the
IACO algorithm with that provided by the CPLEX solver.
Ten, the IACO algorithm is compared with three meta-
heuristic approaches, namely the convention ACO, the
simulated annealing (SA), and the genetic algorithm (GA).
Te comparison with the conventional ACO is necessary so
as to examine the efcacy of the improvements while the GA
and SA are adopted as the comparison algorithms due to
their demonstrated efectiveness in coping with the
AMRP [7].

5.3.1. Performance Comparison of the IACO with the CPLEX
Solver. In this part, the exact solutions and the upper
bounds derived by the CPLEX solver are utilized as criteria
for the small-size test cases and the medium-size and large-
size test cases, respectively, because it is challenging for the
CPLEX solver to optimally deal with the medium-size and
large-size problems in an acceptable computing time. Note
that the upper bound is achieved within 7 hours running
time limitation of the CPLEX solver.

(1) Small-Size Problem Analysis. Table 7 displays the com-
parison between the solutions provided by the CPLEX solver
and those obtained from the IACO algorithm. Te frst
column indicates the test case number. Te next two col-
umns show the solutions obtained from the CPLEX solver,
where R∗ column and T column represent the exact solution
and the computation time, respectively. In the remaining
columns, the solutions derived by the proposed algorithm
are presented. Rbest column, Rave column, σ column, and T

column describe the best solution, the average solution, the
standard deviation, and the average computation time, re-
spectively. Te % Gap column reports the percentage dif-
ference between the average solution and the optimal
solution, which is calculated using the formula (22) which is
as follows:

%Gap � 100 ×
Rave − R

∗
( 

R
∗ . (22)

From Table 7, it can be observed that the values of both
Rave and Rbest are the same with the value of R∗ for the frst
test case. For the other four test cases, the values of Rbest still
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equals to the values of R∗ while the values of Rave slightly
difer from the values of R∗ by no more than 0.42%. From σ
column, it shows that there is no variance in the solutions
obtained from the IACO algorithm in the frst test case while
the variance slightly increases with the increasing size of the

last four test cases. Tese results well demonstrate the ac-
curacy and the robustness of the ICAO algorithm.

Regarding the computation time, the T and T column
show that the proposed algorithm can achieve the solutions
within 70 seconds, whereas the CPLEX solver requires up to

Input: A set of fight legs, the copies for each fight leg, and a set of aircraft of an identical type
Output: Aircraft routes that cover all the fight legs and the cruise time for each fight leg
(1) Initialization
(2) Parameters: α, β, c, ρ, q0, Q

(3) iter max: the maximum number of iterations performed by the algorithm
(4) Ant colony ANT

(5) Best solution BS

(6) For iter⟵ 1 to iter max do
(7) For n⟵ 1 to colony size do
(8) initiate the solution of ant n Sn � ∅
(9) Great list FN storing copies of all fight legs and list T of aircraft
(10) While the list FN is not empty do
(11) Select an aircraft t from the list T

(12) Route construction for aircraft t

(13) Add the route of aircraft t to solution Sn

(14) End while
(15) End for
(16) Make an update for the current best solution using solution Sn

(17) Global pheromone trail update
(18) End for
(19) Return BS

PSEUDOCODE 1: Te IACO Algorithm.

(1) Place the aircraft t on the source node o and start route construction Rt

(2) Add the kth copy of fight leg i that has the earliest departure time to Rt

(3) Create the list AF storing the feasible fight leg copies that can be next covered using time and location constraints (10) and (13)
(4) While AF is not empty do
(5) Create the list PF storing the fight leg copies that satisfy the maintenance requirements
(6) If the list PF is not empty do
(7) Choose the next nth copy of fight leg j from the list PF using equation (23) and (24)
(8) Add the nth copy of fight leg j to Rt

(9) Update the list AF

(10) Else
(11) If the aircraft is maintenance feasible considering location constraint (12), the working times and the capacity constraints

(18)–(20) do
(12) Add a maintenance operation to Rt

(13) Initialize the accumulative fying hours, the accumulative number of takeofs, and the accumulative number of fying days
(14) Create the list RF storing the feasible fight leg copies that can be next covered using time and location constraints (11)

and (14)
(15) If the list RF is not empty do
(16) Choose the next eth copy of fight leg l from the list RF using equations (23) and (24)
(17) Add the e th copy of fight leg l to Rt

(18) Update the list AF

(19) End
(20) End
(21) End
(22) End
(23) Terminate Rt at the sink node s

PSEUDOCODE 2: Route construction.
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3 hours. Apparently, it takes much less time for the IACO
algorithm in comparison with the CPLEX solver. Moreover,
the computation time greatly increases with the increasing

size of the test cases for the CPLEX solver, whereas no
obvious variation in the computation time is found for the
IACO algorithm.

Table 4: Test cases.

Test cases Flight legs Fleet size Airports Maintenance stations
1 40 8 14 7
2 83 11 24 10
3 120 15 38 16
4 150 15 42 16
5 222 21 53 18
6 260 25 52 18
7 312 34 56 18
8 410 45 57 21
9 500 43 54 21
10 613 62 57 21

Table 5: Aircraft parameters.

Aircraft type: A320 111
Mass (kg) CD0,CR
62000 0.024
Reference wing area (m2) CD2,CR
122.4 0.0375
MRC speed (km/h) Cf1
855.15 0.94
Base turnaround time (min) Cf2
28 50000
Unit idle time cost ($/min) CfCR
136 1.095
Daily usage costs ($/day)
81600

Table 6: Te comparison of the number of nodes on the connection network.

Test cases Flight legs
Nodes

Percentage decrease (%)
Before preprocessing After preprocessing

1 40 160 46 71.25
2 83 332 96 71.08
3 120 480 133 72.29
4 150 600 164 72.67
5 222 888 238 73.20
6 260 1040 282 72.88
7 312 1248 338 72.92
8 410 1640 461 71.89
9 500 2000 579 71.05
10 613 2452 683 72.15

Table 7: Performance comparison with CPLEX for small-size cases.

Test cases CPLEX IACO
% Gap

R∗ T(s) Rbest Rave σ T(s)

1 942,453 10.43 942,453 942,453 0 4.58 0
2 5,696,567 78.62 5,696,567 5,702,683 2,031 10.57 0.11
3 12,098,788 302.31 12,098,788 12,128,159 8,728 20.79 0.24
4 5,850,835 472.45 5,850,835 5,863,069 2,936 28.07 0.21
5 8,705,534 10215.46 8,705,534 8,741,893 18,749 64.22 0.42
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To summarize, the IACO algorithm can achieve the
signifcant computation time reduction in comparison with
the CPLEX solver while still producing good-quality solu-
tions as the best solutions are the same with the optimal
solutions and the average solutions difer from the optimal
solutions by no more than 0.42%.

(2) Medium- and Large-Size Problem Analysis. Table 8
summaries the comparison results, which contain similar
information as Table 7 except for the UB column. Te UB

column denotes the upper bound provided by the CPLEX
solver within the time limitation.

From Table 8, we can observe that the IACO algorithm
still signifcantly outperforms the CPLEX solver. Regarding
the solution quality, the values of Rbest are identical to the
values of UB in all test cases, whereas the values of Rave difer
from the values of UB by no more than 12%. Moving to
computational time, albeit the considerably enlarged net-
work, our algorithm can still solve it within 15minutes,
which is reasonable and practical. Moreover, taking a close
look at the σ, although the values increase, they still imply
the small solution variances as the corresponding solution
values increase greatly. Tis confrms the robustness of the
IACO algorithm in dealing with medium-size and large-size
problems.

5.3.2. Performance Comparison of the IACO with Tree
Meta-Heuristic Approaches. In this part, we solve the pro-
posed model using three meta-heuristic approaches, namely
the convention ACO, SA, and GA, under the same exper-
imental conditions, and then compare the average perfor-
mance. Te parameters settings are identical for the
conventional ACO algorithm and the ICAO algorithm. For
GA and SA, we followed the procedures and parameters
introduced by Eltoukhy et al. [7], taking into account fexible
cruise time. Te performance of three meta-heuristics is
summarized in Table 9, while the percentage improvement
of IACO over the three approaches in solution quality is
illustrated in Table 10 and Figures 4 and 5. Herein, IMP% is
computed by (RCAL − RIACO)/RIACO where RIACO and RCAL
denote the solution of the IACO and the solution of the
algorithm that is compared with the IACO, respectively.
Additionally, the computation time comparisons are dis-
played in Table 11 and Figures 6–8.

From Table 9, it can be interpreted that the conventional
ACO algorithm can produce considerably superior solutions
in comparison with SA and GA and even be capable to
generate the exact solution for the particularly small-size
case such as test case 1. Moreover, its computation time
slightly increases in some of test cases as compared to SA but
is far less than that of GA for all test cases, as is evident from
Table 11. For instance, in test case 10, the computation time
of GA is up to 1 hour whereas that of the other two is around
10minutes. Although SA consumes less time to produce the
solutions, the solution quality is the poorest. In case 1, the
solution obtained by SA signifcantly deviates from the
optimality, even up to 130.25%.

Moving to the IACO algorithm, we can see from Ta-
bles 7 and 8 that the average gap of IACO with the exact
solution for small-size test cases is within 0.5%, while that
with the upper bound is within 12% for medium-size and
large-size test cases, which is fairly less in comparison with
the other three approaches, particularly SA and GA.
Moreover, its remarkable outperformance in term of the
solution quality is visible in Table 10 and Figures 4 and 5.
Along with the signifcant improvement in solution quality,
the computation time of the IACO algorithm is slightly
longer compared to the conventional ACO and SA for the
medium-size and large-size test cases, while in some of
small-size test cases, such as case 2, 3, and 4, the com-
putation time is even shorter. Tis slight increase in
computation time is worthy in comparison with the
considerable improvement in solution quality. Taking case
7 as an example, 32 seconds increase in computation time
can improve the average solution quality by around 39.79%
in comparison with SA, while 21 seconds increase in
computation time can result in 16.98% improvement in
average solution quality in comparison with the
conventional ACO.

We will explain the rationalities behind the above results
in the following.

In the OAMRP with cruise speed control, diferent from
the traditional AMRP, each fight leg has several leg copies,
each copy involves a cruise time option, and only one copy
can be selected. In SA, it starts with an initial solution in
which the copy for each fight leg has been determined and
then improves the current solution by local search in which
the copy for each fight leg has been fxed. As a result, the
cruise speed control only plays the role in the initial route
construction. Tis signifcantly diminishes the benefcial
efect of cruise speed control on route construction, resulting
in great reduction in the solution space. Tus, the solutions
obtained by SA are the poorest. In the GA, the solution
quality is improved based on a population of solutions. Te
solution space is enlarged as compared to SA due to more
choices of copies for each fight leg, and better solutions can
be produced.

However, in the conventional ACO algorithm and the
IACO algorithm, they construct a new solution from an
empty solution. Te copy for each fight leg dynamically
changes at each time of route construction, which fully
utilizes the fexible cruise time. Terefore, their solutions are
far much better as compared to SA and GA. While com-
paring the conventional ACO algorithm and the IACO
algorithm, the solution quality of the IACO algorithm can be
greatly improved without signifcant time variance due to
the efcacy of the new strategies.

Based on the above discussions, we can get the con-
clusion that the IACO algorithm notably outperforms the
existing approaches regarding the solution quality while the
computation time slightly increases as compared to SA and
the conventional ACO in themedium-size and large-size test
cases. Hence, we have verifed the efciency of the IACO
algorithm.
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Table 8: Performance comparison with CPLEX for medium-size and large-size cases.

Test cases CPLEX IACO
% Gap

UB Rbest Rave σ T(s)

6 18,461,505 18,461,505 19,175,821 171,221 98.52 3.73
7 13,268,536 13,268,536 13,804,348 392,180 167.94 4.04
8 16,030,559 16,030,559 17,573,417 558,061 328.55 9.62
9 33,141,047 33,141,047 34,095,754 740,870 526.82 2.88
10 23,782,212 23,782,212 26,415,509 1,073,948 796.09 11.07

Table 9: Performance of the other three approaches.

Test
cases UB

Te conventional ACO SA GA
Rbest Rave % Gap Rbest Rave % Gap Rbest Rave % Gap

1 942,453 942,453 942,453 0 2,169,998 2,169,998 130.25 1,653,063 1,653,063 75.40
2 5,696,567 5,925,061 5,931,915 4.13 8,358,922 8,423,818 47.88 8,226,557 8,228,362 44.44
3 12,098,788 12,475,909 12,490,795 3.24 14,003,494 14,166,171 17.09 13,960,910 13,980,505 15.55
4 5,850,835 6,084,835 6,166,776 5.40 9,151,499 9,216,232 57.52 8,462,961 8,489,085 45.09
5 8,705,534 9,540,768 9,557,255 9.78 11,979,579 12,023,937 38.12 11,267,337 11,312,610 29.95
6 18,461,505 20,712,426 20,865,974 13.02 22,120,281 22,448,473 21.60 21,234,926 21,677,603 17.42
7 13,268,536 15,843,229 16,148,909 21.71 19,206,652 19,296,554 45.43 18,474,716 18,893,036 42.39
8 16,030,559 17,750,186 18,610,041 16.09 24,368,613 25,163,323 56.97 22,112,424 23,250,217 45.04
9 33,141,047 37,166,883 37,672,274 13.67 39,372,149 40,677,344 22.74 38,101,892 39,213,505 18.32
10 23,782,212 28,044,151 29,178,249 22.69 31,057,124 35,822,348 50.63 30,030,487 33,571,978 41.16

Table 10: Improvement over the other three approaches.

Test cases
Average solution (IMP%) Best solution (IMP%)

Te conventional
ACO (%) SA (%) GA (%) Te conventional

ACO (%) SA (%) GA (%)

1 0.00 130.25 75.40 0.00 130.25 75.40
2 4.02 47.72 44.29 4.01 46.74 44.41
3 2.99 16.80 15.27 3.12 15.74 15.39
4 5.18 57.19 44.79 4.00 56.41 44.65
5 9.33 37.54 29.41 9.59 37.61 29.43
6 8.81 17.07 13.05 12.19 19.82 15.02
7 16.98 39.79 36.86 19.40 44.75 39.24
8 5.90 43.19 32.30 10.73 52.01 37.94
9 10.49 19.30 15.01 12.15 18.80 14.97
10 10.46 35.61 27.09 17.92 30.59 26.27
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Figure 4: Improvement in average solution over the other three approaches.
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Figure 5: Improvement in best solution over the other three approaches.

Table 11: Computation time comparison.

Test cases
Computation time (s)

Te conventional ACO SA GA IACO
1 4.85 3.83 12.12 4.58
2 11.51 12.63 36.54 10.57
3 27.82 29.23 66.13 20.79
4 34.67 32.97 92.64 28.07
5 66.19 64.18 448.98 64.22
6 92.55 88.04 523.74 98.52
7 146.47 135.32 908.98 167.94
8 301.98 296.42 1424.32 328.55
9 464.45 470.62 2917.51 526.82
10 735.76 601.91 3375.29 796.09
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Figure 6: Te computational time comparison with the conventional ACO.
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6. Conclusions

Due to the growing trend of aircraft operating lease, airlines are
challenged by its expensive leasing rental situation. To achieve
proftability, it is of great signifcance to reduce the number of
required aircraft. In this study, we investigate a new variation of
the OAMRP, namely the OAMRP incorporating cruise speed
control, in which the improved aircraft utilization and thus the
reduced number of required aircraft can be achieved by
changing fying time in aircraft routing [17]. Given its NP-hard
nature and the additional complexity added by modeling the
fexible cruise time, the challenge lies in how to efciently solve
it. To tackle the problem, this study frst designs a preprocessing
step to reduce the size of the network. Ten, an IACO algo-
rithm is developed by proposing a new state transition strategy
and a novel pheromone updating mechanism. In the state
transition strategy, both the heuristic values on nodes and arcs
are used to compute the set of feasible neighbours. In the novel
pheromone updating mechanism, the pheromone increments
include three multipliers indicating three new strategies to
improve the communication efciency between ants.

Moreover, the pheromone structure and the heuristic function
are modifed to be more problem specifc.

Based on data sets derived from the BTS, two computa-
tional experiments are carried out. Firstly, we examine the
efectiveness of the preprocessing step in reducing the network
size. Te results show that the preprocessing step can reduce
the amount of nodes on the connection network by around
70% without compromising the solution quality. Secondly, the
performance of the IACO algorithm is verifed by comparing
with the CPLEX solver and three promising meta-heuristic
approaches, including the conventional ACO, SA, and GA.
From the results analysis, the IACO algorithm can achieve
substantial computation time savings and makes an excellent
compromise between the solution quality and the computation
time in comparison with the CPLEX. As compared to the
traditional ACO, SA, and GA, the IACO algorithm improves
the best solutions by 9.31%, 45.27%, and 34.27%, and the
average solutions by 7.42%, 44.45%, and 33.35%, while the
computation times are slightly longer in some of the test cases.

Despite the contributions made in our study, we did not
take into account operational uncertainties such as fight delays.
Because fight delays occur frequently in practice, one of our
future research directions is to consider fight delays during
route construction so that the generated route is less susceptible
to disruptions. Moreover, numerous novel ACO variants which
have been demonstrated to be highly efective for a variety of
optimization purposes emerged recently [18–21, 25–29].
However, they have not been applied in airline schedule
planning yet. Employing these new algorithms to solve the
proposed problem and comparing them with the proposed
IACO algorithm will also be an interesting future direction.
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