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Detecting road accident impacts as promptly as possible is essential for intelligent trafcmanagement systems.Tis paper presents
a sequential two-stage framework for predicting the most congested trafc level that appears after an accident and the recovery
time required for returning to the level of service that existed at the accident report time. As fewer accident characteristics are
available at the report time, stage one models rely on real-time trafc and weather variables. With the arrival of the responders at
the accident scene, more information is gained; therefore, the second stage model is activated, which updates the remaining
accident duration time. We used eXtreme Gradient Boosting (XGBoost), a machine learning algorithm, and Shapley Additive
exPlanations (SHAP) for making predictions and interpreting results, respectively. Te results show that our framework predicts
trafc levels with overall accuracies of around 80%, and duration models have high forecast accuracy with mean absolute
percentage errors ranging between 7.26% and 21.59%. Overall, in the absence of accident information, SHAP values identifed that
weather factors, the trafc speed diference before and after an accident, trafc volume, and the percentage of heavy vehicles before
the accident are the most important variables. However, accident variables, including the occurrence of injury or fatal accidents,
rear-end collisions, and the number of involved vehicles, are among the most important variables in the second stage of the
framework. Te fndings have practical implications for real-time trafc management of accident events. Road operators could
manage post-accident trafc conditions more efectively, and road users could be alerted to take another route or manage
their trip.

1. Introduction

Road accidents, extreme weather, and large-scale events can
signifcantly impact trafc conditions. Trafc congestion
caused by these events is known as non-recurrent congestion
[1]. While accidents are not the only cause of non-recurrent
congestion, they are estimated to be the principal reason for
72% of cases [2]. Research shows that a one-minute re-
duction in delay triggered by an accident has an average
incident duration cost of 57 euros and can cost up to 1200
euros in very congested conditions [3]. In this respect, trafc
accident post-impact (TAPI) models have been introduced

to address this issue and guide trafc management centers
and road users during post-accident periods.

One of the main objectives of the TAPI model is to
predict accident duration, which is often divided into four
parts: reporting time, dispatching time, response arrival
time, and road clearance time [1, 4]. However, few studies to
date have included trafc fow recovery time when con-
sidering the accident duration; as such, the duration ana-
lysed in this study covers the period between the reported
accident time and when the trafc condition returns to the
state that existed at the accident time (recovery time).
Furthermore, in this study, trafc fow conditions have been
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divided into fve service levels, and the proposed model
identifes the appearance of a reduced level of service as well
as accident duration.

Te TAPI model should be immediately activated when
an accident is reported to the trafc management center.
Terefore, one of the key features of this model is to have
a less time-consuming operation [1]. However, obtaining
some information, such as detailed accident characteristics,
depends on the police or responders’ arrival at the accident
site. Regarding this challenge, unlike most previous studies
that rely on a single model, we proposed a novel sequential
framework containing two stages. Te sequential framework
is developed in the frst stage based only on readily available
variables such as real-time trafc and weather factors. Te
second stage is activated to make updates as time passes and
new accident details become available. Tis way, imple-
menting post-impact prediction becomes more credible, and
it could serve the needs of decision makers for reliable post-
accident forecasts and provide real-time trafc information
for other road users.

Tis paper investigated the potential of utilizing eXtreme
Gradient Boosting (XGBoost) as an artifcial intelligence
model for enhancing the predictive capability of TAPI
models. In addition, unlike previous TAPI studies that relied
on prediction rather than drawing inferences from artifcial
intelligence techniques, this paper employed Shapley Ad-
ditive exPlanations (SHAP) as a tool for knowledge gen-
eration and identifying factors that signifcantly impact the
outputs.

2. Background

TAPI is usually measured by accident duration, which in-
cludes four phases. In this respect, previous studies focused
on predicting the period between crash occurrence and road
clearance [1]. Te modelling techniques used by researchers
can be classifed into two groups: statistical and artifcial
intelligence methods.

Using statistical approaches, researchers explored the
best probabilistic distribution for accident duration.Ten,
they adopted statistical models to shed light on the re-
lationship between accident duration and other factors.
Although the utilized dataset signifcantly limits the
choice of the best-ftted distribution, log-logistic [5–8],
log-normal [9–11], and Weibull [12–14] distributions
were the most frequently reported distributions. Among
statistical methods, regression models have been the
primary choice [15–17]. Also, some researchers used
hazard-based duration models, such as parametric
accelerated failure time (AFT) models, to determine
signifcant variables in diferent duration time phases
[8, 18, 19]. Table 1 summarizes some of the TAPI studies
that utilized statistical approaches.

With the rise in the amount and variety of data accessible
via intelligent transportation systems, machine learning
algorithms have been widely implemented to detect patterns
behind big data with high accuracy. Table 2 presents some of
the TAPI studies that used machine learning methods. Most
of these studies applied the following methods.

2.1. Artifcial Neural Network (ANN). Tis method is a non-
linear, data-driven, and self-adaptive approach. Wei and Lee
constructed two adaptive sequential neural networks to
generate updates for the prior sequence [20]. Pereira et al.
enhanced the predictive performance of the TAPI model by
combining ANNs with a text analysis technique as a tool for
the online extraction of accident information [21]. Lin and Li
employed three artifcial intelligence methods, including
ANN, and proved that using crowdsourcing data from
mobile apps results in better prediction of outliers [24].

2.2. Decision Tree and Tree-Based Approaches. Tree models
are non-linear methods that can intrinsically identify and
select the most important variables [25]. Decision trees,
random forests, and gradient boosting have been chosen by
researchers in TAPI studies [23, 24, 26]. Ma et al. employed
a gradient boosting decision tree model and showed that this
model is superior compared to conventional models and
other machine learning methods, including random forest,
support vector machine, and backpropagation neural net-
work [23]. Lin and Li showed that random forest has a better
prediction power than support vector machines, mainly
when forecasting short-period congestions [24]. To the best
of our knowledge, previous studies have not investigated
applications of XGBoost models in TAPI framework pre-
diction.We utilized this model in our framework to compare
its prediction performance to prior results.

2.3. HybridModels. Researchers have also developed hybrid
models to reach more accurate predictions. Lin et al.
combined the MP5 tree model with a hazard-based duration
model for predicting urban freeway trafc accident dura-
tions [22]. Shang et al. proposed the Bayesian optimization
algorithm to optimize the parameters of the random forest
model [27]. Zou et al. used a Bayesian averaging model to
deal with uncertainties by averaging all plausible
models [28].

3. Data and Proposed Framework

3.1. Data Description and Preparation. Tree data sources
are utilized in this research: (1) accident reports for almost
850 kilometers of rural highways of Khorasan Razavi
province in Iran between 2015 and 2020 (selected highways
are mostly in fat terrain with low curvature and speed limits
ranging from 80 to 90 km/h); (2) real-time climatic data
gathered by 20 synoptic weather stations throughout the
province; and (3) real-time trafc data which are collected by
131 video detectors with an average spacing of 5.52 km
between the detectors in the study area.

As shown in Figure 1(a), to combine the above-
mentioned sources, each reported accident is assigned to the
nearest upstream video detector and the nearest weather
station. Subsequently, climatic factors (precipitation, tem-
perature, visibility, and weather categories) and trafc
variables (trafc speed, volume, headway, and trafc com-
position) can be extracted from the selected stations for
a time window that is relevant to the accident. In our
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Figure 1: (a) Assigning accidents to detectors and weather stations. (b) Representation of highway trafc conditions. (c) Illustration of
accident duration.
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previous study, we showed that varying detector-to-accident
distances afect the importance of trafc variables. It was
demonstrated that the 1,000m threshold has the highest
Variable Importance Measure (VIM) for trafc factors [29].
Concerning this point, we only included accidents that
occurred less than 1,000m away from the nearest upstream
detectors. Te resulting dataset contains 6381 incidents with
the associated accident, real-time trafc, and weather factors.
As this dataset contains almost 120 explanatory variables, we
only reported our models’ fve most important variables in the
results and discussion section. Table 3 summarizes descriptions
and statistics of these signifcant variables used in this paper.

We employed the average speed of the rural highway to
introduce trafc levels andmeasure how an accident impacts
these levels. Figure 1(b) shows fve highway trafc levels with
associated speed intervals and color indicators [30]. In this
study, trafc recovery time is defned as when the trafc
condition returns to a similar level to the accident time. Take
the example of Figure 1(c); trafc was at a mild congestion
level at the accident time. However, the condition de-
teriorates over time due to the accident and reaches a serious
congestion state. Next, recovery starts, and the condition
returns to a mild level. As shown in Figure 1(c), this period
between two subsequent similar levels is the accident
duration.

3.2. Proposed Framework. Figure 2 presents the proposed
framework of the sequential post-impact prediction models.
As shown in Figure 2, the framework includes two major
stages.

Te frst prediction stage starts when an accident is
reported to the trafc management center (TMC). At this
point, there is a low chance of having detailed information
about the accident, and since the TAPI models should react
promptly, only readily available variables (real-time trafc
and weather factors) are fed into the frst-stage models to
predict the impact of the accident on trafc levels. Te frst-
stage models are presented as follows:

(i) Model 1.1: Te frst model in the sequence is Model
1.1. Tis model is a binary prediction tool for
forecasting whether the reported accident will ag-
gravate trafc congestion (scenarios 6–14 in Fig-
ure 3) or whether the trafc level will remain
unchanged at the same level as existed before the
accident (scenarios 1–5 in Figure 3(a)).

(ii) Models 1.2, 1.3, and 1.4: As shown in Figure 2, these
models will be activated only if Model 1.1 predicts
that a poorer trafc level may appear after the ac-
cident.Tesemodels predict the worst trafc level of
service that could be experienced during the post-
impact period. Te respective presentations of these
models are as follows:

(1) Model 1.2 is used for accidents occurring at mild
congestion levels (Figure 3(b)) and predicts the
poorest level among moderate (scenario 6 in
Figure 3(b)) and serious congestion (scenario 7
in Figure 3(b)).

(2) Model 1.3 is used for accidents occurring at the
basic unblocked level (Figure 3(c)) and predicts
the poorest level among mild (scenario 8 in
Figure 3(c)), moderate (scenario 9 in
Figure 3(c)), and serious congestion (scenario
10 in Figure 3(c)).

(3) Model 1.4 is used for accidents occurring at the
unblocked level (Figure 3(d)) and predicts the
poorest level among basic unblocked (scenario
11 in Figure 3(d)), mild (scenario 12 in
Figure 3(d)), moderate (scenario 13 in
Figure 3(d)), and serious congestion levels
(scenario 14 in Figure 3(d)).

(iii) Model 1.5:Te fnal model in this sequence is Model
1.5. Unlike previous models in this stage, Model 1.5
has a continuous outcome and predicts the duration
(recovery time) until the trafc level returns to
a similar level to the accident time.

Te second stage starts when responders arrive at the
accident scene and report additional information about the
accident to the TMC. It should be noted that in a real-world
accident scenario, the information reported by responders to
the TMC may be insufcient or incomplete. In this study,
one of the advantages of the stage two model is its fexibility
as it adopts not only reported accident information but also
employs updated real-time trafc and weather factors at the
ofcers’ arrival as well. Terefore, in cases where there is
a lack of accident information, real-time factors will be used
to make updates.

Figure 2 represents howModel 2 works.Tis model aims
to predict the remaining time required for reaching trafc
recovery and enhance the performance utilizing updated
variables (accident factors, real-time trafc, and weather
variables). For this purpose, as shown in Figure 2, the trafc
condition is frst assessed by the model upon the arrival of
the responders. If there is still a poorer level, Model 2
calculates the remaining time required for trafc recovery.
Otherwise, no calculations are needed since the trafc status
has returned to the before-accident condition.

Table 4 summarizes the characteristics of models proposed
in our framework with associated objectives, data, and pa-
rameters necessary to be employed. To create these models, the
dataset was frstly split into the train (80%) and test (20%) sets.
Ten, four artifcial intelligence techniques including ANN
(multilayer perceptron), random forest, support vector ma-
chine, and XGBoost were trained on the train set based on the
necessary datasets and parameters for each model mentioned
in Table 4. Subsequently, all the trained models were tested on
the test set and various performance measures were calculated.
Finally, themost successfulmodelling techniquewas selected to
be discussed and interpreted in Section 5 of this study (results
and discussion).

4. Methodology

4.1. Extreme Gradient Boosting (XGBoost). XGBoost, an
ensemble-based tree model, is applied as a machine
learning technique to model the TAPI framework

6 Journal of Advanced Transportation



presented in the previous section. XGBoost is an efective
tool for numerous reasons: it can handle missing values,
has high fexibility, and is insensitive to multicollinearity
similar to decision trees [31–33]. Chen introduced this
model in 2016 as an efcient implementation of gradient
boosting models [34]. Te model improves its operation
by utilizing a set of decision trees. Each tree can learn
from the previous tree to support the subsequent tree and
hence provide stronger results [35]. Each single decision
tree has a tree-like structure starting from a root node and
ending at terminal nodes, with the nodes between the root
node and leaf nodes being internal nodes. Te decision
tree algorithm splits nodes into further subnodes based
on conditional statements for variables. Te splitting
process ends when the greatest possible homogeneity is
met [36].

Regarding the equations behind XGBoost, assume
a dataset with i � 1, 2, . . . , n{ } samples, Xi is the vector of
independent variables, and yi is the dependent variable.
Equation (1) predicts the dependent variable yi using the
independent variables Xi and K decision tree models:

yi � 
K

k�1
fk Xi( , fk ∈ F, (1)

where F refers to the tree space and fk is the additive
function of each tree in this space. Te best set of functions
for equation (1) is found by minimizing the objective
function expressed as

Objective � 
n

i�1
l yi, yi(  + 

K

k�1
Ω fk( , (2)

where l(yi, yi) is a loss function measuring the performance
of the model on a dataset and Ω(fk) represents the regu-
larization term penalizing the model complexity to harness
overftting. Ω(f) for each tree is defned as

Ω(f) � cT +
1
2
λ‖ω‖

2
, (3)

where T is the number of leaves in the tree; ω represents the
weight of the leaf; and c and λ are regularization parameters.
Further detailed descriptions of the XGBoost equations are
available in the study by Chen and Guestrin [34].

4.2. XGBoost Hyperparameters. Hyperparameter tuning is
necessary to maximize model prediction performance and
control overftting [32]. We used the XGBoost [37] and
scikit-learn [38] packages for model training and parameter
tuning in Python 3.10.5. Several parameters that are selected
for tuning are as follows:

(i) “Te number of iterations” represents the number
of decision trees that are trained in the
ensemble model.

(ii) “Maximum depth” is the maximum allowed depth
for each ftted tree. Large values of this parameter
result in overly large trees and overftting.

(iii) “Subsample” represents the proportion of obser-
vations randomly chosen for each tree. Lower values
can prevent overftting. However, too small pa-
rameters cause underftting.

(iv) “Colsample bytree” denotes the fraction of columns
randomly selected for each tree. Tis parameter can
be used to prevent overftting.

(v) “Learning rate” or “Eta” shrinks the weights and
provides a more robust model.

(vi) “Alpha” and “Lambda” are regularization terms to
make the model more conservative.

4.3. XGBoost EvaluationMetrics. In our study, the XGBoost
model is randomly trained on 80% of the dataset, and the
remaining 20% is the test set. Models 1.1, 1.2, 1.3, and 1.4 are
used as classifers to predict the most congested trafc level
after a specifc accident. Te overall performance of the
classifers is assessed by calculating the overall accuracy
defned in the following equation:

Table 3: Summary of descriptions and statistics of variables.

Variables Description (unit) Mean (std. dev.)
Trafc
PctHV_B Percentage of heavy vehicles for a 5min interval before an accident 4.63 (9.11)

AvgSpdDif_BA Average speed diference between a 1min interval before and 1min interval after an
accident (km/h) 22.71 (13.38)

AvgSpdArrival_A Average speed for a 1min interval after the arrival of ofcers at the accident scene
(km/h) 58.46 (18.44)

StdHdw_A Standard deviation of headway for a 1min interval after an accident (seconds) 5.62 (3.23)
Vol_B Trafc volume of a 5min interval before an accident (vehicles) 19.84 (11.04)
Accident
Injury or fatal 1 if either an injury or fatal accident occurred (35%); 0 otherwise (65%) 0.35 (0.47)
No Inv_Veh Number of involved vehicles in the accident 2.28 (1.04)
Rear end 1 if a rear-end accident occurred (48%); 0 otherwise (52%) 0.48 (0.50)
Weather
Precipitation Amount of precipitation at the accident time (mm) 1.84 (3.49)

Weather Ordinal variable for weather condition {1: sunny (56%), 2: cloudy (24%), 3: light rain
(12%), 4: heavy rain or snow (8%)} 1.72 (0.96)
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Accuracyoverall �
number of true predictionsoverall

total number of casesoverall
. (4)

Te accuracy of a specifc class is also computed to evaluate
the model’s performance with respect to each trafc condition.
Per-class accuracy for class label m can be defned as

Accuracym �
number of true predictionsm

total number of casesm

. (5)

Models 1.5 and 2 are quantitative models that predict
accident duration. Two metrics were used for these models:
mean absolute percentage error (MAPE), as shown in
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Figure 2: Schematic diagram of the TAPI models.
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equation (6), is introduced to measure the overall perfor-
mance, and root mean square error (RMSE), as shown in
equation (7), is utilized to explore the absolute value of
deviation for these models [24].

MAPE �
1
n



n

i�1

ti−ti

ti




× 100, (6)

RMSE �

�����������

1
n



n

i�1

ti−ti( 
2




, (7)

where ti and tiare forecast and actual values for accident
duration, respectively, and n is the total number of observations.

4.4. XGBoost Interpretation. Many researchers have pre-
ferred machine learning algorithms with great potential in
forecasting. Nevertheless, interpreting the results has been
a barrier to this adoption. Lundberg and Lee proposed
Shapley Additive exPlanations (SHAP) as a game theoretic
approach to tackle this challenge [39]. SHAP employs an
additive feature attribution technique with the explanatory
function g as a linear function of the feature attribution
values. Assume a model with M input features
x � (x1, x2, . . . , xM). Te explanatory function g(x′) with
simplifed input x′ for an original model f(x) is defned as

f(x) � g(x′) � ϕ0 + 
M

i�1
ϕixi
′, (8)
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Figure 3: (a) Example scenarios of the trafc levels which have remained unchanged after the accident. (b) Possible scenarios predicted by
Model 1.2. (c) Possible scenarios predicted by Model 1.3. (d) Possible scenarios predicted by Model 1.4.
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where ϕ0 is a constant value and x′ and x in functions g(x′)

and f(x) are connected through a mapping function. Also,
xi
′ is 1 when a feature is observed; otherwise, it is 0. ϕi

represents the feature attribution value for the feature i.
Equation (9) calculates ϕi based on Shapley values:

ϕi � 

z′⊆x′

z
′



! M − z
′



 − 1 !

M!
fx z
′

  − fx

z
′

i
⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦, (9)

where z′ is a set containing non-zero indexes in x′ and |z′|

denotes the number of non-zeros in the set z′.
SHAP values have two outstanding merits over other

measures, such as feature (variable) importance measure;
frst, the explanatory function in equation (8) enables them
to interpret outcomes locally (for a single prediction) and
globally (for the entire model). Second, SHAP can examine
the negative or positive contribution of each feature along
with its importance [40]. For further detailed explanations
about SHAP value, readers are referred to the study by
Lundberg and Lee [39].

5. Results and Discussion

5.1. XGBoost Model Hyperparameter Tuning. All the
hyperparameters presented in this paper are tuned by
employing a grid search with a 5-fold cross-validation
process which means that every combination of the de-
fned hyperparameters is assessed by fve random sub-
samples of the train data, and then the best set of
hyperparameters is selected. Table 5 shows the optimal
XGBoost hyperparameters of the models.

5.2. XGBoost Model Evaluation and Interpretation. Te frst
stage of the XGBoost models consists of immediately pre-
dicting the lowest trafc level that might occur after the
accident (Models 1.1 to 1.4). Two metrics, including overall
accuracy and per-class accuracies, are computed to in-
vestigate the predictive performance of classifers. Tese
criteria are shown in Table 6. It can be seen that Model 1.1
has the highest accuracies and can predict the outbreak of
inferior trafc levels better than those that stayed at a specifc
level without deterioration.Tis result makes a good start for
the TAPI framework because Model 1.1 is a keystone for the
next classifers, and Models 1.2, 1.3, and 1.4 are activated if
Model 1.1 predicts the appearance of poorer trafc levels.
Tese models forecast the poorest upcoming level on the
basis of the trafc level at which an accident occurred. Te
less congested the related accident condition is, the more
trafc levels there will be as possible outcomes. Te number
of possible outcomes may afect the predictive performance
of the models. As shown in Table 6, overall performance
declined below 80% for Models 1.3 and 1.4 with three and
four outcomes, respectively. Moreover, serious congestion
rarely occurs, so Models 1.3 and 1.4 have lower accuracy
compared to other levels. However, our framework en-
hanced the TAPI model’s predictive power compared to the
previous study by Lin and Li, which reported 28.97%–
32.63% accuracies for congested levels [24].

Figure 4 illustrates the SHAP summary plot with the top
fve important variables for Model 1.1. As shown in the
fgure, most of these variables are trafc-related factors that
emphasize these factors’ importance in the model.

Te diference in average speed before and after an
accident is the most important variable. Higher values of this
variable (red dots) result in higher SHAP values on the
horizontal axis, which means a higher probability of poorer
post-accident trafc levels. Tis fnding is also in line with
previous fndings that showed that upstream shockwaves
can be experienced by a sudden decline in speed [41].

Te second most important variable is trafc volume
before an accident. Higher trafc volume values increase the
appearance of poorer trafc levels. Similarly, Lin and Li
concluded that higher congestion levels before an accident
increases the probability of severely congested post-accident
periods [24].

Te third important variable is the standard deviation of
headway after an accident. As shown in Figure 4, the lowest
variations in headway (light blue dots) are greatly related to
a low likelihood of higher congestion levels. Moreover, the
highest variations (light red dots) showed a positive impact
on themore congested situations, though their related SHAP
values are not as large as lower variations.

Precipitation is the most important non-trafc factor.
While previous studies mainly introduced weather variables
as dummy variables [16, 22, 24], we included continuous
climatic factors as well as categorical variables. SHAP value
results show that large amounts of precipitation at the ac-
cident time increased the probability of confronting inferior
conditions. However, as expected, low amounts of rainfall
were not a contributor to accident duration.

Te fnal important variable is the percentage of heavy
vehicles. It was found that a higher presence of heavy ve-
hicles increases the likelihood of experiencing worsening
trafc levels following an accident. Tis is likely due to the
increased impact that heavy vehicles have on trafc fow,
particularly in congested conditions. Tis association was
confrmed through a correlation coefcient of −0.22 between
the percentage of heavy vehicles and average trafc speed.

Models 1.5 and 2 are quantitative duration models
predicting accident duration and the remaining recovery
time, respectively. Table 7 summarizes measured RMSE
and MAPE for these models. Compared to MAPE values
in Tables 1 and 2, our proposed framework shows
a considerable improvement. Also, Lin and Li calculated
RMSE values at a range between 5.50 and 34.74min [24];
in our study, these values stayed at a range from 6.05 to
16.24 min, which is a more reliable range with a lower
upper bound.

To further analyse the predictive power of our frame-
work, we computed the absolute diference (AD) between
prediction and observed values for each instance in the train
and test set. As shown in Figure 5, Models 1.5 and 2 ac-
curately predicted 72% and 82% of the test set cases with
absolute diferences of less than 10minutes, respectively.
Tis result is valuable since a 10-minute error range is more
tolerable for road users than the longer ranges shown in
Figure 5, and our duration prediction framework, in most
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cases, has an error range of fewer than 10minutes, especially
after updating durations by Model 2.

Figure 6 shows SHAP values for the top fve important
variables in the duration models. While trafc variables play
a crucial role in Model 1.5, accident-related variables be-
come the most important variables in Model 2. With the
better performance of Model 2, this result highlights how

employing detailed descriptions of the accident provides
more accurate outcomes. However, these factors are unlikely
to be available during the frst minutes following an accident,
necessitating using Model 1.5.

Regarding the SHAP values of Model 1.5, the predicted
level is the frst important variable. Tis variable is the
outcome of Models 1.2 to 1.4 and represents the most
congested level that appears during a post-accident period.
Te more congested the predicted level is, the longer the
accident duration will be. Similar to SHAP values in Fig-
ure 4, the diference in speed before and after an accident,
trafc volume before an accident, and percentage of heavy
vehicles before an accident are important variables with the
same direction of efect on the outcome. Another variable

Table 6: Results of predicting trafc levels.

Model Trafc level
statement Train size Test size Per-class accuracy

(train)
Per-class accuracy

(test) Overall accuracy

1.1 Poorer trafc levels will appear 3216 804 0.8781 0.8483 Train: 0.8643
Test: 0.8346Poorer trafc levels will not appear 1889 472 0.8407 0.8114

1.2 Serious congestion will appear 196 49 0.8214 0.7755 Train: 0.8576
Test: 0.8170Moderate congestion will appear 415 104 0.8747 0.8365

1.3
Serious congestion will appear 102 26 0.7647 0.7308 Train: 0.7942

Test: 0.7811Moderate congestion will appear 309 77 0.8123 0.7922
Mild congestion will appear 522 130 0.8582 0.7846

1.4

Serious congestion will appear 165 41 0.7152 0.6585
Train: 0.8026
Test: 0.7392

Moderate congestion will appear 250 63 0.7480 0.7143
Mild congestion will appear 421 105 0.7981 0.7429
Basic unblocked will appear 836 209 0.8385 0.7608

Table 5: Hyperparameter tuning results.

Hyperparameter
Te frst-stage models Te second-stage model

1.1 1.2 1.3 1.4 1.5 2
Te number of iterations 500 125 150 300 550 350
Maximum depth 6 5 5 6 7 6
Subsample 0.65 0.8 0.75 0.7 0.6 0.65
Colsample bytree 0.4 0.45 0.45 0.4 0.4 0.4
Learning rate 0.01 0.05 0.03 0.01 0.01 0.01
Alpha 0.25 0.25 0.25 0.2 0.25 0.2
Lambda 1.3 1.5 1.5 1.4 1.35 1.4
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Figure 4: SHAP summary plot of the top fve important variables in Model 1.1.

Table 7: MAPE and RMSE measures for Models 1.5 and 2.

Model
Model 1.5 Model 2

Train (3216) Test (804) Train (1478) Test (370)
MAPE (%) 17.35 21.59 7.26 10.44
RMSE (min) 13.63 16.24 6.05 8.86
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that showed its importance is the ordinal variable of weather.
According to the corresponding SHAP values, adverse
weather conditions increase the accident duration.

Regarding the SHAP values of Model 2, the occurrence of
injury or fatal accidents is the frst important variable with
a positive contribution to the increase of predicted duration.

Tis fnding aligns with previous research [8, 18, 22, 23]. Te
dummy variable for rear-end accidents is the second and
showed that the duration of congestion is short in the case of
rear-end collisions. Analysis of our dataset reveals that 83% of
rear-end accidents had the severity of property damage only,
resulting in faster recovery times than other collision types.Te
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Figure 5: Results of absolute diference (AD) for (a) the train and (b) the test set.
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Figure 6: SHAP summary plot of the top fve important factors for (a) Model 1.5 and (b) Model 2.

Journal of Advanced Transportation 13



third important variable is the average speed at the arrival time
of ofcers. Higher values of trafc speed imply that the recovery
will be reached sooner. Te next variable is the number of
vehicles involved in the accident, which has previously been
shown to lead to longer accident durations [8, 15, 16].

6. Conclusion and Limitations

Trafc accidents are the leading causes of non-recurrent
congestion and can bring economic and environmental los-
ses [1, 2]. Timely forecasting the congestion that could emerge
after a crash is of paramount importance. One of the hurdles in
developing a post-impact prediction tool is the lack of precise
accident information before the arrival of responders and the
time for responders to report information once they arrive.
Tis paper presents a sequential modelling framework that
promptly predicts accident duration and the most congested
trafc level after an accident using real-time trafc and weather
variables. Also, with updates in accident-related factors, the
accident duration is again estimated. Te XGBoost model is
applied in the presented framework with SHAP values com-
puted for making interpretations.

Assessment of the models on the test set shows that
XGBoost accurately predicted 83% of accident cases that
lead to poorer trafc levels. Also, the framework successfully
forecasted the exact upcoming trafc level, especially the
severely congested level, with reasonable accuracy between
66% and 78%. SHAP value analysis introduces the diference
in average speed before and after an accident, trafc volume
before an accident, standard deviation of headway after an
accident, amount of precipitation, and the percentage of
heavy vehicles before an accident as the most important
features with higher values positively impacting the prob-
ability of having poorer trafc levels. As for the duration
prediction models, it is found that receiving accident in-
formation boosts MAPE from 22% to 10% and RMSE from
16min to 9min on the test set. Nonetheless, the presence of
the duration model not employing accident variables is
necessary for the sake of timely forecasting. Moreover,
SHAP summary plots demonstrated that upon acquiring
accident information, trafc variables are replaced by ac-
cident factors, and the dummy variable of injury and fatal
accident becomes the most important feature with a positive
efect on the increase of accident duration. In addition,
variables representing rear-end collision type and the
number of involved vehicles in the accident are among the
top fve important features with a negative and positive
impact on the accident duration, respectively.

Tis study has practical implications for both road
operators and users who will beneft from the presented
framework. Te output of models would allow road oper-
ators to deploy emergency responses to manage upcoming
trafc levels more efectively. Additionally, road users would
be informed of any possible changes in the trafc through
variable message signs or smartphone applications and
consequently take alternate routes.

Notwithstanding, this study has several limitations, and
there are suggestions for future research. (1) Because of vast
diferences in trafc and environmental conditions at diferent
times and regions, the results of this study are limited to rural
highways and are not applicable to all roadway types; similarly,
the fndings are specifc to the dataset from Khorasan Razavi
province in Iran, and diferent performance statistics may be
computed if the models were rerun in diferent jurisdictions.
Future studies could introduce a universal framework that
showcases its transferability to other regions. (2) Data on
roadway characteristics and geometric design could enhance
the predictive power of the models but were not available for
this study. (3) As the average trafc speed is a perceptible
variable for road users, it is employed for introducing fve trafc
levels. However, a possible future avenue is to utilize other
criteria, such as speed-fow diagrams. Also, the number of
introduced modelling sequences could be increased in future
studies. (4) Although real-time factors are deemed readily
available inmost studies, anymalfunction in detectors, which is
not a concerning issue in this research, would make them
incomplete and unreliable. In these cases, simulated datasets
could compensate lack of practical datasets.

Appendix

A. Results of Benchmark Models

In order to show the suitability of XGBoost in our proposed
framework, several machine learning methods have been
selected as comparison benchmarks. Te results are shown
in Table 8. Compared to the results of XGBoost in Tables 6
and 7, it can be seen that XGBoost outperforms all these
benchmarks in predictive power.

Data Availability

Te sample dataset analysed during the current study is
available in the GitHub repository at https://github.com/
amirhosseinabdi96/post-crash-model-xgboost-shap-. Te
complete dataset is available from the corresponding author
upon reasonable request.

Table 8: Prediction results of benchmark models.

Method Dataset
Overall accuracy [MAPE and RMSE]

Model 1.1 Model 1.2 Model 1.3 Model 1.4 Model 1.5 Model 2

Random forest Train 0.82 0.80 0.75 0.74 [25.18 and 21.08] [12.49 and 11.26]
Test 0.77 0.74 0.72 0.67 [30.12 and 26.38] [18.53 and 13.74]

ANN (multilayer perceptron) Train 0.79 0.76 0.70 0.68 [26.23 and 25.75] [16.23 and 14.80]
Test 0.71 0.70 0.65 0.62 [33.51 and 29.14] [20.15 and 17.68]

Support vector machine Train 0.78 0.77 0.71 0.66 [30.44 and 25.62] [16.44 and 14.39]
Test 0.71 0.71 0.66 0.61 [35.01 and 30.11] [20.42 and 17.00]
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