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Vessel trajectory data are currently the most important data source for vessel trajectory data mining research. However, vessel AIS
data have a short sampling time interval and a large amount of data redundancy, which hampers the efcient utilization of AIS
data. In order to efectively remove redundant information from AIS data and improve its usage efciency, a compression
algorithm for vessel trajectory data compression algorithm considering critical region identifcation (VATDC_CCRI) is proposed.
Te VATDC_CCRI algorithm identifes the critical regions of a vessel’s trajectory by analyzing the distribution of node variation
rates. It employs the Douglas–Peucker (DP) algorithm to compress the data in these critical regions, reducing the distortion of the
trajectory after compression. Additionally, the algorithm utilizes a sliding window approach to process the initial trajectory to
improve the quality of the compressed vessel trajectories and retain as many spatiotemporal characteristics of the original
trajectories as possible. It combines the feature nodes from the crucial regions in the vessel’s trajectory with the results obtained
from the sliding window algorithm, efectively compressing the vessel’s trajectory. Experiments conducted on individual and
multiple trajectories demonstrate that the VATDC_CCRI algorithm achieves higher compression rates and exhibits faster
processing speeds compared to other classical vessel trajectory compression algorithms while preserving the shape of the vessel’s
trajectory signifcantly.

1. Introduction

Due to the relevant requirements of the SOLAS Convention
2002 amendment, vessels engaged in international voyages
are currently equipped with AIS equipment [1]. Access to
vessel trajectory data is becoming more and more conve-
nient, and the application of vessel AIS data in trafc net-
work research [2], vessel trajectory prediction [3], route
planning [4], and abnormal vessel behavior detection [5] is
becoming more and more widespread. However, vessel
trajectory data have a high sampling frequency, increasing
data volume. Tis requires signifcant storage space and
consumes more computational power during data processing
[6]. Terefore, in practical applications, AIS trajectory data
compression is one of the essential preprocessing steps for
vessel data. However, during data compression, while elim-
inating redundant data, it is inevitable to lose some critical

information, which can have an impact on subsequent re-
search. Terefore, the efcient compression of vessel tra-
jectory data while minimizing distortion is a research focus
in the maritime feld. Vessel trajectory data compression can
be broadly classifed into two categories: ofine compression
algorithms with the Douglas–Peucker (DP) algorithm as the
core and online compression algorithms with the sliding
window algorithm as the core [7].

TeDP algorithm [8] is a classic vector data compression
algorithm proposed by Douglas and Peucker in 1973. Tis
algorithm is known for its ability to preserve the shape
characteristics of vector data to the maximum extent [9].
However, the DP algorithm is limited when compressing
vessel trajectory data.Tese limitations include difculties in
determining the distance threshold, high algorithmic time
complexity, and compression solely based on the shape
characteristics of the trajectory.
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In order to solve the problem that the input parameters of
the DP algorithm are difcult to determine, some researchers
have directly used evaluation metrics to judge the com-
pression results and then determined the appropriate pa-
rameters [10–13]. Zhang et al. [10] carried out research on the
evaluation method of the smallest vessel feld based on AIS
data, calculated the relative distances of 962 vessels in the
Qiongzhou Strait, drew the scatter distribution map of the
center vessel to other vessels, and determined and verifed the
DP.Te optimal compression efect can be obtained when the
algorithm is 0.8 times the length of the vessel. However, the
method is not generalizable, and the efect is not ideal when
used in waters outside the Qiongzhou Strait. Liu et al. [11]
proposed an adaptive threshold DP algorithm for batch
processing trajectory data. Tey transformed the circular
neighborhood of the DBSCAN algorithm into a square and
calculated the similarity between trajectories. In this ap-
proach, it is only necessary to determine the distance
threshold for one trajectory, and based on the similarity,
thresholds for other trajectories can be generated. Tis en-
ables the generation of diferent thresholds for diferent
trajectories. However, this method is only suitable for large-
scale data processing and does not achieve high compression
quality. Gao et al. [13] proposed a trajectory data compression
algorithm based on the vessel’s sailing state as well as ac-
celeration change, which determines the vessel’s sailing state
according to the sailing speed and then adaptively determines
the threshold of DP algorithm by using the acceleration
change function, which obtains a better compression efect. It
is one of the compression algorithms that have the slightest
increase in time complexity on the basis of realizing the
parameter adaption at present.

Te DP algorithm, used for trajectory compression,
involves the repetitive calculation of the Euclidean distance
between trajectory points, resulting in high time complexity
and low computational efciency. In response to this issue,
several researchers have proposed improvements [14–18].
Zhao and Shi [14] proposed an improved vessel trajectory
compression algorithm by sliding window algorithm, taking
fve trajectory points as a window, calculating the course
direction change within the window, determining the critical
nodes of the trajectory data given the change threshold,
dividing the trajectory into two parts by the nodes into
straight and curved parts, and then performing trajectory
compression for these two parts, respectively, with 0.8 times
captain as the threshold of DP algorithm. Te experimental
results show that this improved algorithm can shorten the
running time by nearly 50%. Huang et al. [17] proposed a DP
algorithm that utilizes parallel computation on GPUs,
thereby achieving faster execution time. Tis approach is
suitable for processing large volumes of vessel trajectory
data. However, it has higher hardware requirements.

Although the problem of low threshold input and low
operating efciency of the DP algorithm has been solved, it
can only ensure the similarity of the trajectory shape when
performing trajectory compression, ignoring the index of
the time dimension, and the reliability of the compressed
data is low. Some scholars have attempted to consider ad-
ditional information beyond vessel position data during the

compression process [19–22]. Shi and Liu [19] proposed
a multifactor DP algorithm that considers speed variations
in AIS data and sets a turning threshold. Tey retain tra-
jectory points with speeds exceeding a certain threshold or
turning angles exceeding the threshold, resulting in better
compression results. However, this approach introduces
more threshold parameters and increases the time com-
plexity on top of the DP algorithm. Building on this, Zhou
et al. [20] proposed a multiobjective peak-based DP algo-
rithm. Tey incorporated peak sampling strategies during
the compression process, considering spatial characteristics,
heading, and speed information of vessel trajectories. Tey
also introduced multiobjective optimization, obstacle de-
tection, and overlap region determination mechanisms,
ensuring high compression rates while enhancing trajectory
integrity. However, as these mechanisms are added, the
algorithm’s time complexity increases signifcantly. Wei
et al. [21] combined the DP algorithm with the sliding
window algorithm and proposed an AIS trajectory com-
pression algorithm that considers vessel behavior. In this
approach, the DP algorithm uses 0.8 times the vessel length
as the distance threshold, and the sliding window has
a classic size of three trajectory points. Te window
threshold, chosen based on statistical theory, is set at 1.6
standard deviations of indicator changes. Finally, the results
of both algorithms are merged. Experimental results dem-
onstrate that this method considers vessel behavior and
exhibits good overall performance but has a higher time
complexity. Yan et al. [22] proposed a vessel trajectory
denoising and compression algorithm based on statistical
theory and sliding window, which can recognize and retain
the burrs in the original trajectory, which prevents the vessel
trajectory from crossing the land after compression, but the
algorithm lacks fexibility. Te compression efect will be
reduced when the trajectory is close to the coastline.

Te ofine compression algorithm can maintain the
shape of the trajectory before and after compression but
ignores some critical information in the time dimension, such
as the speed and course mutation of the vessel, which are of
great signifcance. Vessel speed information helps judge the
vessel type, and sudden changes in course can be used as the
basis for channel planning. Terefore, the researchers pro-
posed an online compression algorithm with the sliding
window as the core, which can detect various indicators of
vessel operation in real time, and then extract critical points
according to the degree of change of the indicators in the
window, and adopt the idea of gradual compression. Te
streaming form performs online compression for the trans-
mitted data [23]. However, the sliding window algorithm also
has the problems that the compression result is sensitive to
the input parameters and the compression quality is low.

In order to reduce the infuence of input parameters,
researchers have determined parameters adaptively [24, 25]
or modifed the input parameters to a specifed range
[26, 27]. Gao and Shi [24] proposed a key feature based on
a vessel spatio-temporal data Point extraction algorithm, set
the distortion index to judge the extraction efect of feature
points, and then selected the appropriate threshold
according to to the spatio-temporal data point extraction
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algorithm. Te algorithm can achieve a compression rate
close to that of the DP algorithm, but the threshold de-
termination process requires multiple experiments. Te
threshold determination process requires multiple experi-
ments. Zhang et al. [26] proposed an online multidimen-
sional simplifcation algorithm, which comprehensively
consideredmultiple vessel indicators, including the position,
speed, and direction changes of trajectory points, and de-
termined a threshold variation range by statistical methods
to extract trajectory points. Finally, the Ningbo vessel tra-
jectory data of the port verify the algorithm’s efectiveness,
but there is a problem with the low compression rate.

In addition to the fact that the compression results are
greatly afected by parameters, the sliding window algorithm
only considers the operating mechanism of the trajectory
points in the window, which may result in a greater degree of
trajectory deformation before and after compression. Many
researchers have improved this problem [28–31]. Sánchez-
Heres and Sánchez [28] proposed a trajectory simplifcation
algorithm based on behavior recognition for an equivalent
passage plan (EPP). First, the behavior of the vessel was
divided into three types: stop, sail, and turn, and then, the
trajectory data corresponded to these three behaviors. First,
the vessel’s behaviour is classifed into three states: stopping,
sailing, and turning, then the trajectory data is mapped to
these three states, and fnally, the trajectory data in the sailing
and stopping states are compressed by a sliding window
algorithm. Te EPP algorithm can ultimately preserve the
extraordinary trajectory changes of the vessel’s navigation,
but the algorithm has a high time complexity and a low
compression rate. Zhong et al. [30] proposed a data com-
pression algorithm based on the spatiotemporal character-
istics of trajectory data (CASC). Te algorithm takes azimuth
diference, velocity diference, and time interval as input
thresholds and calculates the azimuth diference and velocity
diference of trajectory points within the input time interval.
Retain the trajectory points with azimuthal and velocity
diferences exceeding a threshold value. Tis algorithm im-
proves the utilization rate of trajectory information and
obtains a better compression efect but increases the input
parameters. Han et al. [31] proposed a pattern-accumulated
compression (PAC) algorithm, which divides the compres-
sion process into two parts. First, a sliding window algorithm
divides the initial trajectory into a series of spatial and velocity
components. Ten, the original trajectory is described by
selecting representative components to obtain the efect of
compression, which can preserve the trajectory information
more thoroughly. However, when the study area changes, the
pattern map needs to be reconstructed, which can signif-
cantly increase the workload of the study.

In summary, the ofine compression algorithm can
consider the shape change of vessel trajectory, standardize all
the trajectory points, and then segment them according to
the input threshold, which can maximally retain the shape
characteristics of the trajectory, but due to the consideration
of spatial feature changes only, the utilization rate of tra-
jectory information is low, and it is easy to ignore the time
characteristics of the vessel during navigation, which ulti-
mately reduces the reliability of the compressed data. In

contrast, the online compression algorithm is able to con-
sider a variety of factors during the vessel’s traveling process,
including angular velocity and speed changes, and retains
the trajectory points that undergo signifcant changes during
the vessel’s traveling process by means of the input threshold
value. Tis algorithm fully considers the temporal charac-
teristics of the trajectory data, but the compression efect is
not good in some trajectory data with minor changes in
angular velocity and speed, resulting in a large gap between
the shapes before and after compression. Based on this, this
paper proposes a vessel trajectory data compression algo-
rithm taking into account the critical region identifcation,
which extracts the regions with signifcant changes in vessel
nodes by evaluating the degree of changes in the trajectory
nodes, then compresses the data in the crucial subregions
using the DP algorithm to try to retain the shape of the
critical regions, and, on this basis, integrates the results of the
simplifcation of the initial vessel trajectory data by sliding
window. It realizes to improve the compression rate while
retaining the shape feature points of the vessel trajectory.

2. Related Work

2.1. Evaluation of Trajectory Node Variability. Te visual
representation of the vessel trajectory is a vector line. Each
node on the trajectory has diferent importance in displaying
the trajectory graph. For some critical turning points in the
trajectory graph, the shape of the trajectory may be changed
if deleted during the trajectory compression process. To
maximise the original shape of the trajectory during the
trajectory compression process, these critical nodes must be
retained. Tis paper uses the method of node change degree
evaluation to distinguish the importance of each node of the
vessel trajectory to identify the critical regions of the vessel
trajectory. Te degree of change of the trajectory point is the
ratio of the distance from the middle vertex to the con-
necting line between its front and rear vertices and the length
of the connecting line, and the greater the degree of change,
the more signifcant the change of the point is proved to be.
In order to describe the method of evaluating the degree of
change in detail, this paper takes fve trajectory points of
T1,T2,T3,T4,T5  as an example, and the structure is shown
in Figure 1. First, the distance Distance (T3) between the
adjacent points T2 and T4 of T3 is calculated, and the
vertical line passing through the intersection line segment
T2T4 of T3 is found. Te vertical point is T3′. At this time,
vertical (T3) is the length of the line segment T3T3′. Te
calculation method of the change degree is shown in
equation (1), and the detailed information on the node
change degree evaluation is shown in Algorithm1.

Degree Ti(  �
Vertical Ti( 

Distance Ti( 
. (1)

2.2. Douglas–Peucker (DP) Algorithm. Conventional
implementations of the Douglas–Peucker algorithm in
single-core computers usually use serial algorithms.Tis can
be implemented in either a recursive or a nonrecursive form.
Te nonrecursive form difers from the recursive form only
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in that it requires a stack space to hold the starting and
ending vertices of the vector line that is broken into two
segments each time the farthest away vertex is found, thus
converting the recursion into a loop. Each time the loop
takes the starting and ending vertices of a segment of the
stack, a segment is generated connecting the two vertices,
and the distance between the remaining intermediate points
to the segment is calculated. If the stack is emptied, then all
segments have been processed, and the loop can then be
terminated to obtain the desired sequence of selected ver-
tices [32]. Assume that the current AIS trajectory is set D,
which contains 14 trajectory points T1, · · · · · · , T14 . Te
schematic diagram of the simplifcation process of the
Douglas–Peucker (DP) algorithm is shown in Figure 2,
where dmax represents the maximum distance from the
trajectory node to the head-to-tail connection, and threshold
represents the input threshold. When dmax ≥ threshold, the
point is retained and the trajectory is divided into two parts,
and then dmaxis calculated and threshold comparison of the
two parts of the trajectory is done; when dmax < threshold,
any points in this part of the trajectory are no longer retained
and the comparison of dmax and threshold is repeated until
dmax < threshold of all trajectories. Stop simplifying, and
output dataset T1, T3, T6, T9, T11, T14 .Te details of the DP
algorithm are shown in Algorithm 2.

2.3. Sliding Window Algorithm. Vessel trajectory data are
a kind of time series data, including time stamp, course,
speed, position, angular velocity of turning head, and other
information that characterizes the vessel’s motion state and
maneuvering process [33]. Traditional trajectory compres-
sion only considers position changes, and the utilization rate
of trajectory information is low. To solve this problem, more
and more researchers have applied sliding window-type

compression algorithms to the feld of vessel trajectory
data compression [34]. Te classical sliding window-type
trajectory compression algorithm uses the idea of segmented
stepwise compression. After determining the initial window,
the data transmitted synchronously is compressed in real
time according to the characteristics and properties of the
trajectory points. Te classical sliding window-type trajec-
tory compression algorithm uses the idea of segmented
stepwise compression. After determining the initial window,
the data transmitted synchronously is compressed in real
time according to the characteristics and properties of the
trajectory points. Compared with the ofine algorithm, this
algorithm does not need to specify the end point of the
trajectory segment, which can efectively improve processing
efciency. As shown in Figure 3, the initial window is set as
{T1, T2, T3}, in which T1 is the starting point, T2 is the point
to be compressed, and T3 is the endpoint. We calculate the
angle of defection of the line from T1 and T2 to T2 and T3
and compare it with the set angle threshold. If the defection
angle of the line between T2 and T3 to T1 and T4 is greater
than the threshold value, T3 is retained, and the window is
slid backwards, and T3 is used as the starting point of the
sliding window, which is updated to {T3, T4, T5}. We
continue to make the same judgment as above for sub-
sequent trajectory points until the fnal issue of the trajectory
segment updates. Te details of the classical sliding window
algorithm are shown in Algorithm 3.

3. Vessel Trajectory Data Compression
Algorithm considering Critical
Region Identification

Te vessel trajectory data compression algorithm consid-
ering critical region identifcation (VATDC_CCRI) is

Input: Ship latitude and longitude coordinates information Point.
Output: Node Importance NI.

(1) N � Len(Point); NI� list();
(2) for i� 1 to N− 1 then;
(3) Calculate the distance D between Point(i− 1) and Point(i+1);
(4) Calculate the vertical distance V of Point(i);
(5) I� V/D
(6) NI.append(I)
(7) end for

return NI

ALGORITHM 1: Node importance evaluation algorithm.
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Figure 1: Schematic diagram of the evaluation of the degree of change of nodes.
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proposed in this paper to preserve the essential data nodes in
the trajectory when compressing the vessel trajectory data,
reduce the distortion of the course after compression, and
improve the operation speed of the trajectory data com-
pression algorithm. When VATDC_CCRI compresses the

vessel trajectory data, it fully considers critical nodes in the
vessel trajectory, such as critical information such as turning
points, sudden changes in course, and abnormal angular
velocity of the turning head. Te relatively essential tra-
jectory nodes are determined by evaluating the change
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Figure 2: Schematic diagram of the DP algorithm trajectory simplifcation process. (a) Step 1: fnd the maximum distance. (b) Step 2: retains
the maximum distance point and divides the trajectory into two parts. (c) Step 3: part of the trajectory stops iterating when the maximum value
is less than the threshold. (d) Step 4: repeat iteration step 1, step 2, and step 3. (e) Step 5: iterations complete and get the compressed trajectory.

Journal of Advanced Transportation 5



degree of the trajectory points in the vessel’s trajectory.Ten,
the critical regions of the trajectory are determined by the
statistical distribution method. Finally, the DP algorithm
extracts the features of the essential sites of the original
course. By identifying critical regions, the target of the DP
algorithm is transferred from a single trajectory to multiple

crucial regions on the circuit, which signifcantly improves
the running speed of the algorithm. To enhance the quality
of the compressed course and retain the spatiotemporal
characteristics of the original trajectory, on the basis of the
critical region trajectory processing, the sliding window
algorithm is used to process the initial course [21].

Input: Ship latitude and longitude coordinates information Point.
Distance Treshold T

Output: Compressed ship latitude and longitude information Pointset.
(1) Pointset� list()
(2) Calculate the list of distances from the point to the frst and last line dlist
(3) Get the maximum value of the list species dmax and the maximum position index
(4) If max(dlist)<T then
(5) Return to the frst and last point
(6) Else
(7) L-Point�DP(Point(0: index), T)
(8) R-Point�DP(Point(index: end), T)
(9) Pointset. append(L-Point)
(10) Pointset. append(R-Point)
(11) end if

return Pointset

ALGORITHM 2: Douglas–Peucker algorithm.
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θ2
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Keep

Figure 3: Schematic diagram of the classical sliding window algorithm.

Input: Ship latitude and longitude coordinates information Points.
Vessel speed information Speed .

Output: Compressed ship latitude and longitude information DataSetSlide−Window.
(1) CV� list();
(2) N� Len(Point);
(3) for i� 1 to N− 1 do
(4) v1� Point(i+ 1)-Point(i)
(5) v2� Point(i+ 2)-Point(i+ 1)
(6) t� arccos(Paradigm(v1, v2)/(|v1| ∗ |v2|))
(7) CV� [CV; t]
(8) end for;
(9) μθ, σθ  �Parameter_Estimation(CV);
(10) μv, σv  � Parameter_Estimation(Speed);
(11) DataSetSlide−Window � [];
(12) for i� 0 to N− 2 do
(13) if |Angle(i) − μθ|> 1.6σθ or |Vs(i) − μv|> 1.6σv then
(14) DataSetSlide−Window � [DataSetSlide−Window; Points(i+1)]
(15) end if
(16) end for

return DataSetSlide−Window

ALGORITHM 3: Sliding window algorithm.
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Ultimately, the feature nodes of critical regions in the vessel’s
trajectory are fused with the results extracted by the sliding
window algorithm. Te VATDC_CCRI algorithm proposed
in this paper realizes the efective compression of the vessel’s
trajectory on the basis of retaining the shape of the vessel’s
trajectory to the greatest extent. Figure 4 describes the al-
gorithm fow of VATDC_CCRI, and Algorithm 4 describes
the implementation process of VATDC_CCRI.

In Figure 4, IP represents the extracted trajectory points
in the important region, SOG represents the ship-to-ground
speed, COG represents the ship-to-ground heading, and
PART represents the trajectory dataset of the original tra-
jectory in the key region. To describe the execution process
of the VATDC_CCRI algorithm, the AIS trajectory data of
a vessel with MMSI 210698000 on 13–15 April 2019 are used
as an example for detailed illustration, and the shape of the
vessel’s trajectory is shown in Figure 5. Te geographic
location data involved are adjusted using the Mercator
projection [35], and equations (2)–(5) give the calculation
process of the Mercator projection.

r �
acosϕ0�����������

1 − e
2 sin2 ϕ0

 , (2)

q � ln tan
π
4

+
φ
2

 
1 − esinφ
1 + esinφ

 

e/2
⎛⎝ ⎞⎠, (3)

x � r · λ, (4)

y � r · q, (5)

(λ,φ) in equations (3) and (4) represents the latitude and
longitude data of the acquired geographical coordinates, ϕ0
represents the standard latitude in the Mercator projection,
and (x, y) represents the adjusted coordinate data.

3.1. Identifcation of Critical Region. As the sliding window
algorithm can retain the vessel’s heading and speed in-
formation, the evaluation of the degree of change of the
vessel’s trajectory points involves only spatial position op-
erations. Te degree of change of trajectory points is gen-
erally higher for the critical regions that maintain the
trajectory shape. According to the trajectory node variation
evaluation method proposed in Section 2.1, the variation
evaluation result curve of vessel trajectory points is shown in
Figure 6(a). In Figure 6(a), each node has its corresponding
degree of change, and the value fuctuates wildly, so it is
impossible to divide critical regions directly according to the
degree of change.Terefore, to eliminate the infuence of this
volatility, this paper counts the distribution of the degree of
change of trajectory points, sets a threshold to judge whether
all trajectory points are essential, assigns important trajec-
tory points to the same level, and discards unimportant
trajectory points. In the process of single-dimensional data
processing, the box plot in the statistical distribution method
is often used to describe, as shown in Figure 6(b), and the
specifc position of the box plot is marked. Terefore, this

article discusses the commonly used average and the upper,
median, and lower quartile involved in the box plot as
thresholds. Figure 7 shows the judgment of critical trajectory
points under diferent thresholds. Te red “∗ ” in the fgure
indicates the important trajectory points fltered out, while
the blue “O” indicates the trajectory points with a small
degree of change.

Figure 8 demonstrates the judgment of important tra-
jectory points under diferent thresholds, from which it can
be seen that using the upper quartile can maximise the
classifcation of trajectory points, and the fnal result can
show more obvious regional characteristics. While other
thresholds are conditions for judgment, the number of
retained trajectory points is too much. Although the initial
judgment of trajectory points is achieved, the number of
essential trajectory points is small and has temporal char-
acteristics, which clustering methods cannot classify. In
order to identify important areas, important trajectory
points that are close in spatial and temporal distance must
frst be classifed. In this paper, after calculating the distances
of neighboring important trajectory points separately
according to the temporal order of trajectory points, the
outliers in the box plot are calculated based on the distance
distribution. Te outliers represent the distances between
two neighboring trajectory points signifcantly beyond other
neighboring points. Terefore, we use the outliers to divide
all the extracted data points into six regions
S1, S2, S3, S4, S5, S6 , as shown in Figure 8, and the number
of critical trajectory points in each region is
1, 2, 2, 8, 119, 14{ }. However, there are some regions with
fewer important trajectory points, and these regions only
have partial location mutations, so only essential trajectory
points can be retained. In this paper, through several ex-
periments, it is determined that it is most reasonable when
using 10 important trajectory points as the threshold value.
Terefore, the critical region of the trajectory is S5, S6 .

3.2. Trajectory Simplifcation. Te efciency of the com-
pression algorithm determines whether the algorithm can be
applied to large volumes of vessel trajectory data, while the
degree to which the compression algorithm retains valid
information in the vessel trajectory data determines whether
the compressed data can be used for further analysis, where
the degree to which valid information is retained is also the
confdence level of the compressed data. Most modern
compression algorithms are unable to balance operational
efciency with confdence, as the only way to improve
confdence is to traverse the original trajectory multiple
times to retain as many valid points as possible, while
multiple iterations reduce the efciency of the algorithm on
a single trajectory and are not suitable for compression of
large amounts of data. Te information in vessel trajectory
data includes both spatial and temporal latitude. Terefore,
this section is divided into two main parts. One part is to
compress the spatial features of the trajectory according to
the critical region in Section 3.1. Te other part is to extract
the temporal features of the trajectory and fnally unify the
results of the two parts.
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3.2.1. Trajectory Compression of Critical Regions considering
Spatial Characteristics. After identifying critical regions is
completed, the maintenance of the original trajectory shape
mainly depends on the critical regions and critical trajectory
points outside the regions. Terefore, this paper uses the DP
algorithm to compress only the critical regions of the
original trajectory and combines the results with the critical

trajectory points to obtain the compression results on the
spatial location. Te advantage of this method is that it can
optimize the compression rate and compression quality of
the trajectory, and the operating efciency is much higher
than that of the DP algorithm to execute the entire original
trajectory. For the input threshold of the DP algorithm, this
paper uniformly uses 0.8 times the vessel length as the input
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 to remove duplicate values

Get D_Setv Get D_Setθ

Retain track points Retain track points
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s

N
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i = i +1 i = i +1

i = 0 i = 0

Calculate the standard deviation of V from 
a through θ Gaussian distribution σθ, σv

Calculate the value of change in SOG V 
and the value of change in COG θ 

Get the SOG and COG in AIS data

Lenth (intersect(PART, IP))>10

PART is all trajectory points of the 
initial trajectory in the signifcant area

|V(i)| > 1.6σv |θ(i)| > 1.6σθ

Figure 4: Flowchart of VATDC_CCRI algorithm operation.
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threshold proposed by Zhang et al. [10]. Te comprehensive
compression efect is shown in Figure 9. Te red point in the
fgure is the compressed trajectory point, and the blue curve is
the shape of the trajectory.Te red point includes the defection
position of the trajectory shape, and the overall similarity of the
trajectory before and after compression is relatively high.

3.2.2. Extracting Trajectory Points with Time Characteristics
in Vessel AIS Data. In this paper, a sliding window algo-
rithm with low time complexity is used to compress the raw
trajectories in order to preserve the temporal characteristics
of the AIS trajectories. Te two metrics proposed by Zhang
et al. [26], namely vessel heading keeping and speed keeping,
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Figure 5: Vessel trajectory data with MMSI of 210698000.

Input Ship latitude and longitude coordinates information Point, Vessel speed(Vs).
Output Compressed ship latitude and longitude information C_set.

(1) ID� [], D_set� [], Angle� [];
(2) NI�Node Importance Evaluation (Point) (Algorithm 1)
(3) NL� fnd(NI> p(,NI, 75))
(4) /∗p(,NI, 75) is the upper quartile point in the calculation NI ∗/
(5) IP� Point(NL)
(6) for i� 1 to len(IP) do
(7) d� dist(IP(i), IP(i+ 1))
(8) ID� [ID; d]
(9) end for
(10) Outliers� p(ID, 75) + 1.5∗(p(ID, 75)− p(ID, 25))
(11) fal� [1, len(ID)]
(12) Lbp� fnd(ID>Outliers)
(13) Lbp∗ � ID(sort([Lbp; fal)))/∗sort() is used to keep track points in order∗/
(14) Bp� fnd(Point� Lbp∗)
(15) for i� 1 to len(Bp)
(16) part� Point(Bp(i): Bp(i+ 1))
(17) If lenth(intersect(part, IP))> 10 then/∗ intersect () is used to fnd the intersection of matrices ∗/
(18) Integration of part into T_set tuple
(19) else if
(20) Integration of intersect (part, IP) into I_set tuple
(21) end if
(22) end for
(23) for i� 1 to len(T_set) do
(24) Bp_set�Douglas-Peucker (T_set(i), 0.8 times the length of the boat) (Algorithm 2)
(25) D_set� [D_set; Bp_set]
(26) end for
(27) D_set� union(D_set, I_set)/∗ union() is used to fnd the union of matrices∗/
(28) DataSetSlide−Window � SW(Point, Vs) (Algorithm 3)
(29) D_set� sort(Rpm(D_set, DataSetSlide−Window))/ ∗ Rpm for merging duplicate track points ∗/

return C_set.

ALGORITHM 4: Ship trajectory compression algorithm considering region importance.
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are mainly used in the study as the main factors to measure
the temporal characteristics. However, the window size and
input threshold set in the sliding window algorithm also
have an impact on the fnal compression efect [36, 37].

When the number of data points within the window in-
creases to n, n calculations need to be performed, which will
increase the time complexity of the algorithm to some ex-
tent. In contrast, when the number of trajectory points
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Figure 6: Evaluation results of trajectory node change degree.
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Figure 7: Screening results of critical trajectory points. (a) Upper quartile. (b) Lower quartile. (c) Median. (d) Mean.
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within the window decreases, the compression efect is
highly dependent on the setting of the input threshold. In the
feld of trajectory compression, sliding window algorithms
most commonly use three points as a single window size, and
this classical approach is also used in this paper. Moreover, it
cites the 1.6 times standard deviationmodel analyzed byWei
et al. [21] using statistical methods as the input threshold.
Te trajectory points obtained by the sliding window al-
gorithm according to the temporal characteristics are shown
in Figure 10.

3.2.3. VATDC_CCRI Algorithm Compression Results
Presentation. Te compression result combining the spatial
characteristics and time characteristics is shown in
Figure 11. Te red dots in the fgure represent the com-
pressed trajectory points, and the blue line represents the
original trajectory. Te more obvious trajectory turning
points in the fgure have been preserved, and more nodes are
reserved in the region with signifcant trajectory turning.Te
advantages and disadvantages of the compression algorithm

mainly depend on the algorithm’s running speed, com-
pression rate, and length loss rate. Among them, the running
speed of the algorithm is signifcantly improved after the
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Figure 8: Distribution of critical nodes and regions.

37.15

37.20

37.25

37.30

37.35

37.40

37.45

37.50

La
tit

ud
e

123.16 123.18 123.2 123.22 123.24 123.26 123.28123.14
Longitude

Figure 9: Plot of critical regions of AIS trajectories based on DP
algorithm.
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Figure 10: Graph of compression results for the sliding window
algorithm.
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Figure 11: Compression efect of VATDC_CCRI algorithm.
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region division, and the compression rate of the algorithm
can be adjusted by parameters. In general, the length loss of
the compressed trajectory is mainly concentrated in the
regions where the ship turns frequently or the waters are
complex [28], and the proposed algorithm also extracts it-
eratively for these regions. Te length loss is mainly con-
centrated in the regions where the vessel turns frequently, or
the waters are complex [28], and the target algorithm also
repeatedly extracts these regions. Terefore, the
VATDC_CCRI algorithm proposed in this paper inherits
better the ability of the DP algorithm for regional trajectory
shape retention and the sliding window algorithm for ex-
amining the change of AIS metrics within the time stamp. In
addition, the result of identifying signifcant regions en-
hances the fexibility of the compression process while
improving the efciency of the algorithm operation.

3.3.VATDC_CCAIComplexityAnalysis. Tis paper proposes
a vessel trajectory data compression algorithm (VATDC_C-
CRI) that takes into account the identifcation of important
regions, which extracts the important regions through the node
variability evaluation algorithm and then compresses them
through the DP algorithm, while, at the same time, executes the
sliding window algorithm to compress the trajectory as a whole
and fnally takes the two parts of the result as the fnal
compression result. In order to better evaluate the execution
efciency of the VATDC_CCRI algorithm, it is necessary to
analyze its complexity, which includes both space complexity
and time complexity. For the spatial complexity of the algo-
rithm, assuming that the number of samples in the current
trajectory dataset is n, the frst thing that needs to be carried out
is the evaluation of node variability and the identifcation of
important regions; the space complexity of node variability
evaluation is O(n). Moreover, the identifcation of important
regions is obtained through the trajectory points peeled of
from the upper quarter guard point, in which the distance
between the peeled-of trajectory points needs to be calculated
and analyzed, and this part of the space complexity is
O(0.25n). Terefore, the space complexity of the com-
prehensive identifcation of the important region is
O(1.25n). Ten, the trajectory of the important region is
compressed by the DP algorithm, under the assumption
that the number of trajectory points in the important
region is m, and the increased space complexity is
O(m) m|m ∈ [10, n]{ }. Finally, the space complexity of the
sliding window algorithm is also included O(n). Tere-
fore, the fnal space complexity of the VATDC_CCRI
algorithm is O(2.25n + m).

For the time complexity of the VATDC_CCRI algo-
rithm, under the condition that the number of samples in the
current trajectory dataset is n, the node variability needs to
be calculated once for each trajectory point, and the time
complexity of this part is O(n). Ten, the important regions
will be extracted. Since the extraction of the important

regions is obtained by the screening of the trajectory points
by the upper quartile points, it includes the calculation of the
distances between these points, and the time complexity of
this part is O(0.25n). After screening the important regions,
the DP algorithm will be used to compress the key regions,
and assuming that the number of key regions is i, the
corresponding number of samples is xi. Terefore, this part
of the increased algorithmic time complexity is
O(x1

2 + x2
2 + . . . + xi

2). On the other hand, the classic
three-point sliding window algorithm has a time complexity
of O(3n). Terefore, the overall time complexity of the
VATDC_CCRI algorithm is O(4.25n + x1

2 + x2
2 + . . .

+ xi
2), which is between the sliding window algorithm and

the DP algorithm. When the number of samples of a single
trajectory increases, the overall running efciency of the
algorithm will have a more obvious advantage of the al-
gorithm’s running speed compared with the classical DP
algorithm.

In summary, the VATDC_CCRI algorithm proposed in
this paper is slightly higher than the classical DP algorithm and
sliding window algorithm in terms of space complexity.
However, the overall space complexity still belongs to the same
level. As for the time complexity, the VATDC_CCRI algorithm
directly reduces a large number of calculations in the trajectory
compression process by identifying the focus region of the
trajectory, but, because the fnal compression result is a com-
bination of the two algorithms, its time complexity is between
the sliding window algorithm and the DP algorithm.

4. Vessel Trajectory Compression Experiments

4.1. Compression Evaluation Indicators. Te compression
evaluation index is an essential basis for evaluating the
compression efect of the algorithm [38]. In this paper, the
performance of the algorithm is investigated using fve
metrics: trajectory similarity (TS), trajectory compression
rate (CR), length loss rate (LLR), algorithm running time,
and algorithm overall efciency (AOE). It is worth men-
tioning that the trajectory similarity is calculated using the
dynamic time warping (DTW) algorithm, which can de-
scribe the relation vessel between two discrete time series
using a time warping function and obtain the corre-
sponding warp path distance (WPD) accurately. Te al-
gorithm is often used in pattern recognition and
information retrieval due to its excellent data-matching
efect [39]. COE is a comprehensive metric proposed in this
paper to evaluate the compression performance of the
algorithm, which combines the characteristics of four
metrics: TS, CR, LLR, and algorithm running time. Under
standardizing the index data, CR is the positive index, and
TS, LLR, and algorithm running time are the negative
indexes. Te larger the positive indicator, the better the
algorithm’s efect; the smaller the negative indicator, the
better the algorithm’s efect.Te calculation principles of all
indicators are shown in equations (6)–(11):
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WPD(i, j) � d qi, cj 

+ min c(i − 1, j − 1), c(i − 1, j), c(i, j − 1) ,

(6)

TS � DTW(q, c)

� 
n

i�1


m

j�1
c(i, j),

(7)

CR �
q
′
− c
′

q
′ × 100%, (8)

LLR �
Q − C

Q

�


q′−1
i�1 qiqi+1


 − 

c′−1
j�1 cjcj+1






q′−1
i�1 qiqi+1




× 100%,

(9)

S(X) �
X


n
i�1Xi

, (10)

COE �
S(CR)

S(TS)∗ S(LLR)∗ S(time)
, (11)

where q and c are the Vessel trajectory data before and after
compression and equations (6) and (7) introduce the cal-
culation principle of the DTW algorithm. qi and cj in
equation (6) are the elements in q and c and d ( qi, cj) is the
Euclidean distance of qi and cj. q’ and c’ in equation (8) are
the number of trajectory points before and after compres-
sion, respectively. Q and C in equation (9) are the total
lengths of the trajectory before and after compression and X
in Equation (10) represents the value of the same metric for
diferent algorithms.

4.2. Trajectory Compression Experiments

4.2.1. Experimental Environment and Comparison
Algorithms. In this paper, a vessel trajectory compression
algorithm named VATDC_CCRI is proposed, which is
implemented by MATLAB using Windows 10 operating
system with 64 bit architecture. Te hardware environment
consists of an Intel Core I5-7200 processor, 4 GB RAM, and
a 128GB hard disk. Te implementation of the algorithm is
presented in Section 3 and evaluated at the algorithm
complexity level. In order to compare the actual efect of the
VATDC_CCRI algorithm, three representative algorithms
in the feld of trajectory compression are selected for
comparison, which are the DP algorithm, DP-Slide algo-
rithm, and angle-speed algorithm. Te DP algorithm takes
0.8 times the vessel length proposed by Zhang et al. [10] as
the data threshold, and the DP-Slide algorithm is an algo-
rithm considering the characteristics of vessel navigation
proposed by Wei et al. [21]. It combines the features of the
DP algorithm and sliding window algorithm and can retain
relatively complete vessel trajectory information. Te angle-

speed algorithm is an algorithm proposed by Zhu andMa [7]
to compress vessel trajectories considering the processing
mode. Te algorithm compresses the trajectory points by
analyzing the rate of change of steering and speed. Te fnal
experiment proves that the angular velocity algorithm can
efectively compress vessel trajectory data online with low
time complexity. Compared with the VATDC_CCRI algo-
rithm proposed in this paper, the DP algorithm focuses on
the overall positional change of the trajectory to judge
whether the trajectory points should be compressed or not,
while the VATDC_CCRI algorithm is able to comprehen-
sively examine the spatial and temporal dimensions. Te
DP-Slide algorithm is a simple combination of the com-
pression results of the DP algorithm and the slide algorithm.
In contrast, the VATDC_CCRI algorithm greatly improves
the algorithm’s compression results through the focused
region. Te angle-speed algorithm mainly considers the rate
of change of speed and steering angle in vessel trajectory, and
its operating framework is the sliding window algorithm,
which is also included in the VATDC_CCRI algorithm
proposed in this paper.

4.2.2. Comparison of Single AIS Vessel Trajectory Data
Compression. Te experiment is divided into two parts. Te
frst part examines the trajectory similarity, length loss rate,
and the overall efciency of the algorithm on a single tra-
jectory. Te experimental data are obtained from the AIS
trajectory data of vessel number MMSI 210698000 on 13–15
April 2019. It contains 570 trajectory information points,
each retaining information such as vessel latitude and
longitude and vessel heading speed. Te visualization results
of the four compression algorithms are shown in Figure 12,
where the hollow blue circles are the initial trajectory point
markers and the red “∗ ” are the compressed trajectory point
markers. Te evaluation metrics are shown in Table 1, with
the best-performing data marked in bold black font.

In the experiments, the VATDC_CCRI algorithm de-
termines the speed and steering angle changes based on the
parameters identifed in Section 3, i.e., 0.8 times the vessel’s
length, the upper quarterback point to identify the focal area,
and 1.6 times the standard deviation, and the DP algorithm
uses 0.8 times the vessel’s length, the DP-Slide algorithm
uses 0.8 times the vessel’s length and 1.6 times the standard
deviation to determine the speed and steering angle changes,
and the angle-speed algorithm is controlled by the standard
deviation of the rate of change to be consistent with the
compression rate of the VATDC_CCRI algorithm. In
general, the larger the trajectory compression rate, the lower
the trajectory similarity, and the higher the length loss rate.
According to the performance of each algorithm in terms of
trajectory similarity and length loss rate, the VATDC_CCRI
algorithm and DP-Slide algorithm proposed in this paper
perform better. Teir trajectory similarity and length loss
rate are only 0.0306 and 2.96%, respectively, which is not
a big diference. In comparison, the VATDC_CCRI algo-
rithm has a diference of 0.09% or more in the similarity of
the trajectory compared with the DP algorithm and angle-
speed algorithm. Compared with the DP algorithm and
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angle-speed algorithm, the VATDC_CCRI algorithm has
more than 0.09 similarity and more than 3% reduction in the
length loss rate. In terms of trajectory compression rate, the
DP algorithm has the best performance, reaching 91.57%,
followed by the VATDC_CCRI algorithm, and the DP-Slide
algorithm has a lower compression rate because it combines
all the trajectory points of the two algorithms. Te angle-
speed algorithm performs the best in terms of runtime, while
the VATDC_CCRI algorithm and DP algorithm perform
similarly in terms of runtime due to the reasonable threshold
selection of the DP algorithm and the small amount of
trajectory data. Te DP-Slide algorithm has the worst per-
formance in runtime because it needs to run the DP algo-
rithm and the sliding window algorithm on the whole

trajectory data and then integrate them. In terms of com-
prehensive operation efect (COE), the VATDC_CCRI al-
gorithm has the best efect, followed by the DP-Slide
algorithm and fnally the DP algorithm with angle-speed
algorithm. Terefore, the VATDC_CCRI algorithm pro-
posed in this paper can meet the quality requirements of
vessel trajectory compression, and compared with other
trajectory compression algorithms, the VATDC_CCRI al-
gorithm has advantages in trajectory similarity, compression
rate, length loss rate, and operation time.

4.2.3. Comparison of Compression Efects of Regional AIS
Vessel Trajectory Data. Te second part examines the
compression efect of regional AIS vessel trajectory data,
tests the stability of the VATDC_CCRI algorithm, and
examines the efect of the time complexity of diferent al-
gorithms. In this paper, vessel trajectory data from 22 to 27
April 2019 in the Cheng San Jiao region are selected for the
experiments. Due to the infuence of conditions such as
climate and equipment damage during the transmission and
storage of AIS data, there are outliers and missing data in the
original vessel trajectory [40]. Terefore, before vessel tra-
jectory compression, the original trajectory data must be
preprocessed, and this process includes two parts; one part is
to eliminate the vessel trajectory with more missing data and
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Figure 12: Algorithm compression efect graph.

Table 1: Algorithm performance parameters.

Algorithms TS CR (%) LLR (%) RT (s) COE
(%)

VATDC_CCRI 0.1571 85.95 13.26 0.2169   .94
DP algorithm 0.2515 91.57 21.5 0.2781 10.87
DP-Slide algorithm 0.1265 81.9 10. 0.4535 24.73
Angle-speed
algorithm 0.3463 85.77 16.54 0.186 14.37

Bold values represent best-performing data.
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abnormal values, and in this part, there is still no efective
algorithm to distinguish the normal data from the in-
complete, missing, and abnormal data, so the process can
only be fltered by hand. In the other part, for the trajectory
data with fewer missing and abnormal values, we use the
algorithm based on statistical theory and sliding window
proposed by Yan et al. [22]. In the other part, for the tra-
jectory data with few missing values and outliers, we use an
algorithm proposed by Ran et al. [22] based on statistical
theory and sliding window for identifcation, supplemented
and corrected by linear interpolation, and then data com-
pression by four algorithms covered in Section 4.2.2. Tere
are 779 vessel trajectories after cleaning, involving 576819
trajectory points. Te original trajectory distribution is
shown in Figure 13, and the comprehensive trajectory
compression efect of diferent algorithms is shown in
Figure 14.

Te trajectory data compression results of the four al-
gorithms in Figure 14 show that the DP algorithm has
a higher compression rate. In contrast, the angle-speed al-
gorithm is the result of adjusting the amount of data
compressed according to the algorithm in this paper, which
cannot guarantee the integrity of the vessel’s trajectory shape
features and therefore is prone to having too many missing
parts. Te experimental conditions of the comprehensive
compression rate, length loss rate, and compression time of
all algorithms are shown in Figures 15 and 16. Similar to the
experimental results for individual trajectories, the length
loss rates of the VATDC_CCRI and DP-Slide algorithms are
14.25% and 11.24%, respectively, for a large number of vessel
trajectory datasets, which is a signifcant advantage com-
pared to the other algorithms. Compared with the com-
pression rate and running time of the DP-Slide algorithm,
the compression rate and compression time of the

Figure 13: Distribution of original trajectory points.

(a) (b)

(c) (d)

Figure 14: Plot of trajectory compression results for diferent algorithms. (a) VATDC_CCRI algorithm. (b) DP algorithm. (c) DP-slide
algorithm. (d) Angle-speed algorithm.

Journal of Advanced Transportation 15



VATDC_CCRI algorithm are, respectively, increased by
7.31% and 16.84 s. In addition, under the same threshold as
the DP-Slide index, the VATDC_CCRI algorithm has
a higher compression ratio. Usually, the compression rate of
the vessel’s trajectory data compression algorithm is directly
proportional to the length loss rate. Tat is, the increase in
the compression rate will also cause an increase in the length
loss rate. However, the VATDC_CCRI algorithm proposed
in this paper can signifcantly improve the algorithm’s
performance in terms of compression rate and compression
time while sacrifcing less length loss rate and has more
obvious advantages compared with traditional trajectory
compression algorithms.

5. Conclusions

Vessel trajectory data compression is crucial for mining
maritime trafc information and improving the efciency of
maritime data processing. In this paper, a vessel trajectory

data compression algorithm (VATDC_CCRI) considering
critical region identifcation is proposed, and experiments
on single and multiple vessel trajectories prove the stability
of the algorithm. Compared with the current major similar
research results, the VATDC_CCRI algorithm has three
innovative points. First, the algorithm divides the critical
regions of vessel trajectory operation according to the degree
of change of trajectory points, takes the critical regions as the
key to keeping the shape of vessel trajectories, and preserves
the trajectory shapes in these regions by the DP algorithm.
Second, the VATDC_CCRI algorithm combines the features
of the DP algorithm and sliding window algorithm to im-
prove the utilization of vessel trajectory information, and the
compressed data better retain the spatiotemporal and shape
features of vessel trajectory. In addition, compared with
other compression algorithms, the compression ratio is
higher, and the compression time is shorter under the same
conditions.Tird, in most cases, a single vessel trajectory has
a large span, so a single trajectory threshold only guarantees
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Figure 15: Compression rate and average length loss rate of diferent algorithms.

VATDC_CCRI DP Angle-Speed 
Algorithm 

17.46

26.77

34.3

14.20.1634

0.2357

0.1439

0.2874

DP-Slide 
0

5

10

15

20

25

30

35

40

C
om

pr
es

sio
n 

tim
e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Av
er

ag
e t

ra
je

ct
or

y 
sim

ila
rit

y

Figure 16: Compression time and average trajectory similarity for diferent algorithms.
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the efective extraction of the whole trajectory information.
However, the VATDC_CCRI algorithm can identify critical
regions where vessel trajectories vary, which means that
more critical regions can be extracted when faced with
trajectories with a large amount of data. Tese regions will
have the opportunity to be compressed using diferent
thresholds, further improving the quality of compression,
which is an important guide for the study of navigational
regions and routes. However, the research in this paper also
has some things that could be improved. For example, in the
experiments, due to the need to control the compression rate
to compare the performance of diferent algorithms in terms
of trajectory similarity and length loss rate, this paper
controls the compression rate of the angle-speed algorithm
through the standard deviation, which may lead to the
compression efect of this algorithm that is not optimal. In
addition, more parameters are introduced in the
VATDC_CCRI algorithm.
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