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Tis paper studies a class of gradient-descent heuristic algorithms for the bi-level demand adjustment problem (DAP), which
seeks to adjust origin-destination (OD) matrices based on observed link fows in congested transportation networks. We frst
present a general gradient-descent solution framework for the bi-level DAP and then examine and further develop its two building
blocks, namely, the gradient approximation and stepsize calculation. Tis paper presents two gradient approximation and four
stepsize calculation methods, of which two stepsize methods are newly developed. Similarities and diferences between these
algorithms, as well as the relevant implementation issues are discussed in great detail. Te numerical results show that algorithms
employing the new stepsize calculation strategies consistently outperform existing algorithms in terms of both computational
precision and efciency.

1. Introduction

OD matrices (ODM) are essential inputs for many trans-
portation models and applications, ranging from trans-
portation planning to environmental impact assessment [1].
Despite the signifcance of ODM, accurately and efciently
estimating the travel demand between diferent OD pairs
within a transportation network remains a persistent
challenge in the feld of transportation. Early methods
mainly rely on large-scale sampled surveys like home in-
terviews and roadside surveys, which are often criticized for
being time-consuming, costly, and likely to produce biased
and out-of-date results [2]. Given that the trafc count data
on some selected links are much easier to obtain, a class of
DAP that aims to estimate ODM from observed link fows
has been extensively studied by many researchers since the
pioneering work of Low [3]. Te reader is referred to pre-
vious research [4, 5] for a comprehensive review of DAP.

DAP can be viewed as the reverse process of the trafc
assignment problem because it takes observed link fows as
input and seeks to determine the most probable ODM that

would reproduce the link fows observed when assigned to
the network [4]. In general networks; however, the in-
formation provided by observed link fows is insufcient to
reliably infer a unique ODM because there are typically
much more OD pairs than links. It should be noted that
while the number of links is typically proportional to the
node number, the number of OD pairs is typically pro-
portional to the square of the node number. DAP thus
requires some other information in addition to observed link
fows, typically in the form of past data like historical ODM,
which may come from earlier surveys or trip distribution
models [6]. DAP models can therefore be broadly defned as
a bi-level optimization problem [7], where the upper-level
problem seeks to minimize the deviation between the ad-
justed ODM and the target matrix as well as the deviation
between the assigned link fows and the observed link fows,
and the lower-level problem is a trafc assignment problem
that implicitly defnes the mapping from ODM to link fows.

Depending on which type of route-choice assumption is
employed in the lower-level problem, a variety of DAP
models have been proposed in the literature, such as the
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proportion assignment models [8–12] and the user equi-
libriummodels [13–16]. In the frst class of models, fxed link
or route choice proportions are typically used to model the
relationship between ODM and link fows. Tis in-
dependence assumption between route choice behavior and
demand levels has been widely acknowledged to be im-
practical when congestion efects are considered in travel. In
contrast, the second class models the mapping between
ODM and link fow pattern as the user equilibrium trafc
assignment problem, in which the route choice proportions
may vary in response to the adjustment of ODM during the
estimation process. Since the optimal solutions of the user
equilibrium trafc assignment problem can be reformulated
as nonlinear complementary conditions, DAP with the user
equilibrium assumption can also be formulated as mathe-
matical programming with equilibrium constraints (MPEC),
which presents several essential difculties for the solution of
DAP: First, it is a NP-hard problem [17] with poor math-
ematical properties, such as nonconvexity and non-
diferentiability. Second, the mapping relationship between
ODM and equilibrium fow is implicitly defned by the
lower-level problem, rather than being explicitly known [18].
Tird, the dimension of the actual ODM is extremely large,
which poses a huge challenge for solving it efciently [18].

Given the bi-level nature of DAP problems, most
existing implementable algorithms for DAP are heuristic
gradient methods, and the diferences among them are
primarily determined by how the gradient of the objective
function is approximated. Spiess [13] designed a heuristic
algorithm based on gradient descent by assuming that the
path choice proportion is a local constant and calculating the
approximate gradient of the objective function with respect
to the OD demand. Yang [19] proposed the bi-level pro-
gramming model for DAP based on sensitivity analysis and
calculated the approximate value of the upper-level objective
function derivative using the sensitivity analysis method
proposed by Tobin and Friesz [20], which iteratively solves
the upper- and lower-level problems. Chen and Florian [21]
reformulated the DAP problem as a single-level optimiza-
tion problem using general bi-level programming theory,
where the marginal function of the lower-level user equi-
librium problem is explicitly used as a constraint and the
gradient function of the implicit marginal function is de-
rived. Lundgren and Peterson [16] proposed a projection
gradient method for adjusting ODM by solving a quadratic
programming problem to obtain an approximate gradient
value, which can be applied to solving medium and large
networks. Walpen et al. [18] improved the algorithm pro-
posed by Lundgren and Peterson [16] and proposed a de-
scent scheme based on the gradient approximation of the
DAP objective function.

As with any other gradient technique for mathematical
programs, the convergence performance of gradient algo-
rithms for DAP is afected not only by the quality of the
descent direction but also by the method used to determine
the line search stepsize. It should be noted that the choice of
stepsize calculation approaches can have a signifcant efect
on the overall convergence precision and efciency of DAP
algorithms because: (1) DAP is not diferentiable at some

points, making the choice of stepsize even more crucial. If
the stepsize is too large, the algorithm may fail to converge
and overshoot the minimum. If the stepsize is too tiny, the
technique may converge slowly, which is computationally
expensive and unsuitable for large-scale tasks. (2) Te
majority of line search methods for identifying a stepsize
typically entail many evaluations of the objective function
[22], and each evaluation necessitates the computation of
a trafc assignment problem, which can be computationally
costly for large trafc networks. Consequently, the efciency
and accuracy of the solving procedure are highly dependent
on the stepsize approaches employed. However, few studies
have undertaken research on the DAP stepsize de-
termination approach.

Tis paper presents an algorithmic framework that
generalizes the vast majority of previously presented ap-
proximate gradient algorithms for DAP. Within this
framework, diferent gradient approximation methods and
stepsize methods can be fairly compared to reveal their
similarities and diferences and more signifcantly, to pro-
vide insight into the observed computational performance
that can be used to design more efcient DAP algorithms.
Combining several gradient approximation methods and
stepsize calculation methods, the paper also contributes
several new algorithms to the family of DAP algorithms.
First, it introduces new strategies for computing the stepsize,
which, despite being essential to the algorithm’s efective-
ness, have not been extensively explored in the literature.
Second, a number of new heuristics designed to solve the
problem in large-scale networks are proposed for DAP. Our
numerical experiments corroborate that the selection of
stepsize methods employed in the search process has a sig-
nifcant efect on the performance of the algorithm.

Te remainder of the paper is organized as follows:
Section 2 introduces notations, formulations, and the al-
gorithm framework for DAP. Section 3 presents the tech-
niques for estimating gradient. Section 4 suggests new
approaches to stepsize calculation. Section 5 demonstrates
the efectiveness of the new algorithm using a comprehen-
sive set of numerical experiments. Te last section concludes
the paper with a summary of the main fndings and potential
directions for future research.

2. Formulations and Algorithm Overview

Let us defne G � (N, A, I) as a congested trafc network,
where N is the set of nodes and A is the set of links, and I

denotes the set of OD pairs. Defne d � di􏼈 􏼉, i ∈ I as the OD
demand matrix; 􏽢d � 􏽢di􏽮 􏽯, i ∈ I is the historical OD demand
matrix; x � xa􏼈 􏼉, a ∈ A is the trafc fow vector;
􏽢x � 􏽢xa􏼈 􏼉, a ∈􏽢A is the observed trafc fow vector; ta, a ∈ A is
the cost of link a; hk, k ∈Ki, i ∈ I is the fow of the path k,
where Ki denotes the set of paths used by OD pair i. δak

represents the relationship between a link and a path, if the
path k uses link a, the value is 1; otherwise, it is 0. Tis paper
formulates DAP as a bi-level programming problem,
employing the generalized least squares (GLS) method. Te
GLS method ofers the advantage of allowing a weighted
combination of the historical OD demand matrix and
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observed link fow, considering the relative accuracy of these
data sources [23]. Tis method has been widely adopted by
many researchers [16, 18, 24, 25]. A detailed discussion can
be found in Cascetta [26]. Tus, the bi-level programming
formulations of DAP can be expressed as follows:

(U)minZ(d) � θ1 · (d − 􏽢d)
T

· (d − 􏽢d)

+ θ2 · (x(d) − 􏽢x)
T

· (x(d) − 􏽢x),
(1a)

s.t.d≥ 0, (1b)

where the link fow x is the optimal solution of the lower user
equilibrium assignment model formulated as follows:

(L)minf(x) � 􏽘
a∈A

􏽚
xa

0
ta(w)dw, (1c)

s.t. 􏽘
k∈Ki

hk � di, i ∈ I,
(1d)

􏽘
i∈I

􏽘
k∈Ki

δakhk � xa, a ∈ A,
(1e)

hk ≥ 0, k ∈ Ki, i ∈ I, (1f)

where θ1 and θ2 denote, respectively, the relative confdence
level of the information contained about the historical OD
demand and the observed trafc fow.

Te objective function (1a) is a least squares function that
aims to reduce the variance between the adjusted OD de-
mand matrix and the historical OD demand matrix, as well
as the error between the link fow generated by the adjusted
OD demand and the observed link fow. It is worth noting
that the signifcance of matching the adjusted OD demand
with the historical OD demand and the adjusted link fow
with the observed link fow is measured by the coefcients θ1
and θ2, respectively. It is reasonable to expect θ1 and θ2 to be
close to 1 and 0, respectively, if the historical OD demand is
determined from a large sample of high-quality data and the
counting devices used to observe link fow are outdated and
prone to errors. On the other hand, the θ1 close to 0 and the
θ2 close to 1 are more appropriate if the veracity of historical
OD demand is low and the observed link fow data’s veracity
is high. In practice, the values of θ1 and θ2 can be modifed
based on the specifc situation.

Te lower-level problem (1c)–(1f) is a user equilibrium
assignment model that represents the mapping process from
OD demand d to the equilibrium link fow x, by minimizing
the Beckmann function (1c) in order to fulfll the user
equilibrium principle. As a constraint of the bi-level pro-
gramming model, the lower-level problem itself is an
equilibrium optimization problem. Because the feasible
domain is typically nonconvex, fnding the global optimal
solution is generally difcult. As a result, heuristic algo-
rithms and local search strategies are used in this research to
fnd the local optimal solution in the initial subdomain. Te
acquisition of the optimal solution depends on the selection
of the initial solution chosen.

We next present a coherent algorithmic framework that
can accommodate various gradient approximation and
stepsize calculation methods. Tis framework will frst es-
timate the gradient of the objective function at the current
point and project it into the feasible region to obtain a de-
scent direction, and then determine an appropriate stepsize
to move along the feasible descent direction to obtain
a sufcient decrease in the objective function value. Tis
procedure is carried out until the convergence criterion is
met. Te algorithm framework may be described in
Algorithm 1.

It is noteworthy that the algorithm can accurately solve
the gradient of the objective function and construct the
descent direction when the objective function is diferen-
tiable at the current point. However, when the objective
function is nondiferentiable at certain points, the gradient
of the objective function may not exist, and partial de-
rivatives can be used to express the objective function’s
descent direction. Te algorithm presented in this paper
optimizes the objective function by approximating its gra-
dient and selecting an appropriate stepsize, which is ap-
plicable for real-world applications because exact solutions
for gradients and stepsizes are theoretically and computa-
tionally demanding and are not conducive to solving large
networks.

3. Approximation of the Gradient

In order to construct the descent direction of the upper-level
model, it is necessary to determine the rate of change in link
fow as a result of OD demand fuctuation during the process
of solving DAP. Conceptually, the link fow x can be defned
as a function of OD demand d, i.e., xa(d), a ∈ A. Ten, the
objective function of the upper-level model can be refor-
mulated as follows:

min Z(d) � θ1 · Z1(d) + θ2 · Z2(x(d)). (2a)

Consequently, the gradient of Z(d) can be expressed as
follows:

∇Z(d) � θ1 ·∇dZ1(d) + θ2 · ∇d

x(d) · ∇xZ2(x(d)),

(2b)

∇dZ1(d) �
zZ1(d)

zdi

􏼨 􏼩, i ∈ I, (2c)

∇dx(d) �
zxa(d)

zdi

􏼨 􏼩, a ∈ A, i ∈ I, (2d)

∇xZ2(x(d)) �
zZ2(x(d))

zxa

􏼨 􏼩, a ∈ 􏽢A. (2e)

Note that the partial derivatives zZ1/zdi􏼈 􏼉 and
zZ2/zxa􏼈 􏼉 have analytical expressions that are relatively easy
to calculate. However, since the relationship between the
link fow x and OD demand d is implicitly defned, it is
impossible to directly represent it through mathematical
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equations. It is therefore challenging to calculate the gradient
for the nonlinear implicit function xa(d), which is repre-
sented by the Jacobian matrix J � zxa/zdi􏼈 􏼉. Te gradient
will be calculated in this paper using both the linear and
quadratic approximation approaches.

3.1. Linear Approximation. Defne pk as the proportion of
trafc demand that chooses to use path k, and to facilitate the
sensitivity analysis, we shall use pk to reformulate equation (1e)
as follows:

pk �
hk

di

, k ∈ Ki, i ∈ I, (3a)

xa � 􏽘
i∈I

di 􏽘
k∈Ki

δakpk, a ∈ A.
(3b)

Assuming that the path fow proportion pk of path k

remains constant in the neighborhood, i.e., equation (3c)
holds in the neighborhood of the current OD demand d and
the Jacobian matrix J of the linear approximation can be
obtained as shown in the following equation:

zxa

zdi

� 􏽘
k∈Ki

δakpk, a ∈ A, i ∈ I. (3c)

Worth noting is that the calculation of the Jacobian
matrix J in the linear approximation depends on the path
fow solution used, which means diferent path fow solu-
tions from the lower user equilibrium assignment model
may result in diferent computational results.

3.2. Quadratic Approximation. When the mapping between
ODM and link fow pattern is modelled as the user equilib-
rium trafc assignment problem, sensitivity analysis methods
are usually required to determine the rate of change in link

fow as a result of OD demand fuctuation. In the literature,
there are two types of sensitivity analysis methods that can be
used to compute the Jacobian matrix J. Te frst is Tobin and
Friesz’s [20] restricted network technique, which has been
extensively investigated and employed since its publication.
However, researchers have discovered several limitations in its
application: (1) the strict complementarity condition is too
strong and limits the restricted network method’s application
scope, (2) the method of selecting nondegenerate extreme
points is not always efective, and (3) when the equilibrium
solution is located at nondiferentiable points, using the re-
stricted network method may result in incorrect results
[6, 28, 29]. Te second method constructs an auxiliary qua-
dratic programming problem to compute the directional
derivatives for eachODpair following the results of Patriksson
[30]. When the objective function is diferentiable at the
current point, the exact gradient can be obtained [30]. Te
quadratic approximation method is more appropriate for
computing large-scale trafc networks because it does not rely
on direct matrix calculations and its problem structure is
similar to the original equilibrium problem, allowing the
equilibrium solution algorithms to be applied with minor
modifcations. As a result, in what follows the quadratic
approximation method will be used to compute the Jacobian
matrix J, as demonstrated in Lundgren and Peterson [16].Te
quadratic programming problem can be expressed in terms of
current OD demand d under a given OD pair 􏽥i perturbed by
a unit amount of change as follows:

min F h′( 􏼁 �
1
2

· x′( 􏼁
T

·∇t x∗( 􏼁 · x′, (4a)

s.t.Λ · h′ � ρ, (4b)

x′ � Δ · h′. (4c)

Step 1: Initialization: Determine the initial OD demand d0; set the number of iterations l � 0; the maximum number of iterations
lmax; and the convergence accuracy ε1.
Step 2: Solve the lower-level problem: Use the improved gradient projection (iGP) algorithm [27] to solve the user equilibrium
assignment to obtain the equilibrium trafc fow x∗l and calculate the upper-level objective function value Zl.
Step 3: Estimate the gradient of the objective function ∇Z(dl). Te descent direction is the negative gradient direction, i.e.
rl � rl

i􏼈 􏼉 � − ∇Z(dl), i ∈ I. By utilizing the following equations, the nonnegative condition of the OD demand is employed to assess
the necessity of adjusting the descent direction rl, thereby obtaining a search direction rl.
rl � rl

i􏽮 􏽯, i ∈ I

rl
i �

r
l
i,ifd

l
i > 0, or if d

l
i � 0 and r

l
i > 0,

0, otherwise,
􏼨

Step 4: Check the convergence condition: Determine whether the convergence condition (RI< ε1 or l> lmax) is satisfed; if yes, the
algorithm terminates; if no, go to Step 5.
RI � |(Zl − Zl− 1)/Zl− 1|

Step 5: Determine the stepsize:
(1) Determine the maximum step αl

max, so that the adjusted OD demand all satisfy the nonnegative constraints.
αl
max � min +∞, − dl

i/r
l
i: rl

i < 0, i ∈ I􏽮 􏽯

(2) Search for the optimal step αl, so that it can minimize Z(dl + αl · rl), αl ∈ [0, αl
max].

Step 6: Update: Set dl � dl + αl · rl, l � l + 1 and go to Step 2.

ALGORITHM 1: Te heuristic gradient algorithm framework for DAP.
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In these equations, vector h′ is made up of the partial
derivative of the path fow hk with respect to a unit per-
turbation in the OD demand d􏽥i, while vector x

′ is made up of
the partial derivative of the link fow xa with respect to a unit
perturbation in the OD demand d􏽥i. In addition,
Λ � Λik􏼈 􏼉, k ∈Ki, i ∈ I represents the OD-path incidence
matrix, with a value of 1 if path k is used by OD demand d􏽥i,
and 0 otherwise; ρ represents the perturbation in OD de-
mand, with all elements being zero except for element 􏽥i,
which is 1; Δ � δak􏼈 􏼉, k ∈Ki, i ∈ I, a ∈ A represents the link-
path incidence matrix, with a value of 1 if link a is on path k,
and 0 otherwise; vector x∗ represents the equilibrium link
fow under OD demand d, and vector ∇t(x∗) is made up of
the frst derivative of the link cost ta(x∗a ) with respect to the
link fow x∗a , i.e., ∇ta(x∗a ). Tis paper assumes that the link
cost function is separable, then ∇t(x∗) � ∇ta(x∗a )􏼈 􏼉, a ∈ A,
the objective function (4a) can be expressed as
1/2􏽐a∈A∇ta(x∗a ) · (xa

′)2.
Te quadratic programming problem can be interpreted

as a path-based user equilibrium problem in which, under
the current equilibrium fow solution, an additional unit
trafc demand is assigned to OD pair 􏽥i, and the consequent
change of cost is equal for each path in the same OD pair.
Te quadratic programming model difers from the original
user equilibrium problem in several aspects: (1) the original
link cost function is replaced by a linearized link cost
function with a slope equal to the frst-order derivative of the
link cost function at the equilibrium solution; (2) the
equilibrium path set for the quadratic programming model
is fxed at the path set for the original equilibrium solution;
(3) only the demand of the perturbedOD pair􏽥i is 1, while the
demand of the other OD pairs is 0; and (4) there is no
nonnegative constraint since h′ and x′ may be positive or
negative.

It should be noted that when the objective function is
diferentiable at the current point, i.e., the current equi-
librium fow solution satisfes the strict complementary
condition, the optimal solution of the quadratic pro-
gramming model can be interpreted as a gradient, which is
unique and independent of the choice of equilibrium path
set. Tis difers from the linear approximation method, as
diferent path fow solutions can yield distinct approximate
gradients.

Problem (4a)–(4c) is a quadratic programming model
with equation constraints that can be solved by the typical
projection gradient method [31]. As demonstrated in
Lundgren and Peterson [16], the projected gradient w of the
objective function can be expressed as follows:

wk � σk − 􏽥σi, k ∈ Ki, i ∈ I, (5a)

μa � ∇ta x
∗
a( 􏼁 · x′a. (5b)

Note that σk can be interpreted as the path cost of path k

given the link cost being μa, i.e., σk � 􏽐a∈Aδakμa, where δak is
1 if the link a is on path k and 0 otherwise, and 􏽥σi is the
average value of σk for all paths in OD pair i.

Te steps of the algorithm for solving the quadratic
program can be outlined as shown in Algorithm 2.

4. Calculation of Stepsize

In every iteration of Algorithm 1, we need a proper method
to determine a stepsize, which typically plays a crucial role in
ensuring the accuracy and efcacy of the whole algorithm.
Next, we will discuss two distinct stepsize calculation
methods that are especially tailored to solve large-scale DAP
problems.

4.1. Enhanced Armijo Method. In practice, there are several
methods to determine the stepsize in the gradient descent
algorithms. For example, the stepsize can be determined by
iteratively solving a one-dimensional optimization problem
with an exact line search algorithm [32]. However, such
a method may be too much expensive in our framework
because it may require numerous evaluations of the objective
function of the process. Terefore, the nonexact step search
method named Armijo strategy [33] is employed in this
study, which is based on successive reductions of the stepsize
until a form of descent is achieved that guarantees con-
vergence. Te key idea of the Armijo strategy is to begin
from the maximum feasible search stepsize αl

max that satisfes
the demand’s nonnegative condition, noting that l repre-
sents the iteration number of the DAP algorithm. For a given
stepsize αl, the objective function Z(dl + αl · rl) is then
evaluated. If the objective function value is substantially
improved, i.e., if Z(dl) − Z(dl + αl · rl)> ε2, where ε2 is
a predefned threshold, the search algorithm terminates;
otherwise, the stepsize is reduced to αl � αl/θ based on
a predefned parameter θ> 1, and the objective function
value is evaluated again. Te procedures for applying the
Armijo rule to calculate the stepsize used in Algorithm 1 is
summarized as follows:

Two aspects of the algorithm described above could have
a signifcant impact on its computational efciency. (1) Each
search iteration (c.f. Step 2.2 of Algorithm 3) requires solving
a trafc assignment problem to obtain the updated link fow
solution in accordance with the adjusted stepsize, which
entails a signifcant computational burden and has a sig-
nifcant impact on the whole algorithm’s performance in
large networks. (2) A uniform stepsize (c.f. Step 2.4 of Al-
gorithm 3) for all OD pairs does not refect the varied
potential in the descent direction of each OD pair and may
severely limit the objective function’s descent in the current
direction due to the feasible constraints imposed by
a particular OD.

In light of the above observations, we propose using the
following frst-order Taylor expansion method to approxi-
mately estimate the equilibrium link fow solution xj at each
iteration of Algorithm 3 (cf. Step 2.2 of Algorithm 3):

xj dl
+ αj

· rl
􏼐 􏼑 ≈ x dl

􏼐 􏼑 + ∇dx dl
􏼐 􏼑 · αj

· rl
􏼐 􏼑, (6)

where x(dl) is the equilibrium link fow corresponding to
OD demand dl, and ∇dx(dl) represents the gradient of link
fow solution with respect to the OD demand at dl, which
can be estimated using the approximate gradient method
described in Section 3. Note that although the precision of
the estimated xj and Z(l,j) in each iteration of the line search

Journal of Advanced Transportation 5



algorithm may be decreased to some extent by employing
this approximation method, the convergence efciency of
the overall algorithm could be signifcantly enhanced in
solving large-scale problems, as demonstrated by the nu-
merical experiments in Section 5.

Te second aspect of the concerns may be addressed by
computing a distinct stepsize αl

i for each OD pair i ∈ I, i.e.,
a stepsize vector αl � αl

i􏼈 􏼉, i ∈ I for Algorithm 1. Tis can be
realized by simply defning a separate maximum feasible
stepsize αl

maxi for each OD pair and then applying the Armijo
strategy to ensure a signifcant decrease in the objective. To
this end, we defne a diagonal matrix αl

max with its di-
mensions equal to the number of OD pairs, and the max-
imum feasible stepsize αl

maxi for OD pair i is calculated by

αl
maxi �

min c, − d
l
i/r

l
i􏽮 􏽯, r

l
i < 0,

c, r
l
i > 0.

⎧⎪⎨

⎪⎩
, i ∈ I, (7a)

where c is the preset maximum step parameter, e.g., c � 100.
Accordingly, the objective function, the trail stepsize in Al-
gorithm 3, and formulation (6) can be updated accordingly to

α0 � αl
max, (7b)

Z
(l,j)

� Z dl
+ αj

· rl
􏼐 􏼑, (7c)

αj
� αj

· θ, (7d)

xj dl
+ αj

· rl
􏼐 􏼑 ≈ x dl

􏼐 􏼑 + ∇dx dl
􏼐 􏼑 · αj

· rl
􏼐 􏼑, (7e)

where α0, αj, and θ are diagonal matrices with dimensions
corresponding to the number of OD pairs. All diagonal
elements of θ are equal to 1/θ. Furthermore, rl denotes the
search direction defned in Algorithm 1.

As a result, the Armijo strategy presented in Algorithm 3
can be enhanced by incorporating the above two im-
provement methods, leading to an enhanced Armijo method
described in Algorithm 4.

Te update formula in Step 6 of the corresponding
Algorithm 1 is replaced with

dl
� dl

+ αl
· rl

. (8)

It is anticipated that the enhanced Armijo method will
outperform the Armijo method in terms of both compu-
tational efciency and solution precision. First, it is evident
that using the frst-order Taylor approximation rather than
the user equilibrium assignment to update fow solutions
could save a substantial amount of computational time at the
expense of a certain degree of accuracy loss. Second, the use
of the OD-specifc stepsize strategy can partially mitigate for
the loss of precision caused by the frst-order Taylor ap-
proximation, resulting in a generally improved convergence
result.

4.2. Enhanced Analytical Calculation Method. Due to the
presence of a nonlinear implicit function x(d) in the ob-
jective function, an analytical formula for calculating the
optimal stepsize cannot be established. Nevertheless, it is
straightforward to derive an analytical expression for cal-
culating the optimal stepsize if we approximate the implicit
function x(d) using the following formulation:

x dl
+ λ · rl

􏼐 􏼑 ≈ x dl
􏼐 􏼑 + ∇dx dl

􏼐 􏼑 · λ · rl
􏼐 􏼑. (9)

Accordingly, the optimal stepsize λ, given the demand dl

and search direction rl, can be obtained by solving the
following one-dimensional subproblem:

minλ Z dl
+ λ · rl

􏼐 􏼑 � θ1 · dl
+ λ · rl

− 􏽢d􏼐 􏼑
T

· dl
+ λ · rl

− 􏽢d􏼐 􏼑

+ θ2 · x dl
+ λ · rl

􏼐 􏼑 − 􏽢x􏼐 􏼑
T

· x dl
+ λ · rl

􏼐 􏼑 − 􏽢x􏼐 􏼑.

(10a)

Note that the subproblem (10a) can be reformulated as
follows by incorporating formulation (9) into it.

Step 1: Set the initial solution:
hk
′ � pk, k ∈ K􏽥i

hk
′ � 0, k ∈ Ki, i ∈ I, i≠􏽥i

xa
′ � 􏽐k∈K􏽥i

δakhk
′

Step 2: Calculate the descent direction:
For link a, the descent direction μa can be obtained using equation (5b), and for path k, the descent direction wk can be obtained

using equation (5a). As a result, the descent direction of the path-based objective function is y � − w, and the descent direction of the
link-based objective function is z � − ∆ · w.
Step 3: Calculate the optimal stepsize:
Te optimal stepsize can be determined as follows: α � − (zT · ∇t(x∗) · x′)/(zT · ∇t(x∗) · z). Ten, we update h′ and x′ to h′ + αy

and x′ + αz.
Step 4: Check the convergence criterion:
Examine whether the projection gradient w is less than ε (e.g., ε � 10− 4), terminate the algorithm if it is satisfed and go to Step 2

otherwise.
Note the optimal stepsize α along the descent direction for the quadratic programming model in Step 3 can be obtained by solving:
minα1/2(x′ + αz)T · ∇t(x∗) · (x′ + αz).

ALGORITHM 2: Algorithm for solving the quadratic programming model.
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minλθ1 · dl
+ λ · rl

− 􏽢d􏼐 􏼑
T

· dl
+ λ · rl

− 􏽢d􏼐 􏼑 + θ2 · x dl
􏼐 􏼑 + ∇dx dl

􏼐 􏼑 · λ · rl
􏼐 􏼑 − 􏽢x􏼐 􏼑

T
· x dl

􏼐 􏼑 + ∇dx dl
􏼐 􏼑 · λ · rl

􏼐 􏼑 − 􏽢x􏼐 􏼑.

(10b)

For the sake of simplicity, the superscript l is omitted for
brevity, and the algebraic form of equation (10b) is given in
the following equation:

minλ θ1 · 􏽘
i∈I

di+λ·ri − 􏽢di􏼐 􏼑
2

+ θ2 · 􏽘

a∈􏽢A

xa(d) + 􏽘
i∈I

zxa

zdi

· ri · λ − 􏽢xa
⎛⎝ ⎞⎠

2

, (10c)

where xa(d) represents the fow on link a corresponding to
the OD demand d. Considering (zxa/zdi) · ri as φa

i , that is,
φa

i � (zxa/zdi)ri, i ∈ I, a ∈􏽢A, then the optimal stepsize λ is
given by the following equation:

λ �
θ1 · 􏽐i∈I

􏽢di − di􏼐 􏼑 · ri + θ2 · 􏽐
a∈􏽢A

􏽢xa − xa( 􏼁 · 􏽐i∈Iφ
a
i􏼂 􏼃

θ1 · 􏽐i∈Iri
2

+ θ2 · 􏽐
a∈􏽢A

􏽐i∈Iφ
a
i( 􏼁

2 .

(11)

Importantly, a feasibility test must be performed on the
above stepsize to ascertain whether or not the nonnegative
OD demand constraint is satisfed. If the constraint is met,
the stepsize computed by equation (11) is considered fea-
sible. If the feasible constraint is not met, however, the
enhanced Armijo method will be used to determine an
alternative stepsize for OD pairs that do not satisfy the
demand’s nonnegative requirement. Although the analytical

calculation method may require modifcation with the en-
hanced Armijo algorithm in some cases, it still ofers sig-
nifcant advantages in stepsize searching due to its simple
mathematical formula that eliminates the need for repeated
evaluations of the objective function, thereby reducing the
computational burden of stepsize searching for large-scale
networks.

Note that Spiess [13] also developed an analytical for-
mula for calculating the optimal stepsize, which we refer to
as the Spiess’ method hereafter. Following are the diferences
between the two approaches: (1) Spiess’ method is pre-
dominantly based on the linear approximation method
described in Section 3.1 to estimate ∇dx(d) and assumes
a constant path fow proportion pk within the neighborhood
of d. In contrast, our method makes no assumptions re-
garding its dependence on the linear method and can also be
used to solve the case where the descent direction is esti-
mated by the quadratic approximation method presented in

Step 1: Determine the maximum feasible stepsize αl
max according to Algorithm 1 such that the adjusted OD demand satisfes the

nonnegative constraints.
Step 2: Search for an appropriate stepsize αl according to the Armijo rule:
2.1 Set α0 � αl

max, the search iteration number j � 0, the maximum search iteration number jmax, and Z(l,0) � Z(dl).
2.2 Obtain the updated equilibrium fow solution xj pertaining to the adjusted OD demand by employing user equilibrium

assignment, and calculate the corresponding value of the upper-level objective function:
Z(l,j) � Z(dl + αj · rl)

Note that rl denotes the search direction defned in Algorithm 1.
2.3 If the convergence condition Z(l,0) − Z(l,j) > ε2 is satisfed, set αl � αj and stop the algorithm; otherwise, proceed to 2.4.
2.4 If j is equal to jmax, set αl � argminαj (Z(l,j)); otherwise, set αj � αj/θ, j � j + 1, and go to Step 2.

ALGORITHM 3: Armijo strategy used in DAP algorithm.

Step 1: Determine the maximum feasible stepsize αl
max according to equation (7a) such that the adjusted OD demand satisfes the

nonnegative constraints.
Step 2: Search for an appropriate stepsize αl, according to the Enhanced Armijo method:
2.1 Set α0 � αl

max, the search iteration number j � 0, the maximum search iteration number jmax, and Z(l,0) � Z(dl).
2.2 Estimate the updated fow solution xj pertaining to the adjusted OD demand by employing equation (7e), and calculate the

corresponding value of the upper-level objective function using equation (7c).
2.3 If the convergence condition Z(l,0) − Z(l,j) > ε2 is satisfed, set αl � αj and stop the algorithm; otherwise, proceed to 2.4.
2.4 If j is equal to jmax, set αl � argminαj (Z(l,j)); otherwise, set αj � αj · θ, j � j + 1, and go to Step 2.

ALGORITHM 4: Enhanced Armijo method used in DAP algorithm.
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Section 3.2, which tends to produce a more accurate descent
direction than the linear approximation method. (2) Spiess’
method does not specify how to choose a feasible stepsize
when the calculated one does not satisfy the nonnegative OD
demand constraints. Our method proposes using the en-
hanced Armijo method as a workaround when the non-
negative constraint is not satisfed and assures that the
obtained descent direction is certainly feasible.

Te implementation of the proposed analytical calcu-
lationmethod is described in Algorithm 5, and several points
are worth noting: frst, the maximum feasible stepsize matrix
αl
max is initially specifed as follows: α

l
maxi � λ if it satisfes the

nonnegative constraint for OD pair i; otherwise, αl
maxi is set

according to the formula (7a). Second, the tentative stepsize
matrix αj is updated by αj � αj · ϑ, where ϑ is a diagonal
matrix with dimensions equal to the number of OD pairs,
and the diagonal elements of ϑ are set to 1 for the OD pairs
that meet the nonnegative constraints, and 1/θ for those not
satisfying the constraint.

5. Numerical Results

Tis section is organized into three parts. Te frst describes
the algorithm computing environment, test networks, and
algorithm implementation details. Te performance of the
test algorithms in solving medium networks is compared in
the second part. Te last part further examines the com-
putation time and the convergence magnitude with each
iteration of the algorithms for large networks.

5.1. Computing Environment and Algorithm Implementation
Details. All algorithms are coded using the Toolkit of
Network Modeling, a C++ class library specialized in
modelling transportation networks [34]. All numerical re-
sults reported in this section were produced on a Windows
10 64-bit PC with Intel® Core™ i5-7300HQ CPU 2.50GHz
and 16G RAM. Te convergence performance of the test
algorithms is evaluated by applying them to solving the
Sioux-Falls and Chicago-Sketch networks, available at
http://www.bgu.ac.il/?bargera/tntp/, with the topology of
each network described in Table 1, using the Bureau of
Public Roads (BPR) function with a coefcient of 0.15 and
a degree of 4 to model the link travel time. Te parameter
settings used in numerical experiments are presented in
Table 2.

Tis study will implement and compare a total of six
algorithms for DAP that difer substantially in their selection
of methods for gradient approximation and stepsize cal-
culation. Two of these algorithms have been documented in
the literature and were developed by Spiess [13] and
Lundgren and Peterson [16], respectively. In particular,
Spiess’ algorithm employs the linear approximation method
for determining the descent direction and the standard
analytical-calculation (sAC) method for calculating the
stepsize. Using the quadratic approximation method and the
standard Armijo method, Lundgren’s algorithm prioritizes
descent direction precision and solution quality. Te other
four algorithms are developed based on the new stepsize

computationmethods proposed in this study, and they are as
follows: quadratic-approximation and enhanced-Armijo
(QaEA) algorithm, quadratic-approximation and en-
hanced-analytical-calculation (QaEAC) algorithm, linear-
approximation and enhanced-Armijo (LaEA) algorithm,
and linear-approximation and enhanced-analytical-
calculation (LaEAC) algorithm.Te algorithms of Spiess and
Lundgren will serve as benchmarks for evaluating the
performance of the above four algorithms in terms of so-
lution accuracy and efciency.

A few details of the strategies used in our imple-
mentation of the algorithms are given below. (1) It is
computationally inefcient to consider the interdependence
of all network paths when using Algorithm 2 to solve the
quadratic programming model, especially for large-scale
networks where it can lead to an excessively accurate
search direction, demanding substantial CPU time and
memory resources. So, we only consider the paths that
belong to the same OD pair. Equation (5a) therefore only
considers the paths related to the perturbed OD pair 􏽥i, i.e.,
k ∈ K􏽥i. Although this method may not make a very accurate
calculation, it permits more efcient updates and evaluations
of new search directions, which is especially advantageous
for Algorithm 1. A detailed discussion can be found in
Lundgren and Peterson [16]. (2) Te improved gradient
projection (iGP) algorithm [27] is used to solve the standard
user equilibrium trafc assignment subproblem at eachmain
iteration. Note that the computation of the search direction
depends on the accuracy of the solution to the assignment
problem. Furthermore, Boyce et al. [35] argued that a rela-
tive gap of 0.0001 is sufcient for solving assignment
problems. Terefore, the convergence criteria of the trafc
assignment subproblem is used as a relative gap of 10− 7 to
ensure the precise solution of the search direction. (3) Te
historical OD demand matrix is taken as the initial OD
demand matrix, and approximately thirty percent of net-
work links are chosen at random to function as the observed
links, designated as 􏽢A. Te observed link fows are generated
by perturbing the historical OD demandmatrix 􏽢d at random
and then executing the user equilibrium trafc assignment,
as shown in the following equation:

􏽢xa � 􏽢xa(􏽢d · (1 + ϵ)),∀a ∈􏽢A, (12)

where ϵ is the random number, ϵ ∈ [− 0.3,0.3].

5.2. Sioux-Falls Network Analysis. In the frst set of exper-
iments, we compared the efectiveness of EA-class (i.e., LaEA
and QaEA) and EAC-class (i.e., LaEAC and QaEAC) al-
gorithms with two benchmark methods for the Sioux Falls
network (Figure 1). Note that it is challenging to estimate the
burden associated with a single iteration of each algorithm
due to the constant range of 1 second for the termination
time of the tested algorithms. As a consequence, it becomes
difcult to identify a distinct computational advantage
among them. Terefore, we have decided to refrain from
discussing algorithmic computational efciency in this
context and instead focus on algorithmic solution accuracy
disparities.
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Te computational results of the test algorithms on the
Sioux-Falls network are shown in Figure 2. In these plots, the
objective value and log10(RI) are represented on the vertical
axis, while the horizontal axis denotes the number of iter-
ations. Overall, the test network shows that the proposed
QaEAC and QaEA algorithms demonstrate a certain ad-
vantage over Lundgren-08 and Spiess-90. When achieving
the desired accuracy, the QaEAC algorithm performs 5.3%
lower than Lundgren-08 and 9.8% lower than Spiess-90 in

terms of objective values. When the QaEA algorithm reaches
the maximum number of iterations, it achieves an objective
value that is 4.1% lower than Lundgren-08 and 8.6% lower
than Spiess-90. Despite the seeming smallness of these
changes, they demonstrate that the QaEAC and QaEA al-
gorithms are capable of searching for better solutions than
the benchmark algorithms when the stepsize calculation
approach is properly taken into account. It is worth noting
that while LaEAC and LaEA obtain inferior solutions
compared to Lundgren-08 and Spiess-90, both exhibit sig-
nifcant advantages in terms of computational efciency,
which will be further validated in large-scale networks.

Te test algorithms are carefully compared in the sec-
tions that follow, and we examine how alternative ap-
proaches to computing stepsize afect how well the
algorithms solve problems. We evaluate the algorithms
under identical iteration counts and the gradient approxi-
mation method to provide a fair comparison.

We further introduced the quadratic-approximation and
standard-analytical-calculation (QasAC) methods to assess
the diferences in solution performance between EA-class
algorithms and standard AC-class algorithms. Te com-
putational results of QaEA, Lundgren-08, and QasAC on the
Sioux-Falls network are illustrated in Figure 3. Despite the
fact that QaEA estimates equilibrium fow solutions using
a frst-order Taylor approximation rather than the user
equilibrium assignment, it routinely surpasses Lundgren-08
and QasAC in terms of solution quality. In particular, QaEA
reduces the objective value by 4.1% when compared to
Lundgren-08 and 0.4% when compared to QasAC. Tis is
due to the fact that EA-class algorithms use an OD-specifc
stepsize strategy to determine a distinct stepsize for each OD
pair, which helps to ofset the accuracy loss associated with
approximation equilibrium solutions. Te EA-class algo-
rithms routinely beat the standard Armijo-class and stan-
dard AC-class algorithms in terms of solution accuracy by
properly predicting equilibrium fow solutions using qua-
dratic programming to generate the Jacobian matrix
J � zxa/zdi􏼈 􏼉, a ∈ A, i ∈ I. To corroborate this argument, we
conducted tests in which we removed the OD-specifc
stepsize strategy inside the framework of the EA-class al-
gorithms, resulting in the EAs-class algorithm, a simplifed
EA-class algorithm. Figure 4 depicts the computational
results of QaEA and QaEAs on the Sioux-Falls network. It is
observed that the solution performance of the EAs-class
algorithm is inferior to that of the EA-class algorithm, with
a 6.0% increase in the objective function value. Terefore, it
can be confdently stated that the proposed OD-specifc
stepsize strategy contributes positively to enhancing the
solution accuracy of the EA-class algorithms.

Step 1: Determine the approximated calculate optimal stepsize λ, according to equation (11).
Step 2: If the nonnegative condition of the calculate stepsize for OD demand is satisfed, set diagonal elements of matrices αl are λ;
otherwise, proceed to Step 3.
Step 3: Search for an appropriate stepsize αl according to the Enhanced Armijo method.

ALGORITHM 5: Enhanced analytical calculation method used in DAP algorithm.

Table 1: Profle information of test networks used in numerical
experiments.

Networks Size Nodes Links OD pairs number
Sioux-Falls Medium size 24 76 528
Chicago-Sketch Large 933 2950 93513

Table 2: Parameter settings used in numerical experiments.

θ1 θ2 θ jmax ε1 lmax

1 1 10 5 10− 5 40

13

12

3 4 5

9

1011

1514

23 22

24 21

1 2

6

8

16

17

19

20

18

7

Figure 1: Topology of the Sioux-Falls network.
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Figures 5 and 6 compare the computational performance
of the EAC-class and the EA-class algorithms for the Sioux
Falls network. LaEAC obtains a 5.3% reduction in objective
value compared to LaEA, while QaEAC achieves a 1.9%
reduction compared to QaEA. Tis is because, unlike the
EA-class algorithms, which use a trial-and-error method to
determine a feasible stepsize, the EAC-class algorithms
generate an approximately optimal formulation for the
stepsize, which tends to ofer greater computational accuracy
if the demand feasible constraint is fulflled.

In conclusion, the EA-class algorithms beat the
benchmark algorithms in terms of computation accu-
racy, and the EAC-class algorithms improve the

performance of the EA-class algorithms even further.
Tese fndings will be validated further in large-scale
networks.

5.3. Chicago-Sketch Network Analysis. In the second set of
tests, we employed a network model named Chicago-Sketch
(Figure 7). Since the Chicago-Sketch network is a sizable
metropolitan network, we were able to easily estimate the
computational efort associated with each iteration using CPU
time, enabling us to assess the computational efectiveness of
various methods. As a result, we evaluated the performance of
proposed algorithms in this set of tests from the perspectives
of computational efciency and solution accuracy.
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Figure 2: Convergence performance comparison on the Sioux-Falls network.
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Figure 3: Comparison on the convergence performance of Lundgren-08, QasAC and QaEA.
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Figure 8 plots the computational results of the test al-
gorithms on the Chicago-Sketch network. We concentrate
on two metrics: the algorithm’s minimal objective function
value at termination and the total CPU time required for
achieving that value. Overall, EAC-class algorithms can
achieve better results at lower computing costs than
benchmark algorithms for large-scale networks. QaEAC, in
particular, decreases overall CPU time by 20.6% when
compared to Lundgren-08 while obtaining a 49.3% lower
objective value. When compared to Spiess-90, LaEAC re-
duces overall CPU time by 18.8% while achieving a 50.9%
lower objective value. EA-class algorithms, on the other
hand, ofer greater advantages in computational efciency as
compared to benchmark algorithms, but their solution

accuracy is dependent on the computational correctness of
the search direction. For example, as compared to
Lundgren-08, QaEA reduces overall CPU time by 25.1%
while obtaining a 13.1% lower objective value. Meanwhile,
LaEA decreases overall CPU time by 27.8% when compared
to Spiess-90, but the objective value increases by 50.7%,
owing to a less precise estimate of the search direction,
resulting in an inferior solution. Tese fndings are con-
sistent with previously reported results.

Figure 9 shows the computation time per iteration of the
test algorithms. Both EA-class and EAC-class algorithms
exhibit signifcantly shorter computational time per iteration
compared to the benchmark algorithms, while the EAC-class
algorithm shows slightly higher computational time
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Figure 4: Comparison on the convergence performance of QaEA and QaEAs.
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compared to the EA-class algorithm, which is consistent
with the complexity analysis results.

It is worth noting that the computational efciency of
EAC-class algorithms is not necessarily always lower than
that of EA-class algorithms. Tis is dependent on whether

the nonnegative constraint is met by the approximately
optimal stepsize that the EAC-class attained in each itera-
tion. If so, then EAC-class algorithms take less time to
compute each iteration than EA-class algorithms. To fnd
stepsize that satisfy the nonnegative criterion of OD de-
mand, EAC-class must continue performing EA-class if the
condition is not satisfed, adding acceptable time to the
calculation process.

Te computational results of LaEAC compared to
QasAC and Spiess-90 on the Chicago-Sketch network are
shown in Figure 10. Among them, LaEAC and Spiess-90
employ the Linear approximation approach, while QasAC
and Spiess-90 utilize the sAC computing stepsize method.
Overall, LaEAC outperforms Spiess-90 and QasAC by
obtaining superior solutions in a lower calculation time. In
particular, LaEAC reduces objective value by 51.0% when
compared to Spiess-90, and the overall CPU time is reduced
by 18.8% as well. In comparison, QasAC reduces objective
value by 2.3% when compared to Spiess-90, but overall CPU
time increases noticeably by 68.6% due to the more accurate
search direction. Tis gives rise to the idea that, in addition
to improving the search direction method, enhancing the
computing stepsize approach is also crucial for boosting
algorithm performance. Tis makes sense because the
performance of the algorithm is greatly impacted by the
choice of the stepsize methods in addition to the algorithm’s
accuracy of the search direction.

In conclusion, EA-class algorithms have shown signif-
icant improvements in both solution efectiveness and
computational efciency compared to benchmark algo-
rithms. On the other hand, EAC-class algorithms ofer
a signifcant advancement over EA-class algorithms since
they can produce better results at comparable computing
costs, which makes them especially well-suited for large-
scale networks.
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Figure 7: Topology of the Chicago-Sketch network.
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 . Conclusion

We present a framework for heuristic gradient algo-
rithms that identifes commonalities between the ma-
jority of approximate gradient algorithms. Tis
algorithm framework has been investigated in the past,
but its efcient implementation and numerical evidence
from real-world applications remain uncommon. We
investigate and contrast heuristic gradient methods from
both analytic and numerical perspectives within this
framework.

Te framework also permits a precise comparison of the
efects of various gradient approximation and stepsize cal-
culation methods on the overall performance of the algo-
rithm. By combining two newly developed stepsize
calculation methods with two categories of approximate
gradient methods, we contribute several new algorithms to
the DAP algorithm family. Te similarities and diferences
between these algorithms were also covered in great detail.
Numerical experiments demonstrate that algorithms using
the new stepsize calculation strategies consistently beat
existing algorithms in terms of computational accuracy and
efciency. Tis fnding highlights the signifcant impact of
the stepsize calculation method on algorithm performance.

As the potential of the proposed algorithms in con-
fronting the DAP problem has been demonstrated in this
paper, future research could focus on solving DAP models
with more complex equilibrium models, such as the sto-
chastic, multiclass, or asymmetric user equilibrium assign-
ment models.
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