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Te intelligent logistic system (ILS) has benefted Industry 4.0. ILS assures clean, on-time manufacturing. Due to its unique ar-
chitectures, qualities, and sensory aspects, the robot logistic system (RLS) is sought after as an ILS in Industry 4.0. In case of COVID-19,
multiple nations routinely used RLS as ILS to cleanse areas, check patients, and monitor crowds on highways. Research documents
(RDs) show that prior researchers attempted to build the static robot logistic system (RLS) performancemapping index; however, most
indexes measured only anatomy performance of static RLS. Tus, few RDs are edited previously in the context of MRLS. It is sensed
that few RDs examined MRLS-linked performance mapping indexes, including only regular subjective (S) or objective (O) designs,
excluding mixed S-O architectures. Most RDs constantly execute the linguistic variables related to fuzzy, grey, rough, ambiguous, and
intuitionistic sets/scales to tackle the uncertainty connected with MRLS designs. Te authors prioritize those as RGs. Te authors
proposed (1) anMRLS performancemapping indexwith respect to technical, cost, and valueO-S architectures for recruitingMRLS, (2)
linear information to assign ratings in a range of min-max values choosing from 1 to 100% without executing the linguistic scale, and
(3) Holistic Managerial Models (HMM-1 and HMM-2) to handle subjective ratings and signifcance, assigned by Ex against evaluated
O-S architectures under linear scale (1–100%). To prove the concept, RLS performance mapping is shown. Only MRLS recruitment
and selection are covered. Te efort helps CIM, FMS, and WCMS create sustainable, cleaner operations and achieve future goals.

1. Introduction

RLS (robot logistic system) is ascertained as an auxiliary unit
of production systems such as fexible manufacturing, world
class, and computer-integrated manufacturing (CIM) sys-
tems, which favors the customized production with agility. It
is found that mobile RLS is executed more than static RLS due
to mobility around space. Te MRLS is employed to perform
the rapid logistics operations and positioning the components
at accurate location under controlling of soft and hardwire
software. MRLS is defned as a movable engine of IoTs such as
cyber physical system, gadgets, and sensors, which lead ILS to

perform the various critical and hazardous tasks such as right
positioning and changing the operations and tools, navigation
control, and performing the various toxic practices by pro-
gramming. MRLS is deployed in serious circumstances to
perform the tasks, where humans fail to perform. Terefore,
MRLS is described as ILS by various authors under various
features such as degree of automation, fexibility, mobility,
mechanism, and transportation. MRLS is found as an electric
power actuator operated vehicle system, which is manipulated
over the several industrial sectors by programming and
nonprogramming path for shaping the various complicated
and hazardous tasks. In accordance with [1, 2], MRLS is an
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automatic mechanical-electronic vehicle system, which is
capable to navigate around the unstructured route under
danger environment.MRLS is able to perform the locomotion
and need not be appended with persons as it can control its
functions automatically by PLC (Programming Logic Cir-
cuit). Te authors of [3, 4] argued that MRLS is an auton-
omous vehicle, which is capable of performing the movement
in any surroundings and it can move automatically by
evaluating and selecting the direction by sensing the signal
from sensor. Te authors of [5, 6] described MRLS as an
automatic system, which has capability to escape via wheels,
tracks, legs, or a combination of them to perform the logistics
operations. Later, the authors of [7–10] addressed a note
about MRLS and explicated that MRLS is automated ILS,
whose functions include exploration (locomotion only),
transport of payloads, or to perform the more complex tasks
in/onboard by manipulating arms. MRLS is capable of per-
forming independent movement and certain actions by ILS
intellectual skills. Essentially, in addition to mobility concern,
MRLS is able to perform the function autonomously, without
requiring human intervention. MRLS has ability to provide
the service to several locations and perform the wide range of
tasks for specialized or defned application. During the
COVID-19 attack, MRLS was employed for disinfecting fa-
cilities and patients, assisting surveillance, and delivering stuf
and goods. During COVID-19 attacks, MRLS proved itself as
magnifcent and intellectual mechatronics device. Apart from
usage of MRLS in COVID-19, the application of MRLS has
various coverage, i.e., for surgical uses, personal assistance,
security, warehouse and distribution applications, and ocean
and space exploration. MRLS is found as a grand fghter in
case of terror prevention, disaster control, and military usage.
Other application areas of MRLS include the agriculture and
public road transport, including self-driving motor vehicles.

Today’s production system is intelligent as well as au-
tonomous due to the integration of IoTs (Internet of Tings)
with Production Queues (PQs) which is called Industry 4.0.
Today, the agile manufacturing is only possible across PQs
due to MRLS because it is highly automatic and reacts to
compensate the customer’s demand swiftly. Te MRLS be-
comes the bone of PQs in Industry 4.0 by addressing the
several challenges, i.e., to fulfll the demand of customized
products under lead time, to overcome the ferce competition
at market place, simulating the production under least cost,
etc. It is investigated that aforesaid challenges might be ful-
flled if MRLS is audited and selected in accordance with
routine operations over PQs. Terefore, there is necessity to
design the decision support systems and tools especially for
evaluation, recruitment, and selection of the MRLS for de-
fned routine operations to address challenges of Industry 4.0.

To respect above concerns, currently logistics and trans-
portation scholars increased their curiosity towards the area of
evaluating, recruiting-benchmarking, and selecting the eco-
nomic MRLS among others under various technical, cost, and
value architectures. MRLS architectures are of two types, where

Subjective (S) MRLS architectures deal with subjective in-
formation of expert (Ex), while Objective (O) includes the
numeric or experimental data. Te recent literature and em-
pirical surveys refected that the Research Documents (RDs)
focused on efciency, efectiveness, and performance im-
provement as well as the mechanism optimizations of MRLS.
Among those RDs, few RDs are linked with recruitment,
evaluation, and selection of the MRLS under advanced tech-
nical, cost, and value architectures. However, all identifed
RDs dealt with application of grey, fuzzy, vague, rough, and
intuitionistic sets corresponding to linguistic variables to tackle
the Subjective (S) information of experts in same problem (for
recruiting MRLSs). Aforesaid grounds emphasized the authors
to consider the same as Research Gaps (RGs), which are de-
scribed below.

(i) Tere is need to develop MRLS performance
mapping and recruitment index, including advance
O (Objective) mixed with S (Subjective) in-
formation corresponding to MRLS alternatives.

(ii) Tere is a need to develop a linear information set,
which could assist the experts to assign the S-
information in a range of 1–100% rating scale
against S-architectures of MRLS without using
linguistic variables.

(iii) Tere is necessity to frame holistic mathematical
model, which can tackle 1–100% rating of experts in
the terms of min-max for robust as well as potential
evaluation of MRLS among alternatives.

Research Contributions (RCs) are addressed against
above said RGs and summarized that there is need to frame
the dynamic MRLS performance mapping and recruitment
index (consisted of advance O-S architectures) integrated
with robust mathematical model for recruiting the MRLS by
using ratings and signifcance scale in a range of 1–100. Te
RCs are supposed to be confrmed by further relevant liter-
ature survey. Te authors attempted to conduct the relevant
literature survey in the context of MRLS evaluation and re-
cruitment concerning MRLS evaluation S and O architec-
tures, rating sets and scales, and optimization techniques.

Tis paper is organized as follows. Section 2 gives the
literature review. Section 3 gives a summary of the literature
survey and research objectives. Section 4 is devoted to
Holistic Managerial Models (HMM-1 and HMM-2) for
recruitment: planning and operations. Section 5 gives case
study-demonstrated MRLS transportation-recruitment
drives (planning and operations). Section 6 includes dom-
inance theory and results and novelties, applications, limi-
tations, and implications. Section 7 gives the conclusions.

2. Literature Review

Te authors conducted the relevant literature review as
discussed in Table 1.
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3. Summary of the Conducted Literature Survey
and Research Objectives (ROs)

3.1. Summary of the Literature Survey. Te authors
attempted to organize the above literature survey in the
context of MRLS by executing the open-access Google re-
search search engine. Te authors found 150 RDs from
leading academic journals and conferences, where 51 are
observed not in the line of proposed RO. Later, out of 99, 66
RDs are considered for literature survey as cited across the
research work. After in-depth literature survey, only 47 RDs
were exclusively tied up with RO (evaluation and bench-
marking of MRLS under O-S architecture index).

As said above, out of 47, only 23 RDs are explored to
construct the MRLS performance mapping and recruitment
index, wherein none of the RDs enrolled the mixed integration
of Objective (O) cum Subjective (S) or both architectures;
therefore, the authors extracted only crucial and signifcant
MRLS evaluation O-S-architectures from 23 RDs, which can
address the challenges of present Industry 4.0. Furthermore, 10
RDs out of 47 are determined in line of diferent fuzzy, grey, and
vague rough rating and weight sets, wherein all 10 RDs focused
on Likert and linguistic variables to assess rating and weight
against MRLS S-architectures; therefore, none of the RDs dealt
with thoughts to assess the rating and signifcance (weight)
against MRLS architectures using experts’ opinion in the terms
of min-max value corresponding to 1–100% scale (without
using linguistics scale). At last, 14 RDs out of 47 are traced and
all 14 RDs enrolled individual multivariable decision-making
techniques; therefore, reliability of decisionmaking becomes the
high concern for authors; thus, 12 RDs are executed to prepare
the Holistic Managerial Models (HMM-1 and HMM-2) to
evaluate the robust MRLS under mapping index.

3.2. Research Objectives (ROs). Te summarized report of
literature survey potentially confrmed the RCs of Section 1.
Terefore, ROs are shaped and pointed out below, and
a fowchart of research contributions is also structured as RC
guide of presented researchwork, which is depicted in Figure 1.

(i) To construct the dynamic MRLS performance
mapping, recruitment, and selection index in-
corporating the advanced O-S architectures,
meeting the objective of the present Industry 4.0.

(ii) To invent the logic as well as idea of linear scale to
facilitate the experts for assigning the ratings and
signifcance against MRLS and S-O architectures,
respectively, in the form of min-max value choosing
from 1 to 100% by experts (Exs).

(iii) To build Holistic Managerial Models (HMM-1 and
HMM-2); this can measure the performance of
MRLS, selecting robust and reliable MRLS under
application of dominance theory.

4. Holistic Managerial Models (HMM-1 and
HMM-2) for Recruitment: Planning
and Operations

Te proposed models are composed specifcally to address
the optimization problems of multiple variables under
assigning the S-ratings, and signifcance by experts in a band
of max and min value is called as linear information. Te
concept of information representation is shown in Figures 2
and 3.

Tese models such as HMM-1-2 have the aptitude to
undertake the individual vague or nonambiguity information
(in the form of S-signifcance and ratings) conjunctively in
a range of min-max refected by equations (1) and (2). S-
signifcance and rating values require the subjective assess-
ment from experts. Te experts select one low and upper
number in % from linear scale (1–100%). Te experts assign
the S-signifcance assessment vs architectures and S-ratings
assessment vs architectures corresponding to alternatives. In
HMM-1-2, equations (3) and (4) are used to summarize and
transform the summarized subjective assessment (in the form
of S-signifcance and ratings) into crisp values (CRs), re-
spectively. After evaluation of CRs, equations (5) and (6) are
used to normalize the CRs of signifcance vs architectures.

Among both models, HMM-1 model is developed to aid
in the alternative evaluation decision making under multiple
architectures. In HMM-1, architectures, whose rating values
are benefcial (B) in nature, are normalized by using
equation (7), while values of nonbenefcial (C) architectures
are transposed into benefcial values and normalized by
using equation (8). Tis model facilitates the experts to
assign the S-signifcance and rating values vs architectures
and architectures corresponding to alternatives, respectively,
in a range of any value (1–100% point scale). Eventually,
equation (9) is executed to decide the alternative rank (max
value is preferred for selection).

Next, HMM-1 model is extended to HMM-2 model.
HMM-2 also facilitates the experts to assign S-signifcance
and rating values in the range of min-max by using 1–100%
point scale. But benefcial (B) as well as nonbenefcial (C)
architectures are normalized collectively by using equation
(7). Eventually, equation (10) is executed to decide the al-
ternative rank (max value is preferred for selection).

Te mathematical representation is formulated here.
Presume that there are n possible opportunities (alterna-
tives) Γ1, Γ2, . . . , Γn from which expert’s panel
Ek(k � 1, 2, . . ., K) is requested to choose in accordance
with m architectures ψ1,ψ2, . . . ,ψm, both qualitative (sub-
jective) and quantitative (objective). Suppose the subjective/
qualitative information of architectures ψj(j � 1, 2, . . ., n)

is proposed against opportunities Γi(i � 1, 2, . . ., m) by
decision makers Ek(k � 1, 2, . . ., K).

Just suppose that the information is proposed as set
{MinValue% ≤ MaxValue%}.
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Figure 1: Flowchart of research contributions.
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Figure 3: Linear rating representation.
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Presume that the subjective scores against each archi-
tecture corresponding to the opportunities can be computed
as follows.

Submission of assigned sets or ratings in percentage as
min-max by experts:

ψij � R �

MinValue%≤MaxValue% 

k1
+

MinValue%≤MaxValue% 

k2
. . .

MinValue%≤MaxValue% 

K

� 
K

k�1

MinValue% , 
K

k�1

MaxValue% ⎡⎣ ⎤⎦.

(1)

Evaluation of Crisp Rating (CR) on obtaining output is
set by equation (1).

CR � 
K

k�1

MinValue% , 
K

k�1

MaxValue% ⎡⎣ ⎤⎦

�


K
k�1

MinValue%  + 
K
k�1

MaxValue%  

2
.

(2)

CR1, CR2, CR3 correspond to ψij � ψ11, ψ12,ψ13, . . .ψmn.

Similarly, submission of assigned two sets or weights in
percentage as min-max by experts:

ψj � S �

MinValue%≤MaxValue% 

k1
+

MinValue%≤MaxValue% 

k2
. . .

MinValue%≤MaxValue% 

K

� 
K

k�1

MinValue% , 
K

k�1

MaxValue% ⎡⎣ ⎤⎦.

(3)

Evaluation of Crisp Weights (CW) on obtaining output
is set by equation (3).

CR � 
K

k�1

MinValue% , 
K

k�1

MaxValue% ⎡⎣ ⎤⎦

�


K
k�1

MinValue%  + 
K
k�1

MaxValue%  

2
.

(4)

CS1, CS2, CS3 correspond to ψj � ψ1, ψ2,ψ3, . . .ψm.
Hence, a multiarchitecture matrix can be expressed as

follows:

ψk
ij 

m×n
�

Γi
ψj

ψ2

⋮

ψm

Γ1 Γ2 · · · Γm
ψk
11 ψk

12 · · · ψK
1n

ψk
21 ψk

22 . . . ψK
2n

⋮ ⋮ ⋮ ⋮

ψk
m1 ψk

m2 . . . ψK
mn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(k � 1, 2, . . . , K).

(5)

Evaluation of Normalized Signifcance Weight (NCwv)
in a range of {0-1}:

NCwv �
ψj


n
j�1ψj

j . . . n,

NCwvψ1.,NCwvψ2.,NCwvψ3., . . . 
n

j�1
NCwvψ � 1.

(6)
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Here the normalization of evaluated max CRs and
transposed min-max CRs is done by exploring

NBij �
ψij


m
i�1ψij

,

ψij � ψi1,ψi2,ψi3,ψi4ψi5 . . .ψin,

maxψij⇒maxψij

⇒maxψi1,⇒maxψi2.,⇒maxψi3, . . .⇒maxψin,

(7)

NNBij �
min ψij 

ψij
,

ψij � ψi1,ψi2,ψi3,ψi4ψi5 . . .ψin,

minψij→ maxψij

→ maxψi1, → maxψi2, → maxψi3, . . . → maxψin.

(8)

Multiplication of evaluated NCwv with ⟶ maxψij.
and ⇒maxψij. respective opportunities Γi:

ΓHMM1 � ⊗ Γi( m

� 
m

j�1
⇒maxψij. ,

Γi � Γ1Γ2 . . . Γm,

(9)

ΓHMM2 � ⊗ Γi( m

� 
m

j�1
Γi → maxψij.  . . . Γm, Γi � Γ1, Γ2 . . . Γm.

(10)

5. Case Study Demonstrated MRLS
Transportation-Recruitment Drives
(Planning and Operations)

Te recruitment drive of MRLS is demonstrated to ensure the
application and validity of the proposed research work. Case
study is conducted for an automobile industry to recruit and
select the most economical MRLS among others. Te pro-
posed index is constructed by advance O-S MRLS architec-
tures, gathered from literature survey, as shown in Figure 4.

Te above-depicted MRLS performance mapping, re-
cruitment, and selection index included the speeds ψ1,

degree of freedom ψ2, unit load ψ3, power ψ4, purchasing
cost ψ5, maintenance cost ψ6, depreciation ψ7, overall ef-
fciency ψ8, ftness to production ψ9, and quickness ψ10
architectures, where power ψ4, purchasing cost ψ5,
maintenance cost ψ6, and depreciation ψ7 are accounted as
nonbenefcial, while others are respected as benefcial ar-
chitectures. In index, ψ1, ψ2, ψ3, ψ4, ψ5, ψ6, ψ7 are prior-
itized as Objective (O) architectures and residue

architectures are subjective (S) in nature. Te MRLS selling
companies are requested to send their MRLS quotations
against O architectures of MRLS performance mapping
index, while S data are assessed by experts of case study
company, as shown in Figure 3. Table 2 depicts the index
consisting of Objective (O) and S architectures corre-
sponding to MRLS alternatives. Table 3 refects the def-
nitions of MRLS architectures.

First of all, a team of four experts is constituted by
electing the four executives from production, maintenance,
purchasing, and design departments.

Prior to overview and judging the performance, the
signifcance against O-S architectures is assessed by team of
Exs by assigning the S ratings in a range of 1–100% against all
architectures, as exhibited in Table 3.

Te aggregation of all assigned signifcance against ar-
chitectures is evaluated by using equations (4) and (6). Next
similar team of Exs are invited to visit alternative MRLSs of
selling company and assign the S-ratings in a range of linear
scale (1–100%) by taking min-max subjective perception in
% against only S-architectures, as shown in Table 4.

Ten, assigned S-ratings are aggregated by usage of
equation (2) and next transformed into crisp value by usage
of equation (3), as shown in Table 5.

After computing signifcance of both (S-O) architectures
and ratings of S-architectures, the problem seemed to be
structured problem of multivariable matrix, as shown in
Table 6.

By using equation (5), a multiarchitecture matrix is
formed. Later, all the O-S architectures are normalized (0-1)
andmixed with their signifcant architectures corresponding
to MRLSS to form multiarchitecture decision-making ma-
trix by using equations (7) and (8) as shown in Table 7.

Te economic value of candidate MRLS under O-S ar-
chitectures is computed by using equations (9) and (10),
which is depicted in Tables 8 and 9.
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Value architectures

Cost architectures

Technical architectures

Purchasing Cost

Maintenance cost

Depreciation

Figure 4: MRLS performance mapping, recruitment, and selection index.

Table 1: Conducted systematic literature survey.

Reference Conducted works Focused on

[11] Te author investigated the depreciation plan of a mechanical device in accordance
with the best possible interterm portal resource allocation

Depreciation-based
architectures

[12] Te author audited the gross as well as net depreciation maintenance of a company
and confrmed that depreciation rate becomes double under nonunionmaintenance

Depreciation- and
maintenance-based

architectures

[13] Te author depicted that monopolists procured uneconomically high rates of
depreciation for their production of goods and uphold a high price for future

Depreciation-based
architectures

[14]
Te authors articulated that objective maintenance and depreciation are caused due
to technological events, while economic depreciation is the part of obsolescence
(replacement of nonproductive equipment by advanced technological equipment)

Depreciation and maintenance
architectures

[4]

Te authors identifed and addressed the two issues such as assessing the degree of
similarity among visual quality ratings of landscapes, provided by evaluators and the
equivalence of judgments made by photographs. To solve said issues, the authors
analyzed the data of various prior studies, conducted to assess the visual quality
ratings of landscapes, and fnally provided a few insights to professionals about how
to assess and validate the reliability of their visual quality ratings of landscapes.

Rating evaluation and expert’s
opinions

[15] Te author formed the machine evaluation decision support model and applied it to
solve the industrial decision-making problems

Machine evaluation
decision-making architectures

and index

[16] Te authors concluded that accelerated depreciation techniques consume larger
capital investments as compared to usage of straight-line depreciation techniques

Depreciation evaluation
techniques

[7]
Te authors delivered an overview of the various applications of rough set theory for
dealing with uncertainty associated with architectures of modern mobile robotics

system

Rough rating set application
towards robotics

[8]
Te authors demonstrated the multicriteria decision-making (MCDM) techniques
towards selecting the profcient CNCmachine tool that would satisfy the needs of an

organization

Machine evaluation
decision-making architectures

and index

Journal of Advanced Transportation 7



Table 1: Continued.

Reference Conducted works Focused on

[9]

Te author implicated the multiobjective optimization (ratio analysis) technique in
order to resolve various decision-making troubles. In addition to this, the technique
has been found as the best decision-making technique for resolving the real-time

manufacturing troubles.

Optimization technique

[10]

Te authors constructed a novel approach by incorporating ANP (analytical
network process) with fuzzy-TOPSIS (Technique for Order Preference by Similarity
to the Ideal Solution) methods to select the best supplier alternative under similar

supply chain architectures

Vendor evaluation
decision-making architectures

and index

[17]
Te author explored a degree of freedom, unit load, power consumption, ftness to

production, and deprecation as signifcant architectures in evaluation and
recruitment of MRLS

Robot evaluation
decision-making architectures

and index

[18] Te authors implicated the modifed TOPSIS and the analytical network process
(ANP) to compute the performance of machine tools

Machine evaluation
decision-making architectures
and optimization techniques

[19] Te authors developed a two-phase robot selection decision support system called as
ROBSEL for solving real-life dilemmas

Robot evaluation
decision-making architectures

and index

[20]

Te authors applied fuzzy DEMATEL (Decision-Making Trial and Evaluation
Laboratory), ANP, and DEA methodologies to select the resilient cum green

suppliers. Te proposed methodology has been implemented upon an automotive
interior component manufacturing company.

Vendor evaluation
decision-making architectures
and index and optimization

techniques

[21] Te authors presented operators such as union, intersection, addition, and
multiplication of intuitionistic fuzzy multiset to be used for robot evaluation

Robot evaluation
decision-making architectures
and index and fuzzy rating sets

[22]

Te authors used interval-valued grey numbers (IVGN) to tackle subjective
evaluation information of an expert team; fnally, MULTI-MOORA (multiobjective
optimization by ratio analysis) approach is applied to sort out RLS evaluation

problem

Robot evaluation
decision-making architectures,
index, interval-grey rating set,
and optimization techniques

[23]
Te authors displayed a fuzzy group decision-making approach TOPSIS integrated
with the aggregate fuzzy weight method to rank the suppliers for a manufacturing

frm

Fuzzy rating weight set and
optimization techniques

[24]
Te authors applied the hybrid fuzzy method upon a multiindex decision-making
module in order to select the best machine tool among few recommended machine

tools

Machine evaluation
decision-making architectures
and index and optimization

techniques

[25]
Te authors applied the grey relational analysis (GRA) method accompanied with
fuzzy set theory to measure the green supply chain performance of manufacturing

frms

Green supply chain evaluation
decision-making architectures,
index, fuzzy rating set, and
optimization techniques

[26]

Te authors mapped the performance of six decision-making methods, i.e.,
weighted sum method (WSM), weighted product method (WPM), weighted
aggregated sum product assessment (WASPAS) method, multiobjective

optimization on the basis of ratio analysis and reference point approach (MOORA)
method, and multiplicative form of MOORA method (MULTIMOORA),

investigating the industrial robot evaluation, benchmarking, and selection problems

Robot evaluation
decision-making architectures
and index and optimization

techniques

[27]

Te author presented a Vlsekriterijumska Optimizacija I Kompromisno Resenje
(VIKOR) technique for evaluation and selection of robots in the context of type-2
fuzzy sets. Type-2 fuzzy set corresponding to linguistic scale handled the degree of

risk associated with robot evaluation architectures.

Robot evaluation
decision-making architectures
and index, fuzzy rating sets, and

optimization techniques

[28] Te authors proposed an integrated linguistic MCDM technique for robot
evaluation and selection under weight (signifcance) set for robot evaluation

Robot evaluation
decision-making architectures
and index and evaluation of
signifcance vs architectures

[26] Te authors ranked the MCDM methods for robot evaluation and selection under
various robot architectures

Robot evaluation
decision-making architectures
and index and evaluation

architectures

[29]
Te authors prescribed the fuzzy knowledge towards the new learners and readers,
so that fuzzy set can be applied to address the alternative evaluation problem of

industries

Fuzzy rating set application to
robot evaluation and

optimization techniques
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Table 1: Continued.

Reference Conducted works Focused on

[30]

Te authors proposed 59 crucial benefcial and nonbenefcial architectures and
found degree of freedom, unit load, power, ftness to production, and quickness as
important architectures. Moreover, the authors used all 59 architectures to measure

the economic worth of MRLS.

Robot evaluation of 59 critical
decision-making architectures

and index

[31]

Te authors explored the two key issues of robot evaluation and selection. To
address issues, a decision support model, which worked on cloud data and TODIM
(an acronym in Portuguese of interactive and multiple criteria decision making)
technique, is applied for the purpose of handling robot evaluation and selection

problems with high degree of hesitant in information.

Robot evaluation
decision-making index and
optimization techniques

[32]

Te authors implemented the VIKOR-based fuzzy extended analytic hierarchy
process technique for mobile robot selection. To avoid any loss of information, the
VIKOR is used for base calculation, and later the fuzzy ranking technique is

employed to address the degree of possibility of information.

Robot evaluation decision model
with fuzzy rating set and
optimization techniques

[33] Te authors identifed the robot evaluation and selection attributes under
appropriate combination of diferent characteristics for robot industrial application Robot evaluation architectures

[34]

Te authors analyzed the error on the calculated torque in stable motion for a robot.
Te variation characteristics of the joint torque error during a collision are analyzed
and optimized. Based on conclusion, the variation characteristics of the joint torque

and ILS collisions of robot are classifed into two types: hard and soft.

Robot evaluation
decision-making architectures

and index

[35]
Te authors presented a complete relative pose error model for robot calibration
power, respective to relative distance error and the relative rotation error of the

robot end-efectors for improving calibration accuracy

Robot decision-making
architectures and index

[36]
Te authors stated that the application of robots was carried out for learning of 15
individuals. In total, 11 out of the 15 individuals completed the complex task leaning

correctly by following diferent outputs of mobile robot’s criteria.

Robot decision-making
architectures and index

[37]
Te authors applied evaluation based on distance from average solution (EDAS)

method as MCDM for robot selection under multiple architectures such as
maintenance, power, speeds, and others

Robot evaluation MCDM
models and evaluation

architectures

[38]
Te authors tried to solve the robot evaluation and selection problem using fuzzy
best-worst method and PROMETHEE technique for prioritizing the criteria and

ranking the robot’s alternatives

Robot evaluation
decision-making architectures

and index

[39]
Te authors proposed a deformable two-wheel-like mobile mechanism over

constrainedmechanism, with the attitude of quick rolling and obstacle surmounting
ILS area

Robot evaluation
decision-making architectures
and index and optimization

techniques

[40]

Te authors proposed an improved SMAA technique known as iterative-SMAA
(I-SMAA) for option evaluation and selection in NPD. Finally, I-SMAA multistep
decision-making process is advised to adopt as advanced SMAA option evaluation

and selection technique.

Optimization techniques

[41]

Te authors applied the object detection, grasp planning, and motion execution
technique to justify the motion of the real robot. Te selected grasping techniques
were found very efective to detect the raw depth images of confguration of the

gripper of mobile robot.

Robot decision-making
architectures and index

[42]
Te authors proposed a dynamic model of the restricted workspace to protect the
motion of arm of robot from outreach. A self-protective policy decision executed
tree is proposed to regulate and to protect the motion of arm of robot from outreach

Robot decision-making
architectures and index

[43]

Te authors applied an ofine learning method to learn a basic reach model for arm
and a motion of mobile robot fngers. An online dynamic adjustment technique of
arm speed for active and passive grasping mode is designed and implemented to

improve the motion of mobile robot fngers.

Robot decision-making
architectures and index

[44]

Te authors attempted to integrate the additive ratio assessment (ARAS) with
TOPSIS and complex proportional assessment (COPRAS) to demonstrate the
real-time robot selection problem under 12 alternative robots with fve efective
selection criteria such as degree of freedom, unit load, power consumption, ftness

to production, and deprecation

Robot evaluation MCDM
models, evaluation architectures,
and optimization techniques

[45]
Te authors implemented knowledge-based cluster with the grey relational analysis
approach to short out the many advanced manufacturing machine tools such as

robot, CNC, and FMS evaluation problems under objective-grey data

Robot decision-making
architectures and index, grey
rating set, and optimization

techniques
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Table 1: Continued.

Reference Conducted works Focused on

[46]

Te authors proposed a deep hybrid model, which can jointly learn the latent
representations of users and items from ratings and reviews collectively. Te

proposed model can learn the high-order textual features from reviews based on the
GRU network.

Optimization techniques

[47]

Te author applied the fuzzy mathematical programming to develop
a multiobjective model for a reverse logistics network.Te developed multiobjective
model targeted the minimization of cost of facility construction, vehicle fuel, and
environmental damage from polluting gases as objective functions of the model.

Optimization techniques

[48]
Te authors proposed a novel ELICIT-MOORA technique for assessing the vertical
farming technology. Te MOORA technique is modifed to solve alternative

evaluation problems under linguistic variables.
Optimization techniques

[49]

Te authors applied a mobile robot intelligent obstacle avoidance algorithm
(consisting of the reaction, deliberation, and the supervision layers) with fuzzy
neural network to assess intelligent logistics system’s path adaptability. After

analysis, it is summarized that sensor performance improves the model accuracy,
path obstacle avoidance optimization, and obstacle avoidance simulation.

Fuzzy rating set application to
robotics and optimization

techniques

[50]

Te authors developed a variant pick-up and delivery problem for an urban
transportation system under constrained time. Both MRLS and SV features of

multiple depots, partial recharging strategies, and feet sizing of urban
transportation are considered to solve the problem.

Robot decision-making
architectures and index

[51]
Te authors proposed a dynamic controller, which adapts and changes the behavior
based on the knowledge of both: a modifed personal space distribution and human

user velocity of robot motion

Robot decision-making
architectures and index

[3]

Te authors proposed the integrated application of step-wise weight assessment
ratio analysis (SWARA) and combined it with compromise solution (CoCoSo)
technique to recognize the most apposite spray painting robot for an automobile
industry. Te seven evaluation criteria (payload, mass, speed, repeatability, reach,

cost, and power consumption) are grasped to identify the best robot.

Many robot decision-making
architectures and index and
optimization techniques

[52]

Te authors proposed a resilience-based optimization model in order to evaluate
and select an optimal restoration sequence scheme, maximizing the global average

efciency of metro networks of China under the contingency of network
accessibility meeting resilience requirements. Evolutionary algorithm NSGA-II is

applied to solve the said model.

Many robot decision-making
architectures and indexes and

optimization techniques

[53]

Te authors proposed the three techniques, agent-based model (ABM), product life
cycle management (PLM), and discrete frefy optimization algorithm (DFOA), to
investigate the vehicular ad hoc networks of local infrastructure functions after

glancing the local and global functions

Many robot decision-making
architectures and indexes and

optimization techniques

[54]

Te authors investigated the compliant leg confguration, addressed the
requirements of SLIP robot model. Te authors concluded that most of the mass of
robot is concentrated in the hip, and the leg, must be constructed by spring, which is

light in weight

Robot evaluation decision
making architectures and index

[55]

Te authors conducted bibliographic review on fractional-order control laws and
applied fractional-order control law to design the manipulators of robot logistic
system and man-robot systems. Te same law is applied to tackle and control the

biologically inspired robots.

Robot decision-making
architectures and index

[56]

Te authors found that alternative evaluation decision-making framework is used to
process the alternative evaluation decision by considering the preference similarities
of expert’s opinions. For example, collective opinion generation framework realized
the drawbacks of individual opinion decision making. Terefore, to overcome this
concern, the authors proposed an expertise-structure and risk-appetite-integrated
two-tiered collective opinion generation framework to respect the subgroup and
later group decision making, respectively, to facilitate the reliable decision for

alternative evaluation and benchmarking.

Rating evaluation and expert
opinions

[57]
Te author applied the multicriteria decision-making (MCDM) technique to
improve the quality of the fnancial decision-making process and alternative

evaluation
Optimization techniques

[58]
Te authors used Atanassov’s intuitionistic fuzzy-grey relational analysis sort
(IF-GRA-sort) technique in order to strategize the reopening of the tourism

industry
Optimization techniques

10 Journal of Advanced Transportation



6. DominanceTheoryandResultsandNovelties,
Applications, Limitations, and Implications

Section 6 includes the dominance theory and results (Section
6.1) and novelties, applications, limitations, and implications
(Section 6.3).

6.1.DominanceTeory andResults. Te dominance theory is
prioritized as analytical tool for confrming the most eco-
nomic and feasible option among available alternative op-
tions after comparative analysis. Te dominance theory was
utilized to provide the benchmarking solution to one of the
machine tool alternative evaluation problems in a case study.

Te said approach is renowned across the benchmarking
scholars for evaluating the single or individual rank after
comparison. Terefore, the need of holistic approach is
found. In the presented work, HMM-1-2 models are im-
plicated for appraising and evaluating the robust decision by
exploring the comparative analysis under dominance theory.
Te computed results by diferent HMM-1-2 models are
supposed to be demonstrated for comparative analysis
according to synergy among preference orders of MRLS
alternatives, obtained by HMM-1 and HMM-2, respectively.
Te simulated results from dominance theory to assure the
consistent alternative selection by the benchmarking tool are
shown in the following.

Table 1: Continued.

Reference Conducted works Focused on

[59]

Te authors applied the multiobjective optimization system-based TOPSIS
decision-making technique to identify the signifcant factors under the economic
and environmental criteria in order to generate the optimum power and heating and
cooling supply.Te factors such as minimum payback period andmaximum carbon
emission reduction are chosen as important factors to generate the optimum power

and heating and cooling supply.

Optimization techniques

[60]

Te authors developed a novel fairness-aware large-scale collective opinion
generation framework-based probability distribution function aggregation model
(constituted by combining the biobjective optimizationmodel with fairness concern
among the experts of subject matter).Te proposedmodel is used for evaluating and

benchmarking the blockchain adoption barriers for a medical SC.

Rating evaluation and expert
opinions

[61]

Te authors established a BIM maturity model by combining the probability
aggregation paradigm with a large-scale group decision-making framework for
evaluating the project-based BIM performance according to an expert system. Te
case study of the Corning Gen 10.5 glass substrate production line workshop in

Wuhan is demonstrated to show the efectiveness of the proposed model.

Rating evaluation and expert
opinions

[62]

Te authors conducted literature survey of various optimization techniques to select
the best alternative among various alternatives such as selection of supplier,

selection of best raw material, and optimization of machining parameters under
various criteria

Optimization techniques

[63]
Te authors proposed the new integration-based best worst method (BWM) and

Preference Ranking Organization Method for Enrichment Evaluation
(PROMETHEE II) to rank the optimal sets under group decision making (GDM)

Optimization techniques

Table 2: Te objective (O) information against RLS architectures corresponding to MRLS.

Γi
Speeds
(m/s)

Degree of
freedom

Unit
load
(kg)

Power
(unit/
hrs)

Purchasing
cost ($)

Maintenance
cost ($/annum)

Deprecation/
year

Overall
efciency

(%)

Fitness to
production

(%)

Quickness to
tasks (%)

ψ1 ψ2 ψ3 ψ4 ψ5 ψ6 ψ7 ψ8 ψ9 ψ10

Γ1 0.52 6 50.5 2 10000 520 589 Sratings Sratings Sratings

Γ2 0.45 5 52.3 1.5 11000 530 545 Sratings Sratings Sratings

Γ3 0.51 6 53.5 1.6 12000 550 456 Sratings Sratings Sratings

Γ4 0.62 4 57.3 1.8 11000 510 545 Sratings Sratings Sratings

Γ5 0.58 5 57.5 1.9 11500 550 500 Sratings Sratings Sratings

Γ6 0.59 6 51.2 1.8 11000 560 556 Sratings Sratings Sratings

Γ7 0.52 6 51.5 1.9 10500 600 658 Sratings Sratings Sratings

Γ8 0.56 6 52.5 2.0 10540 650 456 Sratings Sratings Sratings

Γ9 0.57 4 59.3 2.1 11325 690 504 Sratings Sratings Sratings

Γ10 0.554 6 57.5 2.0 11235 520 532 Sratings Sratings Sratings
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6.2. Results. As per HMM-1 model, Γ3-0.4307 is ascertained
as most economical and optimum in all architectures.

� Γ3-0.4307> Γ2-0.4260> Γ4-0.4134> Γ8-0.4081> Γ6-0.4079> Γ5-0.4078> Γ10-0.4075> Γ1-0.4050> Γ7-0.3832> Γ9-0.3831. (11)

As per HMM-2 model, Γ3-0.024071 is determined as
most economical and optimum in all architectures.

� Γ3-0.024071> Γ2-0.023539> Γ4-0.020098> Γ8-0.020621> Γ5-0.020548> Γ6-0.020175> Γ10-0.020081> Γ1-0.018967> Γ9-0.017118> Γ7-0.015792.

(12)

Table 3: Defnitions of MRLS architectures.

Qualitative/quantitative architectures Defnitions

Speeds (m/s), ψ1

It is the linear movement of MRLS about X-Y axis. Te speed of MRLS is recorded
by the computer’s memory and controlled by lining up the path or PLC component

of MRLS with servo-controller unit.

Degree of freedom, ψ2

It is related to motions of robot’s arms and occurs due to independent joints, which
provide the freedom of movement for the MRLS manipulators, either in a linear or

rotational sense. Most of the MRLS have six degrees of freedom.

Unit load (kg), ψ3
It is the weight carrying capacity of MRLS. It is observed that MRLSs are available in
a broad range such as carrying weight from 0.5 kg to as heavy as up to 1000 kg.

Power (unit/hrs), ψ4
It refers to the electrical energy, which is supplied to operate MRLSs. One unit is

generally measured in terms of KW/hr.

Purchasing cost ($), ψ5
It is the cost associated with buying theMRLS from vendor for producing the goods.

It is refected by $ at global standards.

Maintenance cost ($/annum), ψ6

It is the expenditure incurred to avoid the sudden breakdown or failure in MRLSs.
Tese costs might be spent for the ordinary maintenance such as repairing and

oiling of MRLS.

Depreciation/year, ψ7
It refects the reduction in value of MRLS within a fscal year. Each tangible asset’s

value, i.e., equipment, vehicles, and robots, declines with respect to time.

Overall efciency (%), ψ8

It is described as ratio of actual or produced output to standard/expected output.
Te efciency of MRLS is about 75% to 90% (without setup time). It can be

calculated, for example, MRLS is expected to produce 100 pieces per one hour and
produce 80 in reality. OE is estimated to be 0.8 and 80% (with product of 100).

Fitness to production (%), ψ9
It refers to percentage of utilization of MRLS towards addressing the various

subsidiary tasks/activities of production

Quickness to tasks (%), ψ10
It is the ability to react and alter the quick physical position of MRLS with motive to

achieve rich production rate under least cost with high degree of quality

Table 4: Te subjective information (in terms of %) assigned by expert’s panel to MRLS architectures.

ψ1/EKn
EK1

EK2
EK3

EK4

ψj1 {Min89%≤Max95%} {Min50%≤Max65%} {Min80%≤Max82%} {Min83%≤Max87%}
ψj2 {Min78%≤Max89%} {Min73%≤Max78%} {Min79%≤Max85%} {Min87%≤Max90%}
ψj3 {Min90%≤Max95%} {Min91%≤Max96%} {Min97%≤Max100%} {Min74%≤Max80%}
ψj4 {Min82%≤Max89%} {Min87%≤Max91%} {Min91%≤Max93%} {Min78%≤Max90%}
ψj5 {Min58%≤Max67%} {Min78%≤Max84%} {Min77%≤Max79%} {Min87%≤Max95%}
ψj6 {Min90%≤Max94%} {Min95%≤Max99%} {Min88%≤Max89%} {Min87%≤Max91%}
ψj7 {Min75%≤Max89%} {Min70%≤Max80%} {Min80%≤Max90%} {Min75%≤Max77%}
ψj8 {Min58%≤Max67%} {Min78%≤Max84%} {Min77%≤Max79%} {Min87%≤Max95%}
ψj9 {Min90%≤Max94%} {Min95%≤Max99%} {Min88%≤Max89%} {Min87%≤Max91%}
ψj10 {Min90%≤Max95%} {Min91%≤Max96%} {Min 97%≤Max100%} {Min74%≤Max80%}
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6.3. Novelties, Applications, Limitations, and Implications

6.3.1. Novelties of Research Work

(i) Te proposed HMM-1-2 models can tackle the S-
ratings of Ex against MRLS architectures in a range
of 1–100% (min-max).

(ii) Te proposed HMM-1-2 models can tackle the
fused information i.e., Subjective (S) mixed with
Objective (O) ratings or individual Subjective (S)
or Objective (O) ratings provided by Exs against
MRLS architectures.

(iii) Te proposed HMM-1-2 models are able to
compute and evaluate the signifcance against both
S-O-architectures.

(iv) Te authors proposed the linear information-
based min-max value extraction from 1 to 100%
rating scale in linear series, which is simple in
nature to learn, understand, and teach to Exs at the
time of recruitment of MRLS under multiple
mixed S-O-architectures.

(v) Te proposed linear information idea overcame
the drawback of executing the complex fuzzy, grey,

Table 5: Te subjective information (in terms of %) assigned by expert’s panel against architectures corresponding to MRLS.

ψj Γi Ek1 Ek2 Ek3 Ek4

ψj8

Γ1 {Min90%≤Max93%} {Min80%≤Max81%} {Min94%≤Max98%} {Min80%≤Max95%}
Γ2 {Min85%≤Max91%} {Min75%≤Max85%} {Min70%≤Max80%} {Min74%≤Max83%}
Γ3 {Min75%≤Max89%} {Min70%≤Max80%} {Min80%≤Max90%} {Min75%≤Max77%}
Γ4 {Min89%≤Max95%} {Min50%≤Max65%} {Min80%≤Max82%} {Min83%≤Max87%}
Γ5 {Min78%≤Max95%} {Min91%≤Max96%} {Min97%≤Max100%} {Min74%≤Max80%}
Γ6 {Min80%≤Max89%} {Min87%≤Max91%} {Min91%≤Max93%} {Min78%≤Max90%}
Γ7 {Min58%≤Max67%} {Min78%≤Max84%} {Min77%≤Max79%} {Min87%≤Max95%}
Γ8 {Min90%≤Max94%} {Min95%≤Max99%} {Min88%≤Max89%} {Min87%≤Max91%}
Γ9 {Min90%≤Max95%} {Min91%≤Max96%} {Min97%≤Max100%} {Min74%≤Max80%}
Γ10 {Min82%≤Max89%} {Min87%≤Max91%} {Min91%≤Max93%} {Min78%≤Max90%}

ψj9

Γ1 {Min89%≤Max95%} {Min50%≤Max65%} {Min80%≤Max82%} {Min83%≤Max87%}
Γ2 {Min78%≤Max89%} {Min73%≤Max78%} {Min79%≤Max85%} {Min87%≤Max90%}
Γ3 {Min90%≤Max95%} {Min91%≤Max96%} {Min97%≤Max100%} {Min74%≤Max80%}
Γ4 {Min82%≤Max89%} {Min87%≤Max91%} {Min91%≤Max93%} {Min78%≤Max90%}
Γ5 {Min78%≤Max89%} {Min73%≤Max78%} {Min79%≤Max85%} {Min87%≤Max90%}
Γ6 {Min90%≤Max95%} {Min91%≤Max96%} {Min97%≤Max100%} {Min74%≤Max80%}
Γ7 {Min75%≤Max89%} {Min70%≤Max80%} {Min80%≤Max90%} {Min75%≤Max77%}
Γ8 {Min89%≤Max95%} {Min50%≤Max65%} {Min80%≤Max82%} {Min83%≤Max87%}
Γ9 {Min78%≤Max89%} {Min73%≤Max78%} {Min79%≤Max85%} {Min87%≤Max90%}
Γ10 {Min80%≤Max82%} {Min80%≤Max88%} {Min89%≤Max92%} {Min87%≤Max92%}

ψj10

Γ1 {Min58%≤Max67%} {Min78%≤Max84%} {Min77%≤Max79%} {Min87%≤Max95
Γ2 {Min90%≤Max94%} {Min95%≤Max99%} {Min88%≤Max89%} {Min87%≤Max91%}
Γ3 {Min90%≤Max95%} {Min91%≤Max96%} {Min97%≤Max100%} {Min74%≤Max80%}
Γ4 {Min75%≤Max89%} {Min70%≤Max80%} {Min80%≤Max90%} {Min75%≤Max77%}
Γ5 {Min58%≤Max67%} {Min78%≤Max84%} {Min77%≤Max79%} {Min87%≤Max95%}
Γ6 {Min90%≤Max94%} {Min95%≤Max99%} {Min88%≤Max89%} {Min87%≤Max91%}
Γ7 {Min75%≤Max89%} {Min70%≤Max80%} {Min80%≤Max90%} {Min75%≤Max77%}
Γ8 {Min89%≤Max95%} {Min50%≤Max65%} {Min80%≤Max82%} {Min83%≤Max87%}
Γ9 {Min78%≤Max95%} {Min91%≤Max96%} {Min97%≤Max100%} {Min74%≤Max80%}
Γ10 {Min80%≤Max89%} {Min87%≤Max91%} {Min91%≤Max93%} {Min78%≤Max90%}

Table 6: Te aggregated ratings vs subjective as well as objective architectures corresponding to MRLS and evaluated signifcance vs RLS
architectures.

Γi ψ8 ψ9 ψ10 ψj {MinW%≤Maxw%} Signifcance Cwv NCwv

Γ1 {Min86%≤Max92%} {Min76%≤Max82%} {Min75%≤Max81%} ψj1 {Min76%≤Max82%} 79 0.093051
Γ2 {Min76%≤Max85%} {Min79%≤Max86%} {Min90%≤Max93%} ψj2 {Min79%≤Max86%} 82 0.096584
Γ3 {Min75%≤Max84%} {Min88%≤Max93%} {Min88%≤Max93%} ψj3 {Min88%≤Max93%} 90 0.106007
Γ4 {Min76%≤Max82%} {Min85%≤Max91%} {Min75%≤Max84%} ψj4 {Min85%≤Max91%} 88 0.103651
Γ5 {Min85%≤Max93%} {Min79%≤Max86%} {Min75%≤Max81%} ψj5 {Min75%≤Max81%} 80 0.094229
Γ6 {Min84%≤Max91%} {Min88%≤Max93%} {Min90%≤Max93%} ψj6 {Min90%≤Max93%} 78 0.091873
Γ7 {Min75%≤Max81%} {Min75%≤Max84%} {Min75%≤Max84%} ψj7 {Min75%≤Max84%} 92 0.108363
Γ8 {Min90%≤Max93%} {Min76%≤Max82%} {Min76%≤Max82%} ψj8 {Min75%≤Max81%} 78 0.091873
Γ9 {Min88%≤Max93%} {Min79%≤Max86%} {Min85%≤Max93%} ψj9 {Min90%≤Max93%} 92 0.108363
Γ10 {Min85%≤Max91%} {Min84%≤Max89%} {Min84%≤Max91%} ψj10 {Min88%≤Max93%} 90 0.106007
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rough, and vague sets to address the uncertainty
associated with S-architectures of MRLS perfor-
mance mapping and selection index.

(vi) Te authors proposed the RLS recruitment and
selection index incorporating the advanced and
sizzling architectures in meeting sustainability
pillars of Industry 4.0.

(vii) Te authors introduced the dominance theory and
implicated for robustly evaluating the performance
of MRLS so that appropriate MRLS can be placed
for future smoothing of industrial operations.

(viii) Te proposed models are able to diagnose other
logistics evaluation problems of Industry 4.0.

6.4. Industrial Applications of ResearchWork. Te proposed
Holistic Managerial Models (HMM-1 and HMM-2) are
appropriate for materializing the economical worth ofMRLS
on bearing the Ex information in a range of linear scale
(1–100% rating). Te proposed models are also relevant to
short out the other micro and medium transportation
system evaluation problems such as cars, scooters, and bikes,
under alerting objective cum subjective assessment. In fu-
ture, in case of any disaster or circumstance, the proposed
models can be simulated from the same prospectus, i.e., to
recruit MRLS as per operations to be performed by them or
as per crowd of area or locality. Tese models imply the
supervisory skills to tackle real-life problems, i.e., appraise
the economical worth of buses, aeroplanes, helicopters,
commercial equipment, JCB, carriers, wagon autos, and
trucks on alerting the architectures of MRLS or substituting
MRLS recruitment problem or performance mapping index
corresponding to O-S data.

6.5. Limitations of ResearchWork. Te proposed models are
limited to undertake only MRLS evaluation problems cor-
responding to O-S or O or S MRLS architecture corre-
sponding proposed index. Te models are not active to
resolve the linear transportation problems and multi-
objective as well as single parameter optimization problems.

6.6. Implications of Research Work. Te proposed models
discard the implication of managers and Exs or decision
makers, as they can easily understand the scale for assigning
the S-ratings (1–100% rating) to assign against O-S-archi-
tectures of alternative MRLSs. Furthermore, the research has
economic impact at global AMSs, as it does not solicit ex-
tremely high skill operators to recruit advance trans-
portation systems. Te computations can be carried out by
usage of Excel or MATLAB under feasible time. It does not
require funding to buy unusual/special software.

 . Conclusions

Conclusion includes the descriptions of discussion, eco-
nomic value, and future research scope.

7.1. Conclusions. Te utility of ILS is broadly seen around
Industry 4.0. It is learned that TPM (Transportation Per-
formance Measurement) and decision support tools enable
Industry 4.0 for acting on the suitable future planning and
adapting operations under feed-forward controlling system.
Te research attempted to add the worth in CIM system by
introducing MRLS performance mapping, recruitment, and
selection index embedded with HMM-1-2 models, which
can simulate the O-S architectures corresponding to alter-
native MRLSs. Te results of the demonstrated RLS problem
are shown here:

ΓHMM1 � Γ3−0.4307> Γ2−0.4260> Γ4−0.4134> Γ8−0.4081> Γ6−0.4079> Γ5−0.4078>
· Γ10−0.4075> Γ1−0.4050> Γ7−0.3832> Γ9−0.3831,

ΓHMM2 � Γ3-0.024071>Γ2-0.023539> Γ4-0.020098> Γ8-0.020621>
· Γ5-0.020548> Γ6-0.020175> Γ10-0.020081> Γ1-0.018967> Γ9-0.017118>Γ7-0.015792.

(13)

Table 9: Computed economic value of candidate MRLS computed by Holistic Managerial Models (HMM-1 and HMM-2).

Γi
Overall performance

(OP) ΓHMM1gain

Preference orders of
candidate robots

Overall performance (OP)
ΓHMM2gain

Preference orders of
candidate robots

(Dominance theory) Relative analysis
among imputed preference orders of

candidate robots

Γ1 0.4050 8 0.018967 8 8
Γ2 0.4260 2 0.023539 2 2
Γ3 0.4307 1 0.024071 1 1
Γ4 0.4134 3 0.020098 3 3
Γ5 0.4078 6 0.020548 5 6 or 5
Γ6 0.4079 5 0.020175 6 5 or 6
Γ7 0.3832 9 0.015792 10 9 or 10
Γ8 0.4081 4 0.020621 4 4
Γ9 0.3831 10 0.017118 9 10 or 9
Γ10 0.4075 7 0.020081 7 7
Bold values represent frst preference.
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Te authors found after quenching the dominance
theory over the evaluated performance of MRLSs that Γ3 is
the best and optimum, satisfying all architectures. Te AMS
system is advised to plan to recruit Γ3 for commencing the
nice operations and attaining prospectus goals.

7.2. Discussion. Te motive to adjoin the dominance theory
with HMM-1-2 is to obtain the reliable and potential results.
Terefore, synergy analysis is carried out among the eval-
uated performance of MRLSs by executing dominance
theory. It is found that Γ3 is the most economical and op-
timum in all architectures. Te AMS of MRLS recruitment
company is suggested to recruit only third MRLS candidate
for future lovely operations.

Te development of advanced RLS performance re-
cruitment and selection index is considered as minor
originality of research work. Te major innovation is
sparking around the development of linear scale for
choosing rating value from 1 to 100% corresponding to min-
max idea to assign the ratings and signifcance by Ex
(without executing linguistic scale) against S and all O-S
architectures, respectively. In continuation of that, to sim-
ulate MRLS index with 1–100% ratings as well as signif-
cance, HMM-1 and HMM-2 are proposed. Te models are
economical in nature and can be solved manually and by
Excel sheet. Te feature of research work is bright as the
proposed HMM-1 and HMM-2 models can be simulated to
tackle other transportation problems under same re-
cruitment index or substitution of architectures of index.
Te information is formed by using min-max concept, but it
can also be formed as min-medium-max if Exs perceived
more degree of hesitation. Te models are not applicable for
resolution of the linear and single and multiobjective op-
timization problem, and fuzzy, grey, rough, and vague sets
cannot be tackled and models are not oriented to tackle the
linguistic scale.

7.3. Economic Value. Te presented research forum is
economic in nature as HMM-1-2 appended with MRLS
index is communal to other global industries by usage of
social networking sites, e-mail, etc. Microsoft Excel software
can be used to compute the results. Any specifc software is
not required. Te work does not require the high scale
operator. Moderate technical skill-based operator is sought
to express the essence of benchmarking decision. In terms of
time, the computation is efortless and least time consuming
as experimental data are not sought by MRLS index.

7.4. Future Research Scope. Te research dossier has in-
terdisciplinary value because the S-O architectures of MRLS
evaluation and benchmarking index can be changed by
incorporating the future challenging MRLS architectures.
Te depicted index can be extended vertically (expanding
number of architectures at same level) and horizontally
(adding subarchitectures at 2nd level) according to available
alternative features of architectures. In the terms of HMM-1-
2 models, the model is unique in nature and can be enrolled

over various MRLS indexes to provide benchmarking so-
lution to MRLS alternative evaluation problems in future
case studies. Te model can also be explored for the purpose
of mapping performance of individual MRLS by taking
reference of benchmarking limit (standard performance) for
selecting and rejectingMLRS.Terefore, theMRLS investors
or industries can use the proposed work to hire theMRLS on
rent/lease to transport a broad range of materials such as
switch, shaft, gear, and steel socket. Te scholars can utilize
the research work as future research guide and direction to
shape advanced MRLS indexes and models.
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