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Te timely and accurate forecasting of urban road trafc is crucial for smart city trafc management and control. It can assist both
drivers and trafc controllers in selecting efcient routes and diverting trafc to less congested roads. However, estimating trafc
volume while taking into account external factors such as weather and accidents is still a challenge. In this research, we propose
a hybrid deep learning framework, double attention graph neural network BiLSTM (DAGNBL), that utilizes a graph neural
network to represent spatial characteristics and bidirectional LSTM units to capture temporal dependencies between features.
Attention modules are added to the GNN and BLSTM to fnd high-impact attention weight values for the chosen road section.
Our model ofers the best prediction accuracy with a mean absolute percentage error of 5.21% and a root mean squared error of 4.
It can be utilized as a useful tool for predicting trafc fow on certain stretches of road.

1. Introduction

Trafc fow forecasting is a crucial task for transportation
management and decision-making. Accurate trafc fow
predictions can help to improve trafc control, optimize
transportation infrastructure, and reduce travel time and fuel
consumption [1, 2]. However, traditional methods such as
time series analysis and regressionmodels often fail to capture
the complex spatiotemporal patterns and correlations with
weather data that can signifcantly impact trafc fow [3].

In recent years, there has been a growing interest in using
deep learning models for trafc fow forecasting. Bi-
directional long short-term memory (BiLSTM) networks
have been shown to be efective in capturing the temporal
dependencies of trafc fow [4]. Additionally, graph neural
networks (GNNs) have been proposed to model the spatial
dependencies and interactions between trafc nodes [5].
However, these models are often limited to using historical

trafc fow data as input and do not consider the impact of
weather conditions on trafc fow.

In this study, we propose a novel approach for trafc fow
forecasting that combines the power of BiLSTM and GNN
models with correlated weather data. Our approach lever-
ages the ability of BiLSTM to capture the temporal de-
pendencies of trafc fow and the ability of GNN to model
the spatial dependencies and interactions between trafc
nodes. We also incorporate weather data as an additional
input to capture the impact of weather conditions on trafc
fow. Trough extensive experiments on real-world trafc
fow data, we demonstrate the efectiveness and superiority
of our proposed model in comparison to state-of-the-art
methods.

Te main goal of the research is to develop a spatio-
temporal trafc fow forecasting model that captures the
complex interactions between trafc fow and weather data
and to improve the accuracy of trafc fow predictions.
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Te main contributions of this research are highlighted as
follows:

(1) We propose a novel hybrid model, named DAGNBL,
that combines graph neural networks and bi-
directional long short-term memory networks to
forecast trafc fow in a particular area.

(2) We take into account the impact of nonrecurrent
events such as weather changes on trafc fow by
incorporating local meteorological information into
the model, which leads to a better understanding of
spatiotemporal deviations of trafc patterns.

(3) We implement a double attention approach to en-
hance the performance of our model and enable it to
learn the dynamic spatial-temporal correlations of
trafc data. Specifcally, a spatial attention is used to
simulate the complex spatial relationships between
diferent locations, and a temporal attention is
employed to capture the dynamic temporal links
between diferent times.

Te rest of this essay is organised as follows.Te state-of-
the-art methodologies for trafc fow prediction are
reviewed in Section 2. Te baseline models and methods are
described in Section 3 along with our suggested model and
in-depth description of the datasets. An experimental setup
is presented in Section 4. Section 5 presents the fndings of
the experiment. Te study is concluded in Section 6, which
also suggests areas for future research.

2. Literature Review

Over the past few years, a lot of researchers have focused on
the issue of trafc fow forecasting, driven mostly by the
advantages it can ofer in real-time trafc monitoring, in-
cluding the authors of [6–13]. However, as most of the
research focuses on the continuation of the existing situation
into the future, the outcomes of these projections are fre-
quently not very accurate. Trafc patterns are infuenced by
many factors such as construction and maintenance of road
or roadside infrastructure, population or employment
changes, holidays and other special events, weather, and
even accidents caused by human error. In light of these
difculties, we intend to look into the issue of urban trafc
fow forecasting using one of the external factors mentioned
previously, notably weather circumstances. Additionally,
encouraging is the fact that during the past 10 years, IoT has
promised to increase the knowledge and productivity of
transportation organisations. Sensors and other IoT-enabled
equipment are able to gather and communicate data about
activity occurring in the road network in real time. Trans-
portation management can then examine the data obtained
from these devices to manage the fow of trafc on the roads.
Te data can vary from vehicle detection, vehicle volume,
pressure and speed measurement, road surface conditions,
and road weather conditions [14, 15]. Te road trafc data
which are needed for intelligent transport system are
gathered from any of the sources as shown in Figure 1.Te
difculty of predicting trafc levels should ideally be divided

into long-term forecasting as addressed in [16–20] and
short-term forecasting as explained by the authors of
[21–24]. Short-term forecasts usually incorporate only a few
months’ worth of data from a small number of sensors, and
they frequently focus on the near future, i.e., predicting
10–15minutes in the future. Long-term forecasting, on the
other hand, necessitates data from numerous sensors
gathered over a comparatively longer period, such as an hour
or a day. Tis assists stakeholders in making long-term
decisions, such as allowing passengers to schedule their
travel according to peak trafc hours and the government to
plan the construction of a fyover or overhead bridge in
response to a route that consistently experiences trafc
congestion. Time-series modelling is frequently used to
tackle both types of forecasts and examine the difculties in
projecting trafc fow at a specifc site. Usually, one attempts
to forecast the value of a variable using a series of historical
samples obtained at predetermined intervals. But predicting
trafc is an extremely difcult task. Trafc volume and fow
are not just dependent on the driver or the vehicle. However,
a number of other outside variables, such as on-road in-
cidents or changes in the environment and weather, also
have a signifcant impact on how trafc patterns change on
the roads. When such external factors are present, the simple
process of time series forecasting becomes a multivariate
time series forecasting task. It is a difcult problem since one
must simultaneously take into account intraseries temporal
correlations and interseries correlations. However, these
long- and short-term temporal patterns are now easily
analysed, learned, and predicted with accuracy, thanks to the
development of machine learning and deep learning algo-
rithms powered and fueled up by big data IoTdevices. Tese
algorithms have been useful in many felds, including
forecasting of trafc [25–27], energy use [28], stock market
analysis [29], pandemic outbreak [30], sales analysis [31],
and price prediction [32]. Tus, it can be stated that, for the
problem of forecasting trafc fow, if only a single site’s
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Figure 1: Te sources of data for intelligent transport system.
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trafc volume, occupancy, or fow is taken into account, it
will be classifed as univariate time series forecasting. But in
a larger sense, if data from several locations are used to
analyse trafc fow and its association, the problem is
a standard multivariate time series forecasting one.

Figure 2 depicts the typical sequence of steps required to
use a deep learning pipeline to forecast the predicted trafc
value.Te diagram demonstrates how data from various IoT
sensors are frst gathered, followed by the extraction and
learning of spatiotemporal correlations.

It is clear from the abovementioned explanation that
predicting trafc in isolation without using neighbourhood
trafc patterns or external factors, particularly weather
conditions, is not very efective. Te trafc volume data
gathered from all nearby sensors should be collected along
with the external weather conditions since they have a sig-
nifcant impact on trafc fow for real-time and accurate
trafc fow forecasting of a specifc area. Trafc fow pre-
diction research falls under the categories of parametric,
machine learning, deep learning, and hybrid techniques as
shown in Figure 3.

In this section, we will go over the research that has
already been performed employing techniques for predict-
ing both typical trafc patterns and trafc under difcult
conditions.

2.1. Forecasting Trafc under Regular Road Conditions. To
forecast trafc fow, Xia et al. in [33] suggested a bi-
directional LSTM network with attention and a normal
distribution module. Te attention mechanism is used to
identify the high-impact attention weight values that have
an impact on the targeted road segment, and it employs
a fve-second time window for the road segment. Te
normal distribution is utilized to identify the infuence of
spatial correlation. In another study [34], Wei and Sheng
suggested a hybrid model consisting of graph attention
network and LSTM network is proposed. In their work,
they used a dynamic adjacency matrix to depict the spatial
dependencies of the topological road network. LSTM
network was used to extract dynamic temporal features.
Guo et al. in [35] use a fusion of spatial and temporal
attention modules to forecast trafc fow. Tey used graph
convolutions for spatial dependencies and normal con-
volutions for temporal dependencies. However, their work
also lacks the external infuencing factors such as accidents
or weather-changing conditions. Li et al. in [36] also have
a similar approach where temporal and spatial attention
modules are used, and a layer of dynamic graph convo-
lution neural network is used to fnd the data. Tus, their
approach incorporates a multisensor data connection
convolution block with a benchmark adaptive mechanism
correlation. Lu et al. in [37] suggested LSTM outftted with
temporally aware convolutional context (TCC) and loss-
switch mechanism (LSM) blocks. To suppress the data
outliers, Chen et al. in [38] used a variety of denoising
techniques, such as empirical and ensemble empirical
mode decomposition and wavelet. Te LSTM model’s
training data are used to make the predictions. In some

other works, Ali et al. used support vector regression [39]
and graph convolution networks with dynamic hash tables
[40] to forecast trafc fows. Qiao et al. in [41] use 1D CNN
with LSTM to predict trafc fows in urban city. In [42],
Bohan proposes a bidirectional recurrent neural network to
predict trafc states utilizing both historical and future data
in training the network.

2.2. Forecasting Trafc Correlated withWeather Information.
In a simple work performed by Jia et al. [43], frst, an image
matrix is constructed using the urban trafc data infow
and outfow. Ten, the self-attention module is used to
discover the internal relationships between pixels and
record the internal organisation of the image. Finally,
a deep Res2Net module is employed to forecast how many
people will go through each area of the city based on
previous trajectories and vacations. Zhang et al. in [44]
and Ye et al. in [45, 46] both used graph convolution
neural network with attention mechanism and considered
external factors while making predictions. Cui et al. in
[47] use a stacked approach where the frst layer is of
BLSTM and the last layer is of LSTM. Teir model has
a sandwiched layer of either LSTM or BLSTM between the
frst and the last layers for capturing the spatiotemporal
dependencies. A very similar work is proposed by Ma et al.
in [48]. In conclusion, numerous studies using trust-
worthy LSTM models and graph neural networks have
been explored in the literature in relation to the topic of
trafc prediction. Te hopeful potential of BiLSTM
models for future trafc time series predictions that take
the temporal dependencies in the past, however, has re-
ceived very little attention from studies. Furthermore,
there has not been much study performed on a system that
combines the strength of graph neural networks with
bidirectional LSTM networks. Table 1 summarizes the
main deep-learning-based research conducted in
spatiotemporal-based trafc fow forecasting.

3. Materials and Methods

Te baseline architectures that we used in our model and the
model that we presented are described in-depth in this
section.

3.1. Deep Bidirectional Long Short-Term Memory Network.
An extension of the straightforward LSTM network is the
deep bidirectional LSTM network proposed frst by [58]. It
operates with two LSTM cells in a single timestamp as
opposed to its progenitor. Te frst is a forward LSTM cell,
and the second is an LSTM cell in reverse.Tis should not be
confused with the neural network’s forward pass and the
backward pass. Te forward and reverse cells receive only
inputs, and the output is collected by sending it through the
sigmoid activation function. Tis allows us to preserve the
long-term dependencies between the data features. Te
overall structure of the bidirectional LSTM cell is depicted in
Figure 4.
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Intelligent Traffic Forecasting
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Figure 3: Classifcation of techniques used for solving the problem of trafc fow forecasting.
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Figure 2: A general fow of events required in the task of trafc fow prediction.
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3.2. Graph Neural Network. Graph neural network is based
on graph data structure consisting of a group of nodes and
edges represented in Euclidean space. Nodes usually present
the feature vectors, and edges maintain the relationship
between the adjacent nodes. A GNN usually takes node
attributes and fnds embedding for each node. Te idea of
GNN was proposed by [59–61]. A graph is usually repre-
sented as a set of nodes and edges.

G � (N, E), (1)

where N represents set of nodes and N � 1, 2, 3, . . . ..n{ }, and
E represents edge existing between any two nodes (i and j) in
the graph.

E � i, j | i, j ∈ N . (2)

A graph adjacency matrix represents all vertices labelled
as rows and columns with a 0 or 1 value depending if there
exists a connection between two nodes.

Aij �
1 if i, j ∈ E,

0 otherwise.
 (3)

Te objective of the graph neural network is to encode
contextual graph information by combining the data from
nearby nodes. Each node receives information from its
neighbouring node at every iteration. After that, the in-
formation is merged with the already-existing features to
create a useable function.

3.3. Spatiotemporal Graph Neural Network. A GNN that
changes over time is called temporal graph neural net-
works and usually are represented with the following
equation:

G � N, E, Vn, Ve( , (4)

where Vn and Ve represent the dynamic features of node and
edge, respectively. For time series forecasting problem, it is
important to combine a graph neural network with an RNN,
LSTM, or GRU which lets the overall network to capture the
spatial and temporal features together. Figure 5 illustrates
the connection between the spatial and temporal features.

3.4. Attention Mechanism. One of the most important de-
velopments in deep learning model in recent years is the
attention mechanism. It has been widely applied to many
domains with many deep learning models such as convo-
lution neural network [62–67], recurrent neural network
[65, 68–70], long short-term memory network [62, 71–74],
autoencoders [75–78], generative adversarial networks
[79–82], and variational autoencoders [78, 83, 84].Te use of
attention mechanism in trafc fow prediction is studied by
the authors of [85]. Teir studies clearly indicate that the
addition of attention mechanism helps in selecting only the
most relevant features that are required from the spatial and
temporal feature vector for forecasting.

3.5. Description of Datasets. For addressing the problem of
intelligent transportation systems, there may be four main
categories of data which may be required, including
emergency information, information about vehicles, in-
formation about trafc facilities, and information about
trafc fow [86]. CityPulse is a live broadcast of IoT from
numerous sensors placed throughout the Danish city of
Aarhus Road trafc, and pollution, weather, cultural, social,
library event, and parking data are among the datasets that
are available [39, 87, 88]. For our study, we will be using only

output layer

activation layer

Reverse LSTM Layer

Forward LSTM Layer

input layer

Fully Connected Layer

yt-1 yt yt+1

R-LSTM R-LSTM R-LSTM

F-LSTM F-LSTM F-LSTM

xt-1 xt xt+1

σ σ σ

Figure 4: A simple bidirectional LSTM cell with F-LSTM as forward LSTM cell and R-LSTM as reverse LSTM cell.
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the road trafc and weather data for the period of eight
months from February 2014 to September 2014. Table 2
shows the description of parameters in the CityPulse road
trafc data. It contains data collected from two linked
sensors connecting two streets in the Danish city of Aarhus.
Other fgures and tables display additional information and
data about these observation points. LSTW is a national
dataset that includes information on weather and trafc
conditions in the United States, including trafc incidents
(e.g., accidents and construction) and weather events (e.g.,
rain, snow, and storms). As of 2021, it contains approxi-
mately 37million records of weather and trafc-related
occurrences since August 2016. Figure 6 shows a map of
Arhus indicating two observation points from street
Arhusvej72 to Arhusvej 0.

4. Experimental Setup

In the experimental setup, TensorFlow and necessary
packages were installed on Google Colab. Te dataset
containing both trafc fow and weather data was then
uploaded and preprocessed using the Pandas library. Te
model was built using PyTorch, a high-level API for Ten-
sorFlow, with a combination of BiLSTM and GNN layers.
For the training of the proposed model, the following
hyperparameters were used: batch size of 32, L2 regulari-
zation of 0.01 for both time series GNN and LSTM layers,
Adam optimizer, 200 epochs, and a learning rate of 0.01.
Additionally, a search space was defned for hyperparameter
tuning, which included varying batch sizes, learning rates,
regularization strengths, number of hidden units in LSTM
and GNN layers, and number of attention heads in the
model. In our experiments, we used a graph convolutional
layer with 64 nodes and a 2-layer BiLSTM with 128 hidden
units. We found that these hyperparameters resulted in
a good trade-of between model complexity and predictive
accuracy. In particular, we used multihead attention in our
model, which allows for attention to be computed across
multiple feature maps and has been shown to be efective in

modelling spatial dependencies in graph data. Te best-
performing hyperparameters were chosen based on vali-
dation accuracy, and the chosen values were used for fnal
model training and testing. Furthermore, data normaliza-
tion was performed on both input features and target var-
iables, which is a common practice for time series data. Te
training and testing data for this study were chosen based on
a train-test split. Te dataset was randomly divided into
a training set and a testing set, with a ratio of 80 : 20. Te
training set was used to train the model, while the testing set
was used to evaluate the performance of the model on
unseen data. Te model was then used to make predictions
on the test data, and the performance was evaluated using
metrics such as mean squared error, mean absolute error,
and R-squared. Tis approach can be used to improve the
accuracy of trafc fow forecasting by incorporating cor-
related weather data.

4.1.ProposedModel. Our proposedmodel aims to accurately
forecast trafc fow by utilizing a combination of BiLSTM,
GNN, and attention mechanisms as shown in Figure 7. Te
model takes into account both the temporal dependencies in
the trafc fow and weather data as well as the spatial re-
lationships between the trafc sensors. Te use of attention
layers allows the model to weigh the importance of each
feature in the input data and improve the accuracy of the
fnal prediction. Te main steps are defned as follows:

(1) An attention layer weighs the importance of each
feature in the input trafc fow and weather data.
Tis attention layer can be implemented using the
attention mechanism from TensorFlow.

(2) A BiLSTM layer processes the sequential trafc fow
and weather data. Te BiLSTM will capture long-
term dependencies in the data.

(3) Another attention layer weighs the importance of
each feature in the spatial location of the trafc
sensors. It can be used to focus on specifc parts of

INPUT (x)

xt-n

GNNt-n

LSTMt-n

xt-1

GNNt-1

LSTMt-1

xt

GNNt

LSTMt

Spatial Features

Temporal Features

Output (p)

....

....

....

Figure 5: From static to dynamic features: exploring the relationship between space and time with a GNN and LSTM.
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the input data and graph structure, allowing the
GNN to learn more relevant spatial relationships, for
example, to weigh the importance of each sensor in
the input data matrix, based on factors such as the
trafc fow and weather data.

(4) A GNN layer processes the spatial relationships
between the trafc sensors.

(5) A fully connected layer takes the output of the GNN
as input and produces the fnal prediction.

Tis architecture allows the model to weigh the im-
portance of each feature in the trafc fow and weather data
as well as the spatial location of the trafc sensors, which can
improve the accuracy of the fnal prediction. A sample of
information stored at nodes and edges can be visualized in
Table 3. Table 4 explains the graph represented in Figure 8,
where the nodes represent the sensor locations and edges
represent the connection between two sensor points.

4.2. Data Preparation for Hybrid Model. Te data required
for the model training was prepared by merging the weather
data and the road trafc data. For example, the road trafc
data for the month of February to June and August to
September were copied in a single .csv fle. Table 5 shows the
frst few entries of the processed dataset for our model. Te
merged fle contained more than 9000 k rows of data for the
month of February to September for any two observation
points at a particular. Figures 9(a)–9(c) show the

visualisations generated from our processed dataset for the
vehicle count from 14 February to 16 February 2014.Ad-
ditionally, the fow pattern on weekdays and weekends was
compared between various sensors that are situated on
various road segments. One example comparison is shown
in Figures 10(a)–10(d), which contrasts trafc fow on
Sunday with Tursday on four diferent road segments,
including a road connection of two streets of Ãrhusvej
(sensor ID: 158324), Nordre Ringgade to Randersvej (sensor
Id: 187695), Ãrhusvej Ãstjyske to Motorvej (sensor ID:
158355), and Edwin RahrsVej to Anelystvej (sensor ID:
197274) where the last road segments connect two cities, i.e.,
Aarhus and Tilst. Te graph used in this study was con-
structed using the CityPulse trafc and weather data. Each
row of the merged dataset was considered as a node in the
graph, and the edges were formed based on the pairwise
Euclidean distances between the nodes. Te edge weights
were calculated using the trafc data (vehicle count and
average speed) and trafc metadata (distance in meters and
report ID). Te node features were obtained from the
weather data (humidity, dew point, and wind speed). Te
process of constructing the graph can be described using the
following equations.

4.3.NodeFeatureMatrix. LetX be the node featurematrix of
size (N∗D), where N is the number of nodes and D is the
number of features. Each row of X corresponds to a node,
and each column corresponds to a feature. In this study, X
was constructed using the weather data as follows:

X � [Humidity,DewPoint,WindSpeed]. (5)

4.4. PairwiseDistanceMatrix. Let D be the pairwise distance
matrix of size (N∗N), whereN is the number of nodes.Te
element Dij represents the Euclidean distance between node
i and node j. In this study, D was constructed as follows:

Dij � sqrt sum (Xi − Xj)
2

  . (6)

4.5. EdgeWeightMatrix. Let W be the edge weight matrix of
size (N∗N), where N is the number of nodes. Te element
Wij represents the weight of the edge between node i and

Table 2: Te CityPulse Road Trafc Dataset of nine parameters with descriptions and example values. Te last column indicates if the felds
are selected for study or not.

Parameters Descriptions Example values Required
Status Status of the sensor Ok No
avgMeasured_time Duration in seconds that the sensor records data 64 Yes
avg_speed Typical speed at which the cars are moving time period 56 Yes
ext_ID Unique ID assigned to each edge 668 Yes
median_measured_time Same as avg_measured_time 64 No
TIME_STAMP Beginning time for each measurement 2014-02-13T11:55:00 Yes
vehicle_count Among two points 12 Yes
id_value Unique ID for trafc measurement 199429 No
report_ID Unique ID allocated to each observation location (road) 158324 Yes

Figure 6: Map of Hinnerup, Arhus indication starting and ending
point of observations [89].
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Predicted traffic flow after 5 mins

Figure 7: Our proposed architecture.

Table 3: Node and edges in graph representation.

Variable types Parameter names Dataset names
Edge Vehicle count Trafc data
Edge Avg speed Trafc data
Edge Distance_in_meters Trafc metadata
Edge Report ID Trafc metadata
Node Humidity Weather data
Node Dew Weather data
Node Wind speed Weather data

Journal of Advanced Transportation 9



node j. In this study, W was constructed using the trafc
data and metadata as follows:

Wij �
VehicleCountij + AvgSpeedij

Distanceij ∗ReportIDij

, (7)

where VehicleCountij is the number of vehicles between
node i and node j, AvgSpeedij is the average speed between
node i and node j, Distanceij is the distance in meters
between node i and node j, and ReportIDij is the report ID of
the trafc data between node i and node j. By constructing
the graph in this manner, we were able to incorporate both
the trafc and weather data into our GNN model, which
allowed us to predict trafc fow with high accuracy.

5. Results and Discussion

Two studies, GMAN [90] and STSGCN [91], utilize graph
convolutional networks and multihead attention mecha-
nisms to predict trafc fow. GMAN takes trafc sensor data
as input and predicts trafc speeds at future time steps, while
STSGCN uses spatiotemporal trafc data to make pre-
dictions. Both models outperform several baseline trafc
datasets, demonstrating the efectiveness of graph con-
volutional networks for trafc forecasting. However, neither
GMAN nor STSGCN incorporates weather data into their
models, making direct comparisons with our model in-
appropriate. Nevertheless, we compare our suggested model
with established techniques and representative techniques

Table 4: Explanation of the nodes and edge information depicted in Figure 8.

Point_1_street Point_2_street Point_1_name Point_2_name Point_1_city Point_2_city
Lystrupvej Djurslandmotorvejen 4346 4327 Lystrup Lystrup
Djurslandmotorvejen 15 4327 4326 Lystrup Aarhus
Djurslandmotorvejen Mejlbyvej 4327 4355 Lystrup HjortshÃ¸j
Djurslandmotorvejen Mejlbyvej 4327 4352 Lystrup Ega
Djurslandmotorvejen Lystrupvej 4327 4344 Lystrup Lystrup
Lystrupvej Lystrupvej 4346 4340 Lystrup Risskov

4340
4340

4327
4326

4352 4344

4355

Figure 8: A sample graph visualisation to show the connection between seven diferent road segments.

Table 5: Te header of the merged dataset for model training.

Report_ID Average speed Timestamp Vehicle count Wind speed Dew point Humidity
158324 56 2014-02-13T11:30:00 7 16.7 0.00 93
158324 53 2014-02-13T11:35:00 5 16.7 0.00 93
158324 53 2014-02-13T11:40:00 6 16.6 0.00 93
158324 52 2014-02-13T11:45:00 3 16.6 0.00 93
158324 57 2014-02-13T11:50:00 6 16.7 0.00 93
158324 49 2014-02-13T11:55:00 9 15.0 0.00 93
158324 50 2014-02-13T12:00:00 11 14.3 0.00 92

10 Journal of Advanced Transportation



based on BiLSTM and GNN to showcase its efcacy. Te
following is a brief summary of the baselines.

(i) TFFNet: It simply creates a cubic spatiotemporal
trajectory by dividing and matching the GPS tra-
jectory data from each day’s relevant locations.
By integrating the sampling from each cube slice,
a path is produced. A spatial grid is made by
connecting each of the routes. Te graph shows
the volume of trafc in each grid cell over a 15-
minute period. Te model is trained using the
Wuhan trafc dataset using a deep convolution
neural network based on residual network
architecture.

(ii) Dynamic GRCNN: Tey predict the movement
of people in city trafc. Tey created incidence
dynamic graph structures to replicate the trafc
linkages from historical passenger movements
among stations and used the SubwayBJ, BusBJ,
and TaxiBJ datasets for training their model
based on the LSTM and graph convolution
network.

(iii) trafcBERT: Tey constructed a model of the
transformer by stacking numerous layers of en-
coders in order to preserve the BERT properties.
After that, by combining all the data, they were able
to get the model to comprehend the full trafc fow.
Teir model used the METR-LA, PeMS-L, and
PeMS-Bay datasets to anticipate trafc volume
using a transformer-based BERT algorithm.

(iv) ST-TrafcNet: Tey suggested a novel multi-
difusion convolution blocks made up of attentive
and bidirectional convolution for capturing spatial
interactions. High-dimensional temporal data are
kept in layered long short-term memory (LSTM)
blocks. Tey employed LSTM with multidifusion
convolution blocks to extract and forecast spatio-
temporal characteristics.

(v) ST-GNN: To more efciently incorporate in-
formation on trafc fows from surrounding roads,
a layer of a GNN with a position-specifc focus
mechanism was used. Tey combine an RNN with
a transformer layer in order to capture the local and
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Figure 9: Vehicle count of three consecutive days between two streets of Ãrhusvej. (a) Vehicle count 14 Feb 2014. (b) Vehicle count 15 Feb
2014. (c) Vehicle count 16 Feb 2014.
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global temporal dependencies. Tey used GCNN
with gated recurrent units to extract features and
forecast.

(vi) M-B-LSTM: Due to the usage of attention mech-
anisms in their work, they were included in our
comparison. A focus mechanism was used to draw
attention to more crucial information. By
straightforward LSTM guided with attention
models, their model produced good prediction
results.

(vii) DHSTNet GCN-DHSTNet: Teir approach took
into account spatiotemporal dependencies as well
as other external elements like the state of the roads.
Tey divide the citywide trafc crowds’ temporal
features into three main categories, each of which
includes a recent, a daily, and a weekly component.
Teir model successfully predicted both the NYC
bike data and the Taxi Beijing dataset using both
CNN with LSTM and CNN, LSTM with GCNN.

We evaluated the accuracy of our approach using the
root mean square error (RMSE), which is provided in
equation (1). For each model, we calculated the discrepancy
between the projected and actual trafc count amounts in

order to be straightforward and reasonable. Te prediction
efect is improved with a low RMSE value. Table 7 contrasts
the RMSE values of our model with those of the reference
models. Figure 11 shows the ground-truth and predicted
daily trafc passenger fows of road segment
“158324”(Arhusvej) for one day.

RMSE �

����������

1
n



n

i�1
(p − a)




,

p � predicted value,

a � actual value,

n � number of  data points,

i � current data point.

(8)

Figure 11 shows the prediction results compared to the
ground truth after training for one sensor 158321 from Feb
to June using the CityPulse dataset. Te ST-GNNmodel and
the GNN-DHSTNet model were the next lowest RMSE
models, according to Table 7, which also reveals that our
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Figure 10: Comparing trafc fows on weekends and weekdays on four diferent road segments. (a) Sensor 158324. (b) Sensor 158355. (c)
Sensor 158324. (d) Sensor 187695.
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model with BiLSTM and GNN with attention mechanism
had the lowest RMSE. Terefore, it can be inferred that the
addition of the BiLSTM network to extract the temporal
dependencies while preserving some external parameters
such as dew point and air pressure has enhanced the overall
prediction performance. One explanation for the results
being diferent from those of the other models could be that
our model used data from the variable road segments as
input to obtain spatial dependencies from the graph neural
network, as opposed to the other model, the GNN-
DHSTNet, which used a 32× 32 fxed grid size for

building the graph representation. Another evaluation
metric taken was mean absolute percentage error (MAPE).
Tis metric takes the diference between the ground-truth
values with the forecast values. A forecast is deemed to be of
acceptable accuracy when the MAPE value is low, usually
less than 5%. Te calculating method for MAPE is shown in
equation (6). Table 6 shows the MAPE of our model
compared with some of the other baseline models.

MAPE �
100%

n


n

i�1

a − p

a
,

p � predicted value,

a � actual value,

n � number of  datapoints,

i � current data point.

(9)

Figure 12 compares the evaluation metric results on both
datasets. Min-max normalisation, also known as feature
scaling, was used on both datasets to conduct a linear
transformation on the raw data. Using this method, all scaled

Table 6: Te comparison of the MAPE value of our model with the baseline models.

Models MAPE
ST-trafcNet 6.82
TrafcBERT 7.72
GCN-DHSTNet 11.56
DAGNBL 5.21
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Figure 11: Te predicted vs. ground-truth daily trafc fow of sensor 158324 from February to June.

Table 7: Te RMSE value of our model with baseline models.

Models RMSE
TFFNet 18.340
Dynamic GRCNN 10.25
trafcBERT 5.72
ST-trafcNet 7.29
ST-GNN 4.30
M-B-LSTM 10.841
DHSTNet GNN-DHSTNe 3.73
DAGNBL: LSTW dataset 4.663
DAGNBL: cityPulse dataset 2.511
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data within the range are obtained (0, 1). Te city pulse
dataset performs somewhat better, as can be seen from the
graph because it contains linking road ids as segments,
which greatly aided in the construction of the graph neural
network.

6. Conclusion

In this article, we have put forth a hybrid model for spatial-
temporal trafc fow forecasting on city roads.Te suggested
model incorporates a graph neural network with mecha-
nisms for extracting spatial characteristics from various road
segments while also paying attention to environmental
variables such as percentage of dew, air pressure, and wind
speed. Using the cityPulse and LSTW road trafc and
weather datasets, a BiLSTM network with an attention
mechanism has been proposed for the prediction while
maintaining the temporal dependencies. Te suggested
approach is more suited for predicting the monthly trafc
patterns in transportation hubs along signifcant road seg-
ments. Results show that our model has an MSE value of
6.309, an MAE value of 2.256, and an RMSE value of 2.511.
Dew, humidity, and wind speed are the only three weather
factors the model currently takes into account. Nevertheless,
the dataset also contains numerous additional meteoro-
logical condition data, such as temperature, pressure, and
wind direction. Another limitation of our study is that we do
not account for the trajectory features during training due to
the model’s increasing complexity. In future work, we plan
to conduct sensitivity and scalability experiments to explore
the optimal values of input parameters and investigate the
performance of the proposed method as the sizes of training
and test sets change. Additionally, in the future, we would
like to broaden the scope of our work to incorporate other
factors afecting the trafc fow, such as festivals and acci-
dents as these and many other factors also afect how much

trafc will be present on the roads. Additionally, we intend
to use ensemble forecasting to study the issue in the future.
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