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Real-time status acquisition of parking spaces is highly valuable for an intelligent urban parking system. Crowdsourcing-based
parking availability sensing via connected and automated vehicles (CAVs) provides a feasible method with the advantages of high
coverage and low cost. However, data trust issues arise from incorrect detection and incomplete information.Tis paper proposes
a trustworthiness assessment method for crowdsourced CAV data considering diferent impact factors, such as the distance
between the CAV and the target parking space, line abrasion, scene complexity, and image sharpness. Te crowdsourced CAV
data are collected through extensive feld experiments and PreScan simulations. Te classical line detection algorithm of VPS-Net
and the target detection algorithm of YOLO-v3 are applied to detect on-street parking availability. A failure probability model
based on the XGBoost algorithm is then developed to establish the relationship between data trustworthiness and diferent impact
factors. Te results show that the proposed model has an average accuracy of 78.29% and can efectively assess the degrees of
external infuences on the trustworthiness of the crowdsourced data.Tis paper provides a new tool to identify the data quality and
improve the sensing accuracy for a crowdsourcing-based parking availability information system.

1. Introduction

Due to the rapid increase in car ownership and trafc de-
mand, most cities are confronted with intractable problems
such as urban trafc jams, parking resource shortages [1], and
environmental pollution [2]. Real-time status monitoring of
on-street parking spaces is an essential foundation and
premise for solving urban parking problems caused by un-
balanced supply and demand. Over the past decade, several
efective measures have been developed to alleviate searching-
for-parking trafc by improving parking resource use ef-
ciency, including advanced parking management strategies
[3], parking reservation and dynamic allocation [4], park-
and-ride [5], automated valet parking [6, 7], and cloud-based
centralized parking dispatching [8, 9]. Hence, efcient and

reliable methods for sensing on-street parking availability are
critical for the quality enhancement of parking services and
the digital transformation of urban trafc management.

Accurately sensing on-street parking status has
remained difcult during the last few decades. Most research
uses data from specially deployed in-ground sensors in
parking lots or garages [10, 11]. Based on the recent advances
in sensing and communication technologies, an increasing
number of researchers use wireless sensors such as light
sensors, distance sensors based on infrared or ultrasound,
magnetometers, and even combinations of diferent sensor
devices [12]. However, a huge amount of asphalt digging is
required for in-ground sensors, especially loops, which re-
quire intrusive installation [13]. Due to its scarcity caused by
frequent use, the installation and maintenance of asphalt

Hindawi
Journal of Advanced Transportation
Volume 2023, Article ID 9256206, 15 pages
https://doi.org/10.1155/2023/9256206

https://orcid.org/0009-0006-1898-1312
https://orcid.org/0000-0002-1017-9118
https://orcid.org/0009-0004-8877-5595
https://orcid.org/0009-0004-2671-5642
https://orcid.org/0000-0002-7212-7719
https://orcid.org/0000-0002-8497-3402
mailto:zhc_tongji@163.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9256206


have become relatively expensive. Furthermore, in-ground
sensors have limitations that must be considered during the
design phase, including the requirement for charging by
cables or batteries [4]. Rather than specially deployed sen-
sors, some studies use data from the already deployed in-
frastructure, such as on-street parking payment
management systems and parking meters [14]. However,
missing data have consistently been a noticeable problem in
existing methods due to underpaid/overpaid and unpaid
transactions. Additionally, this approach depends on the
scope of the deployment, and a domain-wide deployment
still requires signifcant overheads.

Fortunately, connected and automated vehicles (CAVs)
have progressed considerably in recent years [15–18].
Sharing is a major development direction in the future
[19, 20]. Crowdsourced data collected by CAVs are widely
used in the scientifc literature, and practical applications
related to intelligent transportation demonstrate the enor-
mous potential for sensing parking availability status [21].
Unlike roadside devices [22, 23], onboard units (OBUs) such
as onboard millimeter-wave radar and vehicle-around-view
monitors could be more convenient and economical with
high update frequency and broad coverage [24]. Study [25] is
a typical solution for citywide parking availability sensing
based on a feet of taxis. Parking detection sensors are in-
stalled on cabs; these can collect information on the avail-
ability of parking spaces and show that crowdsourced data
have high suitability as a source for sensing parking status.
Meanwhile, some studies demonstrate that the crowdsens-
ing solution would require a signifcantly smaller number of
sensing units than a fxed sensing system [26].Terefore, due
to considerations of cost-efectiveness and reliability,
onboard video sensors become the preferred choice.

However, crowdsourced data introduce new issues and
challenges. Te most signifcant of these problems is the in-
ferior data quality caused bymany external factors such as road
scenarios, environmental conditions, facility status, and sensor
capability [27–30]. Data quality can directly afect the accuracy
of on-street parking status monitoring. Meanwhile, CAV
trajectories are highly random in space and time, exacerbating
the impact of data quality on the reliability of estimates due to
the uncertain coverage and update frequency. Accordingly,
evaluating the trustworthiness of crowdsourced data from
CAVs is highly valuable to avoid incorrect judgments arising
from the excessive trust. Terefore, this paper focuses on the
image data obtained from onboard video sensors. It aims to
reveal the mechanism of diferent external factors on parking
detection accuracy and propose an assessmentmethod for real-
time status monitoring of wide-area parking availability based
on crowdsourced data. Te main contributions of this paper
are summarized as follows:

(i) A trustworthiness assessment framework is pro-
posed for crowdsourced CAV data through sys-
tematic simulation experiments, and four
environment-related factors afecting the parking
detection algorithm are introduced, laying the
foundation for improving the accuracy of parking
availability detection in an urban context.

(ii) A failure probability prediction model of parking
availability sensing is developed based on the
XGBoost algorithm, which can quantitatively reveal
the infuence of diferent factors on the data trust-
worthiness of CAVs.

Te organization of this paper is as follows. Section 2
introduces the related work, including methods of parking
availability detection and the data quality of current image-
based object detection methods. Section 3 describes the
proposed trustworthiness assessment framework. Section 4
analyzes the external factors for the detection model. Section
5 presents the study results through an XGBoost-based
trustworthiness assessment model for single vehicle de-
tection. Finally, Section 6 summarizes the fndings and
future work.

2. Related Work

2.1. Parking Availability Detection. Several technical routes
exist for citywide parking space detection. A typical method
is based on electromagnetic induction. For example, a loop
detector determines the occupation of parking spaces using
an electromagnetic feld with a quantifable inductance; the
feld is interrupted and the inductance is reduced when
vehicles pass the loop [31]. Magnetic sensors detect parking
spaces through the magnetic variations caused by the
presence of vehicles [32]. Alternatively, by comparing the
counts between two magnetic sensors installed along the
pathway, the number of vehicles between them can be
obtained [33]. Similarly, piezoelectric sensor detection de-
pends on the induced electric energy resulting from the
substance vibration or mechanical stress [34]. However,
these methods are vulnerable to being afected by sur-
roundings. Magnetic sensors can be infuenced by large
metal objects nearby. Ultrasonic and infrared sensors are
sensitive to temperature and air pressure. Pneumatic tubes
sufer from stress. Even for an inductive loop, the sonar and
microwave detectors are sensitive to the vehicle’s speed
because they fail to detect slow or stationary vehicles [35].

Another popular technical route is leveraging the image-
based solution [36, 37]. Video sensors can detect multiple
spaces simultaneously and provide wider area monitoring
than other sensors [27]. Additionally, video sensors ofer
relatively low cost due to their easy installation, operation,
and maintenance [38]. Maeda and Ishii [39] compared
collected images with reference images using a normalized
principal component of feature characteristics; however,
obtaining and updating the reference images are difcult.
Some studies use the typical shape of car elements for de-
tection, but this requires many pixels per vehicle. Yamada
and Mizuno [40] proposed an approach to detecting vehicle
presence with grayscale images.Tey fragmented each image
region corresponding to a cell through density and analyzed
the segment area distribution. Barofo et al. [41] provided
a method depending on the hue histogram and linear
support vector machine (SVM) with high accuracy. In recent
years, with advances in deep learning, some researchers have
introduced this to parking space detection. Fan et al. [42]
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applied deep learning to parking space detection tasks and
proposed various neural network-based models, including
the multistep long short-term memory recurrent neural
network (LSTM-NN) model [43]. Feng et al. [44] in-
troduced a hybrid deep learning framework called
dConvLSTM-DCN, designed for accurate prediction of
short-term and long-term vacant parking space availability
within a region, and developed an intelligent parking
guidance system using a deep gated graph recurrent neural
network (G2RNN) [45]. Regarding image-based methods,
Zhang et al. [46] proposed a method based on DCNN with
YOLO-v2 to detect marked points in images. As image data
are more complex than other data, Zinelli et al. [47] used an
RCNN-based framework to adapt to various conditions.
However, RCNN strongly depends on object proposals.
Additionally, Suhr et al. [48] used CNN to detect parking
spaces in combination with global information and the
attributes of the parking spaces. Nurullayev and Lee [49]
proposed a method based on a dilated convolutional neural
network specifcally designed for detecting parking spaces.
Tese methods still sufer from low recognition rates,
sensitivity to environmental changes, and weak general-
ization. To address these problems, Xu and Hu [50] pro-
posed the YOLO-v3-based VPS-Net, the detection method
adopted in this paper.

2.2. Regarding Image-Based Methods

2.2.1. Data Quality of Image-Based Object Detection.
Data quality is relatively essential to real-time monitoring of
parking availability status based on crowdsourcing data.
Bock et al. [25] reported that an inaccurate detection result
strongly infuences the sensing of parking availability status
and applied Kalman flters to overcome this issue. Extensive
research has been conducted on the factors afecting the
accuracy of identifcation results. Dorafshan et al. [51]
suggested that edge clarity can impact crack identifcation
and degrade accuracy for challenging settings, such as low
lighting conditions, the presence of shadows, and low-
quality cameras. Huang et al. [52] assumed that the in-
terference of various types of objects in the picture and the
intensity of light necessarily afect the performance of object
detection. Zhu [53] indicated that identifying road trafc
conditions would be infuenced by various factors, including
weather and road condition factors. Tabernik and Skočaj
[54] proposed that occlusion, brightness, color alteration,
distortion, and skew occurring in the background can pose
a risk to object detection. Dewi et al. [55] demonstrated that
the target size impacts the accuracy of image recognition.

For parking space detection, some studies also ofer
relevant infuencing factors. For example, Amato et al. [56]
showed that obstacles such as lampposts and other cars are
closely related to detection accuracy. Ling et al. [57] dem-
onstrated that image data from car parking spaces are
sensitive to lighting and weather conditions. Yamada and
Mizuno [40] demonstrated that the surface of the parking
space would infuence the detection results, especially for
poor-condition white mark-of lines. Tang et al. [58] showed
that deep learning models for parking space recognition are

subject to variable environments, such as illumination
changing, occlusion, and weather. Ichihashi et al. [59]
proposed that weather, such as raindrops, can cause the
camera to become distorted and make the sharpness of the
image less clear, thus afecting the performance of camera-
based vehicle detector for parking lot. Zaidi et al. [60] in-
dicated that there are many reasons, such as occlusion,
lighting, pose, and perspective, that can pose a challenge to
the detection of neural networks. However, previous studies
have considered a single factor, limited to the image quality
or content. Conversely, this paper combines these two
factors, considering the efects of the image and the sur-
rounding environment in which it was taken on monitoring
car parking images under diferent lighting conditions.

3. Trustworthiness Assessment Framework

3.1. Image-BasedParkingAvailabilityDetection. Te parking
space detection algorithm is the key to parking space status
sensing. Its function is to accurately identify on-street
parking spaces and determine the occupancy status of
parking spaces. Te image data collected by the surround-
view camera cannot completely encompass the four end-
points comprising a parking space. Only the two closer
endpoints comprising the entrance line of the parking
space can be obtained, which cannot infer the type of
parking space. Terefore, as shown in Figure 1, the classical
VPS-Net algorithm [61] is applied to identify the outer
entrance line endpoints of parking spaces through image
grayscale processing and estimate the other two endpoint
locations and the type of parking spaces. Meanwhile,
a YOLO-v3 pretrained detector is used to detect and
classify all marker points and parking space endpoints.
Target detection is then performed based on matching pairs
of marker points with geometric information. Te re-
liability of the results of parking occupancy classifcation is
enhanced by a deep convolutional neural network
(DCNN).

3.1.1. Identifcation of Parking Space Endpoints and Entry
Lines. Assuming that the two identifed endpoints p1 and p2
meet certain confdence requirements, that is, they can form
an efective entrance line of a parking space if it is the
entrance line of a parallel parking space, t1 ≤ ‖p1p2‖≤ t2; if it
is a vertical or an inclined parking space, t3 ≤ ‖p1p2‖≤ t4.
Te parameters t1, t2, t3, and t4 are based on a priori
knowledge of the entrance line lengths of the diferent
parking spaces.

After the endpoints satisfy the distance constraints,
forming a valid parking space entry line may still be im-
possible. Tis can be solved by classifying local image pat-
terns formed by two endpoints into predefned classes. A
local coordinate system is established with the origin at
p(x, y), the midpoint of p1(x, y) and p2(x, y), and p1p2

����→ as
the X-axis. Te rectangular region R is defned in the co-
ordinate system. Its length along the X-axis is
w1 � ‖p1p2‖ + Δw, and its length along the Y-axis is h1. Te
calculation equation is as follows:
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p(x, y) �
p1(x, y) + p2(x, y)

2
,

w1 �
p1(x) − p2(x)




2
+ Δw,

h1 �
p1(y) − p2(y)




2
+ Δh,

(1)

where Δw and Δh are hyperparameters controlling the width
and height of the rectangular region.

3.1.2. Complete Parking Space Deduction. Te complete
parking space is obtained by deduction based on geometry
and prior knowledge, as the video (picture) collected by the
surround-view camera tends not to show the parking space
completely. Each parking space comprises four points p1, p2,
p3, and p4. Here, p1 and p2 are the two endpoints com-
prising the entrance line of the parking space, and p3 and p4
are the other two endpoints not covered in the image, whose
coordinates can be calculated as follows:

p3 �
cos αi sin αi

−sin αi cos αi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ×
p1p2
����→

p1p2
����→����

����
di + p2,

p4 �

cos αi sin αi

−sin αi cos αi

⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ×
p1p2
����→

p1p2
����→����

����
di + p1,

(2)

where αi and di denote the angle and depth of the parking
space; α1 is the angle of the vertical and parallel parking
spaces; d1 and d2 are the depths of the vertical and parallel
parking spaces, respectively; d3 is the depth of the inclined
parking space; and α2 and α3 are the angles at an acute or
obtuse angle, respectively.

3.1.3. Parking Status Classifcation. Regularization is re-
quired to maximize the classifcation performance due to
the varying sizes of parking spaces in the surround-view
image. Terefore, parking spaces are cut and warped to
a uniform size of 120 × 46 pixels, depending on their
position in the image. Perspective transformation tech-
niques are used to implement this warping process. Te
four boundary points of the parking spaces in the image
are used as source points. Te target points are the four
vertices of a fxed rectangle of 120 × 46 pixels. A series of
labeled images is thus obtained, and these images are
divided into positive and negative samples. Te positive
samples are the vacant parking spaces, and the negative
samples are the occupied parking spaces. Te number of
training samples is then further increased by a 180° ro-
tation transformation.

Te parking space detection algorithm distinguishes the
parking space occupancy based on diferent color markings.
A green rectangle is marked when the parking space is
identifed as free, and a red rectangle is marked when the
parking space is identifed as occupied.
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Figure 1: Te frame diagram of the parking space detection algorithm [57].
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3.2. Experimental Design. We use PreScan to build the
simulation scenario and collect the on-street parking sim-
ulation data. We exploit the dataset based on the measured
data and PreScan simulation data to explore the probability
model of the sensing failure of the parking state under
diferent scenarios and interferences in this paper. Te
simulation dataset is prepared as follows:

(1) An experimental simulation model is built, as shown
in Figure 2, including elements such as parking
spaces, moving vehicles, stopped vehicles, and
obstacles. A total of 200 parking spaces (100 vertical
and 100 parallel) were placed on both sides of the
fve simulated main roads. Since the buildings are
not the concern of the project, their placement,
orientation, and interval distance are set randomly;
secondly, the trafc light waiting time, the yielding
mechanism of sidewalks, and the trafc sequence of
intersections are irrelevant to parking space de-
tection and are thus not considered in the simu-
lation. Simultaneously, some of the vertical parking
spaces on the left side of the road are randomly
occupied and pedestrians and electric vehicles for
delivery are set between some parking spaces to ft
the real scene.

(2) In the feld experiment, the image data of the
surround-view camera are collected by installing
a camera at the front and rear of the inspection
vehicle and stitching the pictures of four viewpoints
through a perspective transformation. In the simu-
lation experiment, photos of the same perspective
can be collected by setting the specifc parameters of
the sensor to simulate a camera with a vertical
downward shooting angle directly above the in-
spection vehicle (at 30m).

(3) Additionally, an image input to the parking space
detection algorithm with a size that does not meet
the algorithm input requirements produces some
distortion, afecting the accuracy of the parking
space detection algorithm. Terefore, the size of
the sensor output image is consistent with the
input size of the parking space detection algo-
rithm, which is 600 × 600 pixels. Subsequently, the
frame rate is set to 10 Hz; that is, 10 pictures are
taken per second. Relevant parameters for sensor
installation position and output setting are shown
in Figure 3.

(4) Te following describes the three states of the de-
tection algorithm: correct detection, false detection,
and missed detection, as shown in Figure 4.

(i) Correct detection: when a car is in the identifed
parking space and the parking space is occupied
or when no car is in the identifed parking space
and the parking space is empty.

(ii) False detection: when a parking space is empty
and recognized as occupied by the parking space
detection algorithm or when a parking space is
occupied by a car but detected as empty.

(iii) Missed detection: the parking space is not de-
tected when multiple frames containing it are
not detected.

(5) Since the frame rate of the onboard sensor is set to
10Hz, a parking space contains multiple consecutive
detection pictures, meaning a parking space has
multiple detection results. When the detection re-
sults are consistent, the results can represent the
current occupancy status of a parking space. Te
status of the parking space is marked as occupied
regardless of whether the space is occupied when the
results displayed by multiple frames of detection
pictures are inconsistent to avoid cruising caused by
system indication errors.

4. External Factors for the Detection Model

4.1. Defnition and Classifcation of External Factors. Te
parking detection method requires identifying parking space
endpoints and entry lines. Te quality of the captured im-
ages, including the clarity of the parking space line endpoints
and entrance lines, impacts the identifcation [62, 63]. Based
on the principle of identifcation, four main factors can be
identifed that afect the imaging of parking space endpoints
and entry lines: (1) roadside distance, (2) line abrasion, (3)
scene complexity, and (4) image sharpness, as shown in
Figure 5.

4.1.1. Roadside Distance (D). Roadside distance (D) refers to
the vertical distance between the vehicle with the surround-
view camera and the entry line of the on-street parking
space. Tis afects the size of the image captured by the
surround-view camera and the degree of image edge
distortion.

4.1.2. Line Abrasion (A). Line abrasion (A) refers to the
degree of missing or faded white lines of parking space entry
due to vehicle movement, weather, and other reasons. Te
parking space identifcation detection model outlines the
complete parking space by identifying the two endpoints of
the entrance line and estimating the locations of the other
two endpoints. Terefore, the abrasion of the parking space

Figure 2: PreScan simulation scenario.
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entry line signifcantly impacts whether the on-street
parking space can be accurately identifed.

4.1.3. Scene Complexity (C). Scene complexity (C) refers to
the composition of trafc elements constituting the trafc
fow close to the parking space. Tis afects the identifcation
accuracy of the parking space identifcation when pedes-
trians, electric vehicles, and other trafc elements encroach
on the two endpoints of the parking space entry line.

For the complexity of individual parking spaces,
a multivariate linear model is defned as follows:

Ci � ωr × kr, (3)

where Ci denotes the trafc complexity of the i-th parking
space; r denotes the obstacle category; ωr denotes the weight
coefcient corresponding to that obstacle category, pro-
portional to the single footprint; and kr denotes the number
of obstacles in that category.

Te obstacles are divided into three categories in the
PreScan simulation experiment to better simulate realistic
scenarios: (a) pedestrians (0.4× 0.7m); (b) electric vehicles

(2.3× 0.8m); and (c) boxes, barricades, and so on
(1.0×1.0m), and assigned weights according to the foot-
print, as shown in Table 1.

Terefore, the trafc complexity of a single on-street
parking space is calculated as follows:

Ci � g(x, y, z) � 0.1x + 0.6y + 0.3z, (4)

where x is the number of pedestrians close to the parking
space; y is the number of electric vehicles; and z is the
number of boxes, barricades, and so on.

Te overall trafc complexity is defned as follows:

Call � 
n

i�1
Ci, (5)

where n indicates n parking spaces in the model and n takes
a value of 200 in this paper.

Te number of trafc elements in the parking space is
extracted from the image by semantic object color mapping
in the image segmentation sensor in PreScan, as shown in
Figure 6. After semantic segmentation, diferent classes of
objects are represented by diferent colors, and the number

Figure 3: Relevant parameters for sensor installation position and output setting.

Missed detectionCorrect detection

Judgment of multi-frame resultsFalse detection

Figure 4: Judgment of parking space detection algorithm.
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of diferent obstacles in each parking space can be directly
output for the complexity calculation.

4.1.4. Image Sharpness (S). Image sharpness (S) refers to the
quality of the captured images. Te image obtained by
following the car is blurred in the scene due to stains on the

camera, slow focus speed, and so on. Te parking space
identifcation algorithm cannot detect the two endpoints of
the parking space entry line when the dataset is overly
blurry. Terefore, the image sharpness of the collected
image dataset is also an important factor afecting detection
accuracy.

D=2D=1

(a)

A=2A=1

(b)

C=2C=1

(c)

S=2S=1

(d)

Figure 5: Classifcation of factors: (a) roadside distance; (b) entry line abrasion; (c) scene complexity; (d) image sharpness.

Table 1: Obstacle category and weight.

Category Weight ωi

Pedestrians 0.1
Electric vehicles 0.6
Boxes, barricades, etc. 0.3

(a) (b)

Figure 6: Comparison of semantic segmentation: (a) before the split; (b) after the split.
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Te factors were classifed based on the defnitions to
further quantify and compare the impact of each factor on
the accuracy of identifying on-street parking spaces, and the
classifcation criteria are shown in Table 2.

4.2. Failure Probabilities Corresponding to Diferent
Combinations. Te application scenarios are frst divided
into four categories: (1) normal light on sunny days, (2) weak
light at night, (3) harsh light on sunny days, and (4) rain and
fog with low visibility. We then combine each application
scenario (weather conditions) and the four infuencing
factors. Te overall identifcation failure probability of the
200 parking spaces included in the simulation model cor-
responding to each combination is presented as a dataset.
Te failure probability refers to the percentage of 200
parking spaces subject to false and missed detection under
diferent application scenarios and factors. Each application
scenario corresponds to a total of 24 �16 diferent combi-
nations of factors and their corresponding failure proba-
bilities, resulting in 64 data items for the four application
scenarios. Te collected data are shown in Table 3, taking
normal light on sunny days as an example. Te values for
each factor are determined according to the classifcation
criteria in Table 2.

Figure 7 shows the statistics and visualization of the
failure probabilities corresponding to diferent combi-
nations of factors in four application scenarios.
Figure 7(a) shows the probability of failure corresponding
to each of the 16 combinations of infuencing factors in
the four application scenarios, while Figure 7(b) better
compares the impact of the four application scenarios on
detection.

Te failure probability can refect the application efect
of the parking space identifcation model in diferent
scenarios. Te failure probabilities obtained for normal
light on sunny days and weak light at night are roughly
similar for diferent combinations. In the application
scenario of rain and fog with low visibility, the failure
probability of parking space detection was high for all 16
cases, and the failure probability reached 60% for indi-
vidual cases. Te white fog may weaken the strong contrast
between the white entry line and the road color in the
overhead-view pictures taken on rainy and foggy days. Te
diference between the white entry line and the road color
after graying out is unclear. Te algorithm cannot de-
termine the parking space entry line, resulting in detection
failure. Tus, the model cannot currently be applied
successfully to the scenario. In summary, the algorithm
should be applied in four scenarios in order of efec-
tiveness: normal light on sunny days, weak light at night,
harsh light on sunny days, and rain and fog with low
visibility.

Additionally, the comparison reveals that the infuencing
factor of image sharpness (S) has less impact on the iden-
tifcation accuracy. Te peak in the fold at scene complexity
(C� 2) indicates that the trafc complexity (C) near the
parking space has a greater impact on identifcation
accuracy.

5. XGBoost-Based Trustworthiness
Assessment Model

5.1. Data Description. It is also necessary to obtain specifc
values for the diferent factors and the corresponding
detection results for each parking space to construct
a predictive model for the accuracy of parking detection
under diferent factors. Te specifc data focus on the
failure probability of parking detection for a single
parking space under diferent factors compared to the
graded data.

A specifc dataset includes specifc values for the four
infuencing factors and detection results. A total of 518
random frames were sampled from the PreScan simulation
model under normal light on sunny days by stitching the
images together. Part of the specifc data is shown in Table 4.

Te specifc data no longer classify the roadside distance,
entry line abrasion, or trafc complexity but remain precise
to a specifc value. However, the image sharpness is still
divided into two levels, 1 and 2.Te detection results are 0, 1,
or 2, corresponding to correct, missed, and false detection,
respectively. Each type of data collection is specifed as
follows:

(1) Roadside distance: in the simulation, the lane width
is set to 3.5m, so the vertical distance from any point
in the vehicle’s trajectory to the on-street parking
space is available.

(2) Line abrasion: the values range from 1.7m (vehicles
traveling near the center line of the lane adjacent to
the parking space) to 5.3m (vehicles traveling near
the center lines of the two lanes adjacent to the
parking space).

(3) Scene complexity: the value of the scene complexity
is computed by equation 5.

(4) Image sharpness: As it is impossible to quantify the
degree of camera contamination in the simulation,
the clarity of the image data is still graded by setting
the camera efects of the sensor. A value of 1, when
set to “Default,” means that the camera is clear, while
a value of 2, when set to “DirtyWindow,” means that
the camera is contaminated and the collected images
are blurred.

5.2. Model Description. Integrated learning is proposed to
train and ft the data to classify and predict the results
corresponding to any combination of factors. Integrated
learning can combine multiple weakly supervised models
to obtain a superior, more comprehensive, strongly su-
pervised model. Compared to weakly supervised learning,
integrated learning is faster, better in real time, and more
accurate. Te XGBoost algorithm is an implementation of
integrated learning, which signifcantly improves the speed
and efciency. Terefore, we construct an evaluation
prediction model based on the XGBoost algorithm to
improve the interpretation and prediction of the impact of
four environmentally relevant factors on parking space
identifcation.
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Te objective function of the XGBoost algorithm is

Obj(t)
� 

n

i�1
l yi, yl

(t− 1)
+ ft xi(   +Ω ft(  + constant,

(6)

where l is the loss function and constant is a constant
term, ft(xi) is a regression tree, and Ω(ft) is the regular
term (including L1 regular and L2 regular), used to defne
the complexity. Tis limits the number of leaf nodes in the
tree to avoid the tree being oversized. Te smaller the
value of this term, the lower the complexity and the
greater the generalization ability. Te expression is as
follows:

Ω(f) � cT +
1
2
λ‖ω‖

2
, (7)

where T is the number of leaf nodes, ‖ω‖ is the mode of
the leaf node vector, c is the difculty of the node cut, and
λ is the L2 regularization factor. Te ultimate goal of
XGBoost is to make the predicted value yi′ as close as
possible to the true value yi with as good a generalization
as possible.

Te core idea of the XGBoost algorithm is to continu-
ously perform feature splitting to grow a tree. With each
added tree, a new function f(x) is learned to ft the residuals
of the last prediction.

y � Φ xi(  � 
K

k�1
fk xi( , (8)

where F � f(x) � ωq(x) q: Rm⟶ T,ω ∈ RT; ωq(x) is the
score of leaf node q, which corresponds to the set of all K
regression trees (regression trees) and is one of the re-
gression trees. When the training is completed to obtain K
trees, the predicted value of this sample is the sum of the
scores of the corresponding leaf nodes of each tree.

Compared to the classical GBDTalgorithm, the XGBoost
algorithm has undergone some improvements, signifcantly
improving efectiveness and performance. Te XGBoost
algorithm expands the objective function, Taylor, to the
second order, preserving more information about the ob-
jective function. Te XGBoost algorithm adds a strategy to
automatically handle missing value features. Samples with
missing values are automatically partitioned by dividing the
samples with missing values in the left or right subtree and

Table 3: Failure probabilities corresponding to diferent combinations under normal light on sunny days.

Roadside distance (D) Line abrasion (A) Scene complexity (C) Image sharpness (S) Failure probability (%)
1 1 1 1 1.50
1 1 1 2 7.00
1 1 2 1 15.00
1 1 2 2 13.50
1 2 1 1 5.00
1 2 1 2 7.50
1 2 2 1 26.50
1 2 2 2 34.00
2 1 1 1 18.00
2 1 1 2 19.50
2 1 2 1 44.50
2 1 2 2 42.00
2 2 1 1 16.50
2 2 1 2 15.50
2 2 2 1 47.00
2 2 2 2 53.50

Table 2: Factor and classifcation criteria.

Factor Classifcation criteria

Roadside distance (D)

D� 1, detection of vehicles less than 2.5m from the entry line, vehicles driving on or
near the track of the center line of the adjacent lane of the parking space

D� 2, detection of vehicles in the range of 2.5–5m from the entry line of the parking
space, the vehicle’s driving trajectory and the parking space of the adjacent lane of

the left lane line overlap

Line abrasion (A) A� 1, the white line of the parking space is clearly visible, with only a little abrasion
A� 2, some of the parking space lines are worn to invisibility of the white line

Scene complexity (C) C� 1, the overall complexity of the model is less than 50
C� 2, the overall complexity of the model is greater than or equal to 50

Image sharpness (S) S� 1, image data are clear
S� 2, image data are blurred

Journal of Advanced Transportation 9
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Figure 7: (a) Te probability of failure corresponding to diferent combinations of factors in four application scenarios. (b) Comparison of
results in four scenarios.
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comparing the advantages and disadvantages of the objective
function under the two solutions. Te algorithm does not
require preprocessing of missing features for padding [56].

5.3.DataAnalysis. Te 518 data items collected were divided
into training and test sets in the proportion 3 :1. Sub-
sequently, a stratifed K-fold division was conducted to
ensure the stability and reliability of the fnal model.
Stratifed K-fold division divides the dataset into mutually
exclusive subsets and conducts stratifed K-fold cross-
validation. Cross-validation enables all the data to be
used as training and test sets, equivalent to expanding the
dataset.

We initialize the model using the wrapped classifer
and regressor in XGBoost. Some of these model param-
eters are set as follows: max_depth � 5, learning_rate � 0.1,
and n_estimators � 160. A range of indicators for the
model was obtained by cross-validation, as shown in
Table 5.

Te prediction accuracy of this dataset was obtained by
the XGBoost model as 75.97%.Te F1-scores corresponding
to correct and missed detection are 0.76 and 0.78, re-
spectively, both at a high level, indicating that the model
performs well in predicting these two types of cases. Con-
versely, the F1-score corresponding to false detections is
only 0.33, indicating that the model does not have high
trustworthiness of results in predicting such cases.

After stratifying the dataset by four folds and cross-
validating, the scores for each fold and their average scores
were obtained, as shown in Figure 8(a).

Figure 8(a) shows that the cross-validation scores for
each fold of the dataset were high and reached a mean of
0.73, indicating that the model has good generalization
ability. Because the maximum depth of the number is set, the

efect of model overftting on the accuracy of the prediction
results is circumvented or weakened.

Meanwhile, the relative importance of the four factors
afecting the accuracy of on-street parking space identif-
cation was obtained experimentally, as shown in
Figure 8(b). Figure 8(b) shows that roadside distance has
the greatest impact on the accuracy of the parking space
recognition algorithm, reaching 0.36. Tis is followed by
the entry line abrasion and trafc complexity, which are of
similar importance at 0.29 and 0.27, respectively. Te in-
fuence of image sharpness was only 0.08, indicating that
this factor barely afected the accuracy of the parking space
identifcation algorithm. Te results were analyzed only
qualitatively, as the volume of data was insufciently large.
Te importance of the three factors, roadside distance,
entry line abrasion, and trafc complexity, may change as
the volume of data rises. Overall, the three are close in
importance and cannot be precisely ranked in terms of
their impact.

5.4. Data Correction. Te number of false detections is very
small compared to the other two types of detections. Te
number of missed detections is much higher than the
number of false detections when the values of the four
factors are close. Te missed and false detections are
combined into one category to improve the prediction ac-
curacy of the model trained on the small sample data: in-
correct detection, considering that neither missed nor false
detection can accurately provide the occupancy status of the
parking spaces. Te model then provides only two pre-
dictions: correct and incorrect detection.

Te corrected data were imported, and the XGBoost
model was retrained. A series of model evaluation indicators
were obtained, as shown in Table 6. Te model’s prediction

Table 4: Preview of specifc data.

Roadside distance (m) Line abrasion Scene complexity Image sharpness Failure probability
2.8 0.5 0 1 0
2.8 0 0.6 1 1
3.5 0 0.8 1 1
3.3 0.8 0 1 0
3 0 0 1 0
1.75 0 0.3 1 0
1.8 0 0 2 0
3.5 0 1.1 2 1
5.2 0 0 2 0

Table 5: XGBoost model applicability assessment metrics.

Accuracy: 75.97% Precision Recall F1-score Support
Correct detection 0.75 0.76 0.76 55
Missed detection 0.76 0.80 0.78 69
False detection 1.00 0.20 0.33 5
Accuracy 0.76 129
Macro avg 0.84 0.59 0.62 129
Weighted avg 0.77 0.76 0.75 129
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accuracy improved from 75.97% to 78.29%, and the F1-
scores of both predictions and their weighted averages were
high, indicating that the model’s prediction results have
a high degree of trustworthiness.

Te stratifed four-fold cross-validation scores before
and after data correction were compared, as shown in
Figure 9. Cross-validation scores generally improved after
fxes were applied to the data. Te average cross-validation
score improved from 0.73 to 0.77, and the model’s predictive
accuracy improved, indicating that the model has excellent
generalization ability.

 . Conclusion

Tis study proposes a trustworthiness assessment frame-
work for crowdsourcing-based citywide parking availability
detection. Four environment-related factors impacting the
parking detection algorithm, the distance between the CAV
and the target parking space, line abrasion, scene com-
plexity, and image sharpness, are determined through a se-
ries of feld and simulation experiments. A failure
probability prediction model of parking availability sensing
is developed based on the XGBoost algorithm, which can
reveal the infuence mechanism of diferent external factors
on the data accuracy. Te experimental results show that the
average prediction accuracy of the model is 78.29%, enabling
the detection vehicle to determine the extent of algorithmic
sensory failure while identifying parking spaces. Te impact
of the scene complexity is the most pronounced, with
camera contamination having a very weak efect. Tis avoids
unnecessary trips arising from excessive trust in the results
of parking space detection. Te model can efectively assess
the trustworthiness of crowdsourced data and signifcantly
reduce the impact of quality issues arising from sensor
identifcation and incomplete information.
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Figure 8: Results of the model: (a) dataset cross-validation score; (b) comparison of the importance of factors.

Table 6: Data-corrected model applicability assessment metrics.

Accuracy: 78.29% Precision Recall F1-score Support
Correct detection 0.73 0.78 0.75 55
Incorrect detection 0.83 0.78 0.81 74
Accuracy 0.78 129
Macro avg 0.78 0.78 0.78 129
Weighted avg 0.79 0.78 0.78 129
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