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Ever-growing mobility and trafc congestion within urban areas make the need for a sustainable form of transport inevitable.
Trafc congestion has a signifcant efect on the amount of energy consumption of a vehicle and, as a result, on its associated
environmental impacts. Any decision-making regarding structuring a feet without taking into account the trafc congestion level
(TCL) will lead to a less sustainable feet with higher environmental and economic costs. To address this issue, this study examines
the efects of the trafc congestion intensity level on the feet structure of an urban car-sharing company over a certain planning
period. We present a new optimization framework for fnding an optimal vehicle composition of the feet of an urban car-sharing
company considering the energy consumption of vehicles at diferent trafc congestion levels. Te results show that electric
vehicles (EVs) are more competitive than diesel vehicles (DVs) in high-peak trafc congestion from the outset of the planning
period. In addition, we perform a sensitivity analysis to take into account the efects of specifc uncertain parameters such as the
energy and purchasing costs of EVs on the total cost of ownership. As expected, the purchasing price of EVs, energy prices of DVs,
and increase in diesel prices have the highest impact on the total cost.

1. Introduction

Te idea of several people sharing the same car can be traced
back several decades ago [1]. Car-sharing is a type of shared
mobility that ofers renting cars on a needed basis for as little
as 10minutes [2] and often by the hour when other modes of
transport are not available or are not suitable [3]. Te users
can be passengers, companies, and public agencies [4]. Te
station of car-sharing is usually close to the location of
transportation modes, and the payment is based on travel
distance or time spent [4].

Car-sharing has the potential to reduce vehicle use,
ownership, and delays in car purchases [5–7]. It is seen as a
solution to address the issues of congestion, pollutants, and
the occupancy rate of vehicles within urban areas [8, 9]. Tis
leads to increasing urban sustainability from environmental,
economic, and societal points of view worldwide. [10–13].

Chen and Kockelman [14] estimated a reduction of 51% in
energy consumption and greenhouse gas (GHG) emissions
for what they have defned as a “good candidate for shared
mobility.”

In two studies [10, 11], the authors conducted a survey of
members of a car-sharing club in the US, looking specifcally
at the impacts of car-sharing on household vehicle own-
ership. Te results showed that the rate of vehicle ownership
among club members decreased from 0.47 to 0.24 vehicles
per household. In the last decade, the car-sharing market in
Europe has expanded, and in Germany, as the largest car-
sharing market in Europe, an increase in user usage from
0.26 million in 2012 to 1.29 million in 2020 was reported by
Roblek et al. [15].

Various research studies have shown that the demand
for car-sharing as a means of mobility in any form is in-
creasing worldwide [16–19]. In many countries around the
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world, car-sharing or short-term auto access [20] is known
as a system to minimize ownership transportation costs and
the negative efects of car use. Te car-sharing industry has
recently signifcantly increased its market [21, 22]. In the
past decade, advancements in communication technologies
and smartphone applications have led to the emergence of
car-sharing companies such as DriveNow and Car2Go.
Autolib in Paris is one of the known operators in car-sharing
systems that ofers electric car-sharing services with at least
1750 electric vehicles (EVs) and 65,000 members. Such
companies own a number of vehicles and deal with any cost
related to the operation of their feet in the car-sharing
service.

Tere is a trend toward the use of electric vehicles such as
gasoline-electric hybrids and electric vehicles in car-sharing
systems [20, 23]. EVs, in comparison to their conventional
counterparts, have lower operational andmaintenance costs,
and their zero tailpipe emissions are another option for
operation in car-sharing services since they usually operate
in urban environments. Furthermore, with regard to energy
consumption, their performance at lower speeds is better
than that of internal combustion engine vehicles (ICEVs)
[24], which is an additional advantage during peak-hour
trafc. Te purchase price of EVs has thus far been the main
barrier to their wider use. However, with increasing tech-
nological advancement, the cost of EV batteries, which
makes up a large portion of the price of an EV, has been on a
downward trend in recent years. Following Nykvist et al.
[25]; the battery price decreased by 77% from 2007 to 2018,
reaching an average cost of $230 per kWh. Tus, this
downward trend in battery prices will lead to a reduction in
EV purchase prices over time. In contrast, ICEVs have lower
purchase prices. However, the fuel cost of an ICEV, which is
the major cost during the lifetime of such a vehicle, is very
unpredictable. Te steep increase in oil prices and their wild
fuctuations in recent years have afected the fuel cost of
ICEVs. Accordingly, any decision for vehicle replacement
based merely on the actual total cost of ownership of a
vehicle without taking into account the concerned uncer-
tainties might increase the cost in the long term.

To the best of our knowledge, no research study has been
conducted on an optimal feet replacement for a car-sharing
service considering trafc congestion levels. Tis study in-
troduces a new optimization framework to assist a car-
sharing company in selecting the best investment strategy
for structuring its feet from diferent types of vehicle
technology (EVs vs. ICEVs in particular) over a certain
planning time period. Te novelty of the developed
framework lies in considering diferent trafc congestion
intensity levels and various demand levels for a car-sharing
service throughout a typical day of operation. Te optimi-
zation framework will provide the operator with the best
feet composition for its car-sharing company over a certain
planning period.

Te remainder of the paper is organized as follows:
Section 2 contains a literature review, and Section 3 de-
scribes the model and the optimization framework. In
Section 4, the data and assumptions are presented, and
Section 5 is dedicated to the results and discussion. Te

paper ends in Section 6 with the enunciation of some
conclusions.

2. Literature Review

Various research studies have focused on feet optimization
for shared mobility systems [26–31]. In a study by Wallar
et al. [28], the authors provided a model for optimizing feet
composition to distributions of vehicles for shared mobility
service. Tey proposed an algorithm for determining the
required number of vehicles, where they should be located at
the start point, and how they should be routed to satisfy all
travel demands in a particular period of time while enabling
many passengers to be served by the same vehicle. Based on
an analysis of historical taxi data from Manhattan in New
York City, they presented a model estimating the number of
required passenger cars to meet all daily taxi demands, with
an average waiting time and an extra travel delay. Monteiro
et al. [26] provided a model to optimize the feet size by
maximizing the number of served clients to satisfy the
demand while minimizing the high number of parked ve-
hicles in the station using a mixed-integer linear program.
Nair and Miller-Hooks [29] presented an optimization
model for feet management of shared-vehicle services by
using a stochastic mixed-integer program with joint chance
constraints and random demand across stations to minimize
cost car redistribution in a feet.

Some research studies developed optimization models
for electric mobility in car-sharing systems [32–36]. In
another study by [32], the authors performed an extensive
review of recent literature on car-sharing.Tey developed an
optimization framework for the feet composition of station-
based car-sharing systems with heterogeneous feets by
considering three diferent types of vehicles: ICEVs, plug-in
hybrid electric vehicles (PHEVs), and EVs. Tey demon-
strated that existing infrastructure and well-established
technology help ICEV growth and make PHEVs the best
alternative compared to the other two types of vehicles. Tey
concluded that EVs remain the best alternative considering
environmental and global emissions and local pollutants,
especially over long-term periods. In a research study by
Bubeck et al. [34]; the authors analyzed the total ownership
cost of electric mobility by considering the CO2 subsidies
ofered to EVs and buyer premiums as an incentive on the
German road up to 2050. Te results showed that full and
mild hybrid electric vehicles are currently more economical
even without government subsidies. Moreover, they showed
that buyer premiums are necessary to make EVs competitive
in terms of cost, and from 2030 onward, EVs can survive as
an economical option.

Although there have been various research studies fo-
cusing on feet optimization in shared mobility and car-
sharing systems, to the best of our knowledge, no research
study has addressed optimizing car-sharing feet structure
considering the efect of trafc congestion. In this study,
motivated by research studies on the feet replacement
problem in Urban Freight Transport (UFT) (see [37, 38], and
[39], we introduce a novel optimization framework to assist
a car-sharing company in choosing the best investment
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strategy for having diferent types of vehicles (in particular
EVs vs. ICEVs) in its feet over some planning time period.
Despite some similarities between vehicle replacement in
urban freight and car-sharing, there are diferences between
these two types of problems, which each deserve their own
analysis. Tis work focuses on vehicle composition for car-
sharing companies, whereas the focus of previous research
studies has been on vehicle composition for UFT.Te nature
of the demand for urban freight transport throughout the
day is diferent from that of car-sharing services. Tere are
limitations regarding the operation of freight vehicles within
a city during the day (in particular, during peak hours).
However, there are no such restrictions in regard to pas-
senger vehicle operations within urban areas. More im-
portantly, the developed optimization framework takes into
account the magnitude of trafc congestion, which is a novel
approach even within the context of UFT.

3. Research Methodology

Te aim of this research is to determine the best combination
of diferent types of passenger vehicles for the feet of a car-
sharing company over a certain planning period. Tere are
various vehicles of diferent types that can be used by a
company to run its car-sharing service. Each vehicle has its
own characteristics, which afect the associated costs. Tese
costs include the purchase price, energy costs, operation and
maintenance costs, and emission costs, to name the most
important ones. In addition, depreciation rates for vehicles
vary greatly, and accordingly, the corresponding salvage
revenues are of various magnitudes.

Energy consumption is one of the main costs associated
with a vehicle during its lifetime. Speed is a principal factor
afecting the energy consumption of a vehicle and, as a result,
the amount of emissions that the vehicle produces. Fol-
lowing He et al. [40], the optimal fuel consumption occurs in
the speed range of 45–80 km/h, whereas EVs have lower
energy consumption in the range of speeds between 20 km/h
and 40 km/h [41]. On the other hand, during peak hours,
trafc congestion afects the speed of a vehicle. In congested
areas, vehicles are faced with frequent stopping and going
and operating in lower-level gears, which makes them
consume more energy. Terefore, the developed optimiza-
tion framework considers these important factors by di-
viding a typical day of operation into several blocks of time
depending on the trafc congestion level of that day. Te
idea of dividing a typical day of the planning time period into
several blocks of time was motivated by previous research
studies on electricity supply planning Huang and Wu [42]
and Wu and Huang [43]. To demonstrate the idea of di-
viding a typical day of operation into diferent blocks of time,
we use the data regarding the average speed given during
22 hours of a day in Ji et al. [44], where the authors presented
the average speed of 20,000 taxi datasets recorded by GPS in
part of the city of Shenzhen in China for 22 hours from 1 AM
to 11 PM on a weekday. An average speed of less than 30 km/
h can be demonstrated more than 70% of the time, with the
sharpest decline in average speed occurring during the peak
hours of 6–8AM and 4–6 PM.

Tus, based on the average speed given there and the
amount of consumption for the corresponding velocity
given by He et al. [40] and Grée et al. [41]; we illustrate in
Figure 1 how a typical day of operation is divided into three
blocks of low, medium, and high congestion levels.

Te developed optimization framework will determine a
more sustainable car-sharing feet structure for the company
over a certain planning period while satisfying the interests
of the concerned stakeholders. In addition, uncertainties
related to various parameters such as energy, purchase,
emission, and maintenance costs need to be addressed.
Tese uncertainties have an impact on the total cost of
running a car-sharing service, and any decisions regarding
the composition of the feet taken without considering these
can result in extra costs for the company. Accordingly, we
perform a sensitivity analysis to analyze the efects of a
number of uncertain input parameters on the total cost.

3.1. Mathematical Optimization Framework. Te mathe-
matical optimization framework for structuring the feet of a
car-sharing company considering trafc congestion levels
over a certain planning period is presented and discussed in
this subsection. Te formulation is adapted and expanded
from the optimization framework in Feng and Figliozzi [37];
which was developed for the feet composition of an urban
freight transport company. Since the trafc congestion level
is an important and efective factor in minimizing the total
cost within the context of car-sharing services, the previously
developed framework needs to be adapted to take such a
factor into consideration.

Tese indices are used throughout the paper as follows:

(i) K ∈ k � 1, · · · , K{ } represents each type of vehicle
technology

(ii) i ∈ A � 0, · · · , Ak  represents the age of a vehicle of
type k

(iii) t ∈ T � 0, · · · , T{ } represents the year of the plan-
ning time period

(iv) s ∈ S � 1, · · · , S{ } refers to the level of trafc con-
gestion in a day

Te decision variables are as follows:

(i) Xi,t,k: number of age i type k vehicles used in year t
(ii) Yi,t,k: number of age i, type k salvaged vehicles at the

end of year t
(iii) Zt,k: number of new type k purchased vehicles at the

beginning of year t
(iv) xi,t,k,s: total number of kilometers traveled by ve-

hicles of type k age i during the level of s trafc
congestion in year t

Te parameters are denoted as follows:

(i) K: number of vehicle types
(ii) T: span of the planning period
(iii) S: level of trafc congestion of a typical day of

operation
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(iv) Ak: maximum age of vehicle type k
(v) dr: discount rate for taking into account the de-

valuation of money with time
(vi) bt: budget of year t
(vii) w d: working days in the year
(viii) dt,s: demand related to the level of s trafc con-

gestion in year t

(ix) ui,t,k: the maximum distance that can be traveled by
a vehicle of type k and age i in year t

(x) vk,t: purchase cost (€) per unit of type k vehicle
during period t

(xi) si,k: salvage revenue (€) of an age i, type k vehicle
(xii) ei,t,k,s: per-km energy cost (€/km) of vehicle type k

of age i during level s of trafc congestion of year t
(xiii) mi,t,k,s: per-km operation and maintenance cost

(€/km) of vehicle k of age i during level s of trafc
congestion of year t

(xiv) emi,k,s: CO2 emission cost (€/km) of vehicles of age
i and type k during level s of trafc congestion

3.1.1. Objective Function. Te objective function minimizes
the total cost. Te total cost is composed of various cost
elements, namely, energy, operation and maintenance,
purchase, and emission costs. We actualized the costs at the
beginning of the planning period. Since the objective
function is linear and the decision variables take a non-
negative integer and real values, problem (1) is thus a mixed-
integer linear programming problem. Terefore, to mini-
mize the total cost, the following optimization problem is
solved as follows:

MinTC � 
T−1

t�0


k

k�1
vk,tzt,k(1 + dr)

− t
− 

Ak

i�1


T

t�0


K

k�1
si,kYi,t,k(1 + dr)

− t

+ 

Ak−1

i�0


T−1

t�0


K

k�1


S

s�1
ei,t,k,s + mi,t,k,s + emi,k,s xi,t,k,s(1 + dr)

− t
,

s.t 
S

s�1
xi,t,k,s ≤w d ui,t,kXi,t,k ∀i ∈ A − Ak , ∀k ∈ K, ∀t ∈ T − T{ },



K

k�1


Ak−1

i�0
xi,t,k,s ≥dt,s ∀s ∈ S, ∀t ∈ T − T{ },

· 

K

k�1
vk,tzt,k ∀t ∈ 0, 1, 2, . . . , T − 1{ },

X(i−1)(t−1),k � Xi,t,k + Yi,t,k ∀t ∈ T, ∀k ∈ K, ∀i ∈ A − 0{ },

Zt,k � X0,t,k ∀t ∈ T, ∀k ∈ K,

Xi,T,k � 0 ∀k ∈ K, ∀i ∈ A − 0, Ak ,

XAk,t,k � 0 ∀t ∈ T, ∀k ∈ K,

Y0,t,k � 0 ∀t ∈ T, ∀k ∈ K,

· Zt,k, Xi,t,k, Yi,t,k ∈ Z
+

� 0, 1, 2, . . .{ },

(1)

xi,tk,s ∈ R+, where R+ represents the set of nonnegative real
numbers.

Te total cost (€) associated with the car-sharing service
business over the planning period consisted of the following
components:

Purchase cost:

PC � 
T−1

t�0


K

k�1
vk,tZt,k(1 + dr)

− t
. (2)
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Figure 1: Levels of trafc congestion considering speed and dif-
ferent blocks of time.
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Salvage revenue:

SR � 

Ak

i�1


T

t�0


K

k�1
si,kYi,t,k(1 + dr)

− t
. (3)

Energy cost:

EC � 

Ak−1

i�0


T−1

t�0


K

k�1


S

s�1
ei,t,k,sxi,t,k,s(1 + dr)

− t
. (4)

Operation and maintenance cost:

OP&MC � 

Ak−1

i�0


T−1

t�0


K

k�1


S

s�1
mi,t,k,sxi,t,k,s(1 + dr)

− t
. (5)

Emission cost:

EmC � 

Ak−1

i�0


T−1

t�0


K

k�1


S

s�1
emi,k,sxi,t,k,s(1 + dr)

− t
. (6)

Constraint (2) concerns the total distance (in kilometers)
traveled in any year, which cannot be greater than the
maximum distance traveled by all types of vehicles used. In
addition, in constraint (3), the distance traveled by all ve-
hicles of any type and age for each demand level in any year
must be greater than the demand for the corresponding level
of s trafc congestion in that year. Constraint (4) shows that
the company has a yearly limited budget for purchasing new
vehicles. Constraint (5) enforces that in any year of the
planning period, the number of vehicles used and salvaged of
any type must be equal to the number of vehicles used of the
same type in the preceding year. Constraint (6) ensures that
in any planning period year, the new vehicles of any type
introduced into the feet must be the same as the number of
purchased vehicles of that type. Constraint (7) forces all
remaining vehicles to be sold at the end of the planning time
period. Constraint (8) ensures that when a vehicle reaches its
maximum age, it must be salvaged. Constraint (9) ensures
that new vehicles cannot be salvaged immediately. Lastly, in
constraint (10), decision variables Zt,k, Xi,t,k andYi,t,k can
take only non-negative integer values, and xi,t,k,s can also
take nonnegative real values.

4. Data and Assumptions

For the numerical experiments, we assume that a car-sharing
company has the goal of deriving an optimal combination of
its feet from two available types of diesel and electric ve-
hicles both with the same passenger capacity. Tese two

types are denoted as k= 1 and k= 2 for DVs and EVs, re-
spectively. Tax incentives for diesel (https://taxfoundation.
org/gas-taxes-europe-2019/) cars, better fuel economy in
most European countries, and lower tailpipe emissions of
CO2 for diesel (https://autotraveler.ru/en/spravka/fuel-
price-in-europe.html) [45] compared to gasoline are the
main reasons for choosing this type of ICEV in our nu-
merical experiments. Te data regarding the two types of
vehicles and other input parameters are given in Table 1.

With regard to the lifetime of vehicles, considering the
European Automobile Manufacturers Association (https://
www.aut.f/en/frontpage_vanha/statistics/international_
statistics/average_age_of_passenger_cars_in_some_
european_countries), which has reported an age of 8 years
for passenger cars in some European countries, and fol-
lowing Mahut et al. [46]; we consider a lifetime of 8 years for
both passengers DVs and EVs. In addition, a discount rate of
5% [47] is used. By considering the foreseen daily utilization
and EV battery lifetime of 160,000 km [48, 49], each EV will
need two batteries over its eight-year operational lifetime.
We include the discounted cost of the extra battery in the EV
purchase price.

For the range limitation of EVs, the Nissan Leaf, the
electric car model that registered the highest number of sales
in Europe in 2018 and the third leading passenger electric
vehicle in 2020 (https://www.statista.com/statistics/965507/
eu-leading-passenger-electric-vehicle-models/), was the EV
analyzed in this study.Te Leaf has a range of 264 kilometers
with one full charge of battery. (https://www.nissanusa.com/
vehicles/electric-cars/leaf/features/range-charging-battery.
html).

To calculate the salvage or resale value, we use the fol-
lowing formula proposed by Feng and Figliozzi [37]:

si,k � 1 − θk( s(i−1)k � vk 1 − θk( 
i
, ∀k ∈ K, ∀i ∈ A − 1{ },

(7)

where θk is the rate at which vehicle type k is depreciated.
Based on the values reported by Messagie et al. [50], we set
depreciation rates per year of 17% and 28% for DVs and EVs,
respectively.

For the medium TCL, we use an energy consumption of
0.062 lit/km [51] and 0.145 kWh/km [52] for DVs and EVs,
respectively.

Based on the data given in Table 2, the energy costs per
kilometer are calculated using the formulas presented in the
following equations:

ei,t,s,1 � Rs,1
lit
km

  × Gdv × e
f
⌢

1 ·t ∀i ∈ A∀t ∈ T ∀s ∈ S � 1, 2, 3{ }, (8)

ei,t,s,2 � Qs,2
kWh

km
  × Hev × e

f
⌢

2 ·t ∀i ∈ A − 1{ }∀t ∈ T∀s ∈ S � 1, 2, 3{ }, (9)
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where Rs,1 and Qs,2 represent the energy consumption per
km. Gdv and Hev are the corresponding parameters for the
energy cost of DVs and EVs as presented in Table 1, and f

⌢

1
and f

⌢

2 are the annual growth rates of 5.82% and 2.89% [39]
for diesel and electricity prices, respectively. Te price
growth rates were defned on the basis of the annual diesel
price history from 1980 to 2014 and the electricity price
history from 1991 to 2014 in Portugal (https://www.pordata.
pt/Portugal).

We should mention that we made the right-hand side of
(8) and (9) independent of the age of vehicles (i.e., i). In fact,

due to a lack of data regarding the energy consumption of
vehicles with age, similar to Feng and Figliozzi [37] and
Ahani et al. [39]; we assumed that Rs,1 and Qs,2 are fxed
values for each i.

On average, well-to-wheel CO2 emissions by DV and EV
are approximately 2.63 kg/lit and 0.47 kg/kWh, respectively
[53]. Te CO2 emission value for EVs is calculated by taking
into account the emissions produced by diferent types of
power generation technologies. Terefore, the following
equations give the emission cost of each type of vehicle based
on its age:

emi,s,1 � 0.00263
tan
lit

  × Rs,1
lit
km

  × ec, ∀i ∈ A − Ak ,

emi,s,2 � 0.47
kg

kWh
  × Qs,2

kWh
km

  × 0.001
ton
kg

 ec, ∀i ∈ A − Ak .

(10)

Table 1: Input-parameter data.

Vehicle type DVs EVs
Lifetime (years) A 1 � 8 A 2 � 8
Discount rate (%) 0.05 0.05
Annual use (km) 40000 40000
Daily use (km) 160 160
Planning time horizon (years) 16 16
Depreciation rate (%) 0.17 0.28
Energy cost growth rate (Pordata 2018) (%) 0.0582 0.0289
Purchase cost (Nissan, 2020) (€) 14000 28000
Energy consumption in low TCL (s1) 0.0465 lit/km 0.1087 kWh/km
Energy consumption in medium TCL (s2) 0.062 lit/km 0.145 kWh/km
Energy consumption in peak TCL (s3) 0.0775 lit/km 0.1812 kWh/km
Energy cost (Pordata 2018) 1.16 €/lit 0.16 €/kWh
CO2 emissions (well-to-wheel) 2.63 kg/lit 0.47 kg/kWh

Table 2: Summary of characteristics of previous studies.

References Method Model Context Fleet
size

Vehicle replacement/
composition problem TCL

[26] Opt Mixed-integer linear
programming (MILP) Car-sharing system ✓ — —

[27] Opt (MILP) Car-sharing system ✓ — —

[28] Opt Integer linear programming
(ILP) Car-sharing system ✓ ✓ —

[29] Opt Stochastic mixed-integer
program (SMIP)

Fleet management shared-vehicle
system ✓ — —

[32] Opt (ILP) Car-sharing system electric mobility ✓ ✓ —
[34] Survey Total cost of ownership model Electric mobility — — —
[31] Opt Mixed integer program (MIP) Shared mobility ✓ — —
[35] Opt (MILP) Car-sharing system electric mobility ✓ — —
[36] Opt Simulation model EV- sharing system ✓ — —

[37] Opt (MIP) Urban freight feet replacement
problem ✓ ✓ —

[38] Opt (MIP) Urban freight feet replacement and
composition problem ✓ ✓ —

[39] Opt Mixed integer quadratic
programming (MIQP)

Urban freight feet replacement
problem ✓ ✓ —

Tis
research Opt (MILP) Car-sharing system ✓ ✓ ✓
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An ec value of €25/ton is considered [54].
Following the maintenance cost data analysis from

Carstens [55], each car has a cost of approximately 0.04 euro/
km. Te mileage and age of a vehicle afect its maintenance
cost. Te total maintenance cost for EVs is at most 60% of
the maintenance cost for ICEVs [50]. Hence, we use the
following quadratic functions extrapolated from the data
adopted from Carstens [55] to estimate the maintenance
costs of ICEVs and then use them to approximate the
maintenance costs of EVs.

mi,1 � −0.0015i
∧2 − 0.011i + 0.076, ∀i ∈ A − 0{ },

mi,2 � 0.6 −0.0015i
∧2 − 0.011i + 0.076( , ∀i ∈ A − 0{ }.

(11)

Regarding other input parameters, the following are
assumed:

(i) Te company has 20 diesel vehicles of diferent
ages in its initial feet. 12 vehicles of ages 0–3 years
with three vehicles of each age and 8 vehicles of
ages 4–7 years with two vehicles of each age.

(ii) Tere are three trafc congestion levels (TCLs):
low (s1), medium (s2), and high (s3) with vehicle
demands of 20%, 30%, and 50% of the total de-
mand, respectively (i.e.,
dt,1 � 0.2dt, dt,2 � 0.3dt, an d dt,3 � 0.5dt).

(iii) We assume that both DVs and EVs are used
160 km per day, which is equivalent to 40,000 km
per year based on a total of 250 working days in a
year.

(iv) An annual budget of 56,000 euros is assumed for
purchasing new vehicles.

(v) We assume that the energy consumption of DVs in
the low and high TCLs is 25% less and 25% more
than that of the medium TCL, respectively.

(vi) We also assumed a scenario without incorporating
TCL into the model. For this scenario, we consider
the energy consumption of 0.062 lit/km and
0.145 kWh/km for DVs and EVs, respectively.

(vii) During each year, the total demand for car-sharing
vehicles is supposed to be equivalent to the total
distance traveled by all 20 vehicles in the corre-
sponding year (dt � 40, 000km × 20).

(viii) We assumed that Rs,1 and Qs,2 are independent of
age.

5. Results and Discussion

Tis section presents the results of resolving the mixed-
integer linear optimization problem (1) (see Table 3) using
the CPLEX solver of GAMS version 27.3 [56] on a laptop
computer with CPU Intel core i3−4030U 1.90GHz and
RAM memory of 4GB running Windows 10 64 bits. We
present the total number of purchased vehicles, total dis-
tance traveled in each trafc congestion level by each type of
vehicle, number of vehicles used, and number of salvaged

vehicles in each year of the planning period. An elasticity
analysis is also performed to show the magnitude of the
efects of certain input parameters on the total cost.

Figure 2 shows the number of vehicles used each year for
the two types of vehicles. Regarding the number of vehicles
used, the share of electric vehicles in the feet increases over
time up to year 12 of the planning period and then remains
constant until year 14 and then begins to decrease. Keeping
in mind that the initial feet has been composed of only DVs,
the reason for the increase in the share of EVs and replacing
DVs in the feet is their low operating costs, especially when
considering the trafc congestion level, which is a major
factor afecting the fuel consumption of a vehicle.We can see
that the share of EVs in the feet begins to decrease after year
14 of the planning period, and the main reasons are their
high purchase price and high depreciation rate. Indeed, these
two factors mean that EVs, when compared with DVs, are
not competitive for just the last two years of the planning
time period. Had the planning period been infnite, then the
share of EVs would have increased constantly over the
course of the said planning period. Additionally, Figure 3
shows the number of purchased DVs and EVs over the
16 years of the planning period. Te number of EVs de-
creases toward the end of the planning period because the
depreciation rate for EVs is higher than that of DVs. Figure 4
shows the number of vehicles salvaged at the end of each
year and at the end of the planning time period when all
vehicles are salvaged due to the end of the operation.

For a more thorough analysis, we present in Figures 5
and 6 the total traveled distance for each type of vehicle and
the trafc congestion level. As stated previously, we assume
that the initial feet of the car-sharing service company is
made up of DVs only. Te fgures show that for a high TCL
(s� 3), the total distance traveled by EVs begins to increase
year by year, and from year eight until year fourteen of the
planning period, the total traveled distance in this TCL is
covered only by EVs. In the case of medium TCL (s� 2),
albeit in comparison to high TCL with a slower increase in
the share of EVs, and only from year 9 to year 13 of the
planning period is the entire demand in this TCL met by
EVs. DVs remain competitive chiefy for low TCL (s� 1), as
the operational cost for this TCL is lower than those of the
other two levels. As previously mentioned, the increase in
the share of traveled distance by DVs for the high and
medium TCLs toward the end of the planning period can be
attributed to the high purchase price and the high depre-
cation rate of EVs, which render them less economically
viable for just a few years of use in the feet.

We also assumed a scenario without incorporating the
trafc congestion level into the model to show that the trafc
congestion level has an important impact on the total cost.

Table 3: Model statistics.

Name Number
Constraints 745
Variables 1565
Discrete variables 646
Execution time 0.06 seconds

Journal of Advanced Transportation 7
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As we mentioned previously for this scenario, we consider
the energy consumption of 0.062 lit/km and 0.145 kWh/km
for DVs and EVs, respectively. Tis scenario led to an

increase of 18% (from 1,955,629.032 to 2,310,844.077) in the
total cost.
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Figure 5: Traveled distance of diesel vehicles for diferent levels of trafc congestion.
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5.1. Elasticity Analysis. As mentioned previously, there is a
degree of uncertainty associated with some of the input
parameters. Variations in these parameters can also impact
the total cost. We performed an elasticity analysis on a

number of key parameters to test their impacts on the total
cost. To this end, we used the arc elasticity formula [57]as
follows:

EA(TC, p) �
%chance in total cost

%change in parameter p
�

p1 + p2 

TC1 + TC2{ }
×

TC2 − TC1{ }

P2 − p1 
, (12)

where EA (TC, p) represents the discounted total cost (TC)
per km in response to a change in parameter p.

Elasticity analysis was performed for diferent ranges of
values to assist the operator in determining which parameter
has the main impact on its optimal vehicle replacement
decision. Regarding the deprecation rate of EVs, an elasticity
analysis was performed for three diferent intervals. As
expected, the purchase price of EVs, the energy prices related
to the operation of DVs, and the growth rate in diesel prices
have the highest impact on the total cost. Te results of the
elasticity analysis are presented in Table 4. A 1% change in
one of these parameters leads to increases of 0.40%, 0.35%,
and 0.26% in the total cost, respectively. For the discount
rate range, the elasticity is negative, which means that when
the discount rate increases by 1%, the total cost decreases by
0.18%.

6. Conclusions

Car-sharing can help resolve trafc congestion and emission
issues arising from increasing mobility within urban areas.
In comparison to diesel vehicles, EVs perform better in
regard to energy consumption during peak-hour trafc
congestion and low-speed fows. Taking this crucial factor
into consideration, an optimization framework for intro-
ducing new vehicles of diferent types into the feet of a car-
sharing company over a certain planning period was pre-
sented. Te developed framework considers the energy
consumption and emissions of diferent types of vehicles at
diferent levels of trafc congestion. To the best of our
knowledge, this is the frst time that such a framework has
been presented for the optimal composition of the feet of a

car-sharing service. Te numerical results showed that EVs,
compared to DVs, become more competitive year after year
during the planning period. Te reason for the increase in
the share of EVs is their low operating costs. More im-
portant, their competitiveness increases with the intensity of
trafc congestion. Terefore, any decision made by a car-
sharing operator that ignores trafc congestion intensity
throughout the day as a factor would result in an onus, in the
form of extra costs, for the company in question.

In this paper, an elasticity analysis is done to consider the
uncertainty of input parameters such as the energy cost,
maintenance cost, EV purchase price, and emission cost of
diferent types of vehicles. In future work, it will be
worthwhile to analyze the efect of these uncertainty pa-
rameters by using a portfolio theory approach such as the
one developed by Ahani et al. [39]. We also assumed that the
range limitation of EVs was not a determining factor for the
purchase decision. Depending on the demand level for car-
sharing services, there are some situations in which such an
assumption seems unrealistic. Hence, another line of re-
search could involve developing a vehicle replacement and
assignment optimization framework by considering the
range restriction of EVs and uncertainties associated with
the network of available charging stations and demand for
car-sharing service across an urban area. In this work, we did
not take into account the charging station location, and no
limitation was assumed with regard to the demand for
charging EVs in a network of charging stations. However, in
real scenarios, the network of charging stations might have a
limited capacity for satisfying the uncertain demands for
recharging the EVs. Tere are various research studies on
fnding optimal locations for refueling stations under

Table 4: Per-km discounted elasticity analysis of total cost for diferent factors.

Factor (range of values) (unit) Baseline value EA (TC, p)
Depreciation rate EVs (17–27) (%) 22% 0.012
Depreciation rate EVs (23–33) (%) 28% 0.053
Depreciation rate EVs (29–39) (%) 34% 0.068
DVs growth rate energy price (2.91–8.73) (%) 5.82% 0.256
EVs growth rate energy price (1.44–4.33) (%) 2.89% 0.018
Discount rate (3–7) (%) 5% −0.180
EVs purchase price (25200–30800) (€) 28000 € 0.398
Energy price (1.044–1.275) (€/lit) 1.16 €/lit 0.351
Energy price (0.144–0.176) (€/kWh) 0.16 €/kWh 0.072
Emission cost (22.5–27.5) (€/ton) 25 €/ton 0.023
Lifetime (6–10) years 8 years 0.025
EVs maintenance cost (0.024–0.028) (€/km) 0.0260 €/km 0.037
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diferent scenarios and conditions [58–64]. Terefore, from
the standpoint of an urban decision-maker, the integration
of the frameworks developed in the aforementioned studies
into the optimization framework of the current research
study will be another interesting future line of research.
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fexibility for car-sharing feet optimization,” Transportation
Science, vol. 53, no. 1, pp. 42–61, 2019.

[28] A. Wallar, J. Alonso-Mora, and D. Rus, “Optimizing vehicle
distributions and feet sizes for shared mobility-on-demand,”
in Proceedings of the 2019 International Conference on Ro-
botics and Automation (ICRA), pp. 3853–3859, IEEE, Mon-
treal, Canada, May 2019.

[29] R. Nair and E. Miller-Hooks, “Fleet management for vehicle
sharing operations,” Transportation Science, vol. 45, no. 4,
pp. 524–540, 2011.

[30] J. Li, Y. S. Chen, H. Li, I. Andreasson, and H. V. Zuylen,
“Optimizing the feet size of a personal rapid transit system: a
case study in port of rotterdam,” in Proceedings of the 13th
International IEEE Conference on Intelligent Transportation
Systems (ITSC), pp. 301–305, IEEE, Funchal, Portugal, Sep-
tember 2010.

[31] H. Hosni, J. Naoum-Sawaya, and H. Artail, “Te shared-taxi
problem: formulation and solution methods,” Transportation
Research Part B: Methodological, vol. 70, pp. 303–318, 2014.

[32] R. F. Lemme, E. F. Arruda, and L. Bahiense, “Optimization
model to assess electric vehicles as an alternative for feet
composition in station-based car sharing systems,” Trans-
portation Research Part D: Transport and Environment,
vol. 67, pp. 173–196, 2019.

[33] G. Brandstätter, M. Kahr, and M. Leitner, “Determining
optimal locations for charging stations of electric car sharing
systems under stochastic demand,” Transportation Research
Part B: Methodological, vol. 104, pp. 17–35, 2017.

[34] S. Bubeck, J. Tomaschek, and U. Fahl, “Perspectives of electric
mobility: total cost of ownership of electric vehicles in Ger-
many,” Transport Policy, vol. 50, pp. 63–77, 2016.

[35] S. Weikl and K. Bogenberger, “A practice-ready relocation
model for free-foating carsharing systems with electric ve-
hicles – mesoscopic approach and feld trial results,” Trans-
portation Research Part C: Emerging Technologies, vol. 57,
pp. 206–223, 2015.

[36] S. Nakayama, T. Yamamoto, and R. Kitamura, “Simulation
analysis for the management of an electric vehicle-sharing
system: case of the kyoto public-car system,” Transportation
Research Record Journal of the Transportation Research Board,
vol. 1791, no. 1, pp. 99–104, 2002.

[37] W. Feng and M. Figliozzi, “An economic and technological
analysis of the key factors afecting the competitiveness of
electric commercial vehicles: a case study from the USA
market,” Transportation Research Part C: Emerging Technol-
ogies, vol. 26, pp. 135–145, 2013.
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