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Tis paper proposes a prediction method based on chaos theory and an improved empirical-modal-decomposition particle-
swarm-optimization long short-term-memory (EMD-PSO-LSTM)-combined optimization process for passenger fow data with
high nonlinearity and dynamic space-time dependence, using EMD to process the original passenger fow data and generate
several eigenmodal functions (IMFs) and residuals with diferent characteristic scales. Based on the chaos theory, each component
of the PSO algorithm was improved by introducing an inertia factor to facilitate the adjustment of its search capability to improve
optimization. Each subsequence of the phase-space reconstruction was built into an improved PSO-LSTM prediction model, and
the output of each prediction model was summed to determine the fnal output. Experimental studies were performed using data
from the North Railway Station of Chengdu Rail Transit, and the results showed that the proposed model can generate better
prediction results. Te proposed model obtained root mean square error (RMSE) and mean absolute error (MAE) of 16.0908 and
11.3704, respectively. Compared with the LSTM, the improved PSO-LSTM, the improved EMD-PSO-LSTM, and the model
proposed in this paper improved the RMSE values by 25.53%, 29.97%, and 58.76%, respectively, and the MAE values by 30.41%,
40.13%, and 63.08%, respectively, of the prediction results.

1. Introduction

At present, urban rail transport continues to develop
well, as its speed, capacity, comfort, and safety help it
become the main mode of transport for the urban public.
Along with the gradually increasing intensity of pas-
senger fow, short-time passenger fow prediction has
become particularly important, as accurate trafc pas-
senger fow prediction helps urban trafc managers
better plan and manage their resources. Moreover, trafc
short-time passenger fow prediction has become of
strategic importance for the construction of urbanized
intelligent transport systems to relieve trafc pressure,
adjust operating times, and plan future construction. It is
also the foundation of smart city ambitions and
construction.

However, short-time passenger fow prediction can be
a particularly challenging problem. Raw trafc-fow data are
spatiotemporal data that simultaneously exhibit heteroge-
neity and correlation, as well as strong nonlinearity and
chaos. In addition, most existing research captures relatively
few trafc data attributes, resulting in unsatisfactory pre-
diction results. Consequently, real-time accurate short-time
passenger fow prediction is critical.

Short-term trafc forecasting models can be broadly
classifed into four categories—traditional statistical learning
algorithms, machine learning models, deep learning algo-
rithms, and combinatorial models. Te tasks of statistical
learning and machine learning algorithms are similar, which
involve inferring model parameters and ftting and pre-
dicting data. However, the focus of the two difers—that is,
statistical learning algorithms are more concerned with the
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confdence of predictions, whereas machine learning algo-
rithms are more concerned with the predictive efects of the
model. Statistical learning algorithms include
autoregressive-integrated moving average (ARIMA) models
[1], seasonal ARIMA models [2], and Kalman flter models
[3]. Te advantage of these models is that they are simple to
operate; however, owing to the complexity of changes in
actual passenger fow data, there can be a certain subjective
factor in their establishment, which can be easily infuenced
by a priori assumptions that can be difcult to satisfy in
practice, limiting their predictive performance.

Machine learning models include support vector ma-
chines (SVMs) [4], artifcial neural networks [5, 6], and
Bayesian networks [7], which can capture the nonlinear data
features of short-time passenger fow using their own
learning abilities. Leng et al. [8] established an improved
neural network prediction model that was optimized using
a genetic optimization algorithm that not only improved the
convergence of its search capability but also its prediction
accuracy. However, traditional machine learning models
cannot efectively process high-dimensional data, and the
complex variability of nonlinearities in time series trafc
data can be difcult to capture. Moreover, their predictive
performance depends on expert experience, and their
generalization ability is weak. Consequently, many scholars
have researched deep learning models to handle high-
dimensional spatiotemporal trafc data.

Based on deep learning algorithms such as recurrent
neural networks (RNNs) [9, 10] and long short-term
memory (LSTM) neural networks [11], Huang et al. [12]
processed information from trafc sequence data using
long-and short-time neural networks and gated recurrent
units in RNNs, and performed noise reduction of raw
passenger fow data using wavelet transforms. Zhang et al.
[13] used multigraph convolutional neural networks to
explore the spatial features of trafc data. However, deep
learning models are prone to overftting or underftting [14].

Tere is also a class of combinatorial models. Zhai
et al.[15] proposed a hybrid trafc fow predictionmethod by
combining the k-nearest neighbor and LSTM algorithms
based on the spatiotemporal features of transportation data.
Teir experimental results showed that their proposed
model improved by 12.59% on average compared with the
comparison model. Gao et al. [16] proposed a new hierar-
chical hybrid model to forecast short-term passenger fows,
with an average absolute error of approximately 10% in the
forecasting results. Moreover, experiments showed that the
prediction results of this combined model exhibited greater
accuracy.

However, the collected trafc fow data can be disturbed
by noise factors, reducing the predictive performance of the
models. To minimize the impact of external factors on
forecast accuracy, a prediction model that employs chaos
theory can directly analyze the intrinsic regularity of trafc
fow data through a priori cognition without establishing
a subjective model. Consequently, considering the charac-
teristics of nonlinearity and nonsmoothness in urban rail
trafc time series data, the empirical mode decomposition
(EMD) algorithm—which can be applied to nonlinear and

nonsmooth signal processing methods—was examined for
rail trafc short-time passenger fow predictions. Te im-
proved complete ensemble EMD with adaptive noise
(CEEMDAN) method was proposed and used for the de-
composition of highway data by decomposing the time series
into diferent features, which could dramatically reduce the
prediction error of the mainstream model. Te improved
CEEMDAN-fuzzy entropy (FE)-temporal convolutional
network model was shown to exhibit high predictive accuracy
and strong robustness when using the US101-S highway in
California as the research object. Wang Xiao Quan et al. [17]
proposed an SVM model for short-time trafc fow pre-
diction, incorporating the principles of chaos theory to map
trafc fows into a hyper-dimensional structure by per-
forming phase-space reconstruction based on its nonlinear
characteristics, and to calculate the embedding dimension
parameter by using the maximum conditional entropy
method with a time delay parameter obtained using mutual
information techniques. Finally, the reconstructed subseries
were used as inputs and predicted using genetic-algorithm
optimized support vector regression. Numerical experiments
showed that the proposed method exhibited excellent pre-
dictive accuracy. Lingling Wu et al. [18] proposed an em-
pirical model decomposition and diferential evolution
algorithm to optimize the back propagation neural network
for a short-time trafc fow prediction model. Tey used the
EMD algorithm to decompose diferentmodal components in
the trafc timing data step-by-step, generating a series of
eigenmodal functions (IMFs) and residuals at diferent scales
to remove certain noise efects, thereby improving the ac-
curacy of results.

Te main contributions of this paper are as follows:

(1) Given the nonlinear characteristics of trafc fow and
the fact that particle swarm optimization (PSO) al-
gorithms usually fall into local optimality, we
combined the chaos theory and an improved EMD-
PSO-LSTM model to design a short-time passenger
fow forecasting method for urban rail transport, and
applied it to the feld of rail transit passenger fow
forecasting for the frst time.

(2) We used the EMD algorithm to decompose the
original time series data and perform phase-space
reconstruction using chaos theory principles to re-
construct the useful aspects of the EMD to further
explore the internal characteristics of trafc fow and
improve prediction accuracy. An improved
PSO-LSTM prediction model was then developed for
each reconstructed subsequence. Owing to the ten-
dency of the original model to fall into a local op-
timum, we improved it to increase its PSO-seeking
search capability, and the predictions of each com-
ponent were summed to produce the fnal output.

(3) We conducted the experiments using a dataset
comprising data from the North Railway Station of
the Chengdu Municipal Railway to validate the ef-
fectiveness of the proposed model. Te results
showed that the proposed model performed better
than existing methods.
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2. Methods

2.1. EMD Algorithm. EMD can be used for analyzing both
linear and smooth, and nonlinear and nonsmooth signals.
Te core of this approach is to gradually smoothen the signal
and decompose the vibrationmodes in the signal into a fnite
number of components that tend to be smoothed based on
diferent characteristic scales or trends. Moreover, in short-
period passenger fow forecasting for rail transport, the
transformation of nonlinear and nonsmooth passenger fow
signals into linear and smooth signals better refects their
intrinsic physical meaning [18]. Compared with other
signal-processing methods, EMD methods are more in-
direct, intuitive, and adaptive.

EMD divides the raw trafc fow signal into several
empirical mode components (IMFs) based on its adaptive
timing analysis, each of which contains local features of
diferent feature scales in the previous trafc fow signal, and
residuals (RES), which represent the mean or trend in the
original trafc fow signal. Each IMF must satisfy two
conditions at the same time—that is, the diference between
the number of extremes and zeros in the domain of def-
nition should not exceed 1, and the mean value of the upper
and lower envelope functions should be 0 [18].Te process is
as follows:

Step 1: In the original trafc signal, all extreme points
are calculated, and the upper and lower envelopes are
ftted m1(t)m2(t) with the cubic spline interpolation
function to calculate the mean value m(t) of the upper
and lower envelopes. Te mean of the original signal
envelope is calculated as follows:

m(t) �
m1(t) + m2(t)

2
. (1)

Step  : Subtracting the original sequence m(t) from
X(t) to obtain a new sequence, as follows:

h1(t) � X(t) − m(t), (2)

where h1(t) satisfes the IMF condition, so that the frst
f1(t) IMF component is obtained. If h1(t) is still
unstable, the abovementioned process is repeated once
with h1(t) instead of X(t) until the resulting average
envelope tends to 0, defning the f1 component as h1k.

fi � hik. (3)

Step 3: Te original sequence X(t) is subtracted from
the frst IMF component to obtain the frst f1(t)

diference sequence with the high-frequency compo-
nent and removed RES1(t). Te above processing of
RES1(t) is used to obtain a second empirical modal
component until it is no longer possible to disaggregate
it, with the last one obtained being a residual RESn(t).
After decomposition, which represents the actual av-
erage trend of the primary series X(t), the original
sequence X(t) can be expressed as follows:

X(t) � 􏽘
n− 1

i�1
fi(t) + RESn(t). (4)

2.2. Chaos Teory. Te study of the chaos theory began in
1980 with the phase-space reconstruction theory proposed
by Packard et al. Te theory states that the evolution of each
component in a chaotic system is jointly dictated by the
other individual components of these interactions, and that
the variable contains information about the long-term
evolution of all the variables in the system. Te basic
principle of phase-space reconstruction is the delayed em-
bedding theorem proposed by Takens [19]. For chaotic time
series, chaotic models can be built and predicted in the so-
called phase space, wherein phase-space reconstruction
based on the chaos theory is an essential component in the
processing of a chaotic time series. Tere are two key index
values in the phase-space reconstruction algorithm—the
embedding dimension (d) and time delay (τ)—and in [19],
the parameters of both the embedding dimension and time
delay are only proved via theoretical studies, and no specifc
formula is given. In practical applications, the time delay and
embedding dimension parameters should be calculated
considering the actual situation because raw trafc fow
time-series data are infuenced by external variables.

In a chaotic system, a set of observations that vary with
time can be obtained by examining them—noted as chaotic
time series Yi, i � 1, 2, . . . , n—and a set of m-dimensional
vectors can be constructed using the observations, as follows:

Yi � yi, y(i + τ), · · ·, y(i +(m − 1)τ)( 􏼁, (5)

where τ � k∆t, k � 1, 2, . . ., ∆t denotes the time interval, Yi

denotes a sample point in the constructed phase space with
m components, and m � n − (m − 1)k. If the parameters of
m are chosen appropriately, then Yi can represent the state
in the original system and dynamic characteristics of pri-
mary passenger fow data in the multidimensional
phase space.

2.3. LSTM-Based Short-Time Passenger Flow Forecasting for
Rail Transit. LSTM is particularly suitable for processing
trafc data sequences with certain time intervals. In the
LSTM neural network structure, each neuron comprises
three gating units as a solution to the drawback of dis-
appearing gradients owing to a long time series. Te LSTM
model comprises four main parts—memory cells, forgetting
gate, input gate, and output gate [20]—as shown in Figure 1.
Te LSTM network structure is shown in Figure 2.

Here, the memory cell is the core component of the
entire LSTM model used for storing the cell states of past
information, and the output of the memory cell at moment t
can be expressed as follows:

􏽥Ct � tan h Wc · ht− 1, Zt􏼂 􏼃 + bc( 􏼁,

Ct � ft · Ct− 1 + it · 􏽥Ct,
(6)
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where Zt denotes the input at the present time, it denotes the
input gate, which refreshes the stored information in the cell
state, and Ct− 1 is the update to Ct.

Te forgetting gate is used to determine which part of the
information in the cell state needs to be removed by fusing
information from the preceding point in time and that on
the time at hand. Te output of the forgetting gate at mo-
ment t is obtained as follows:

ft � σ Wf · ht − 1, Zt􏼂 􏼃 + bf􏼐 􏼑, (7)

where ft denotes the output value of the forgetting gate, σ
denotes the activation function, Wf denotes the weighting
matrix representing the forgetfulness gate, and bf denotes
the bias term for the forgotten door.

Unlike the forgetting gate, the input gate decides which
information can enter the unit state based on its threshold,
and the candidate value vector is created in the tanh layer to
generate candidate memories, wherein new information
passing through the screening is added to the unit state to
replenish the lost attribute information. In addition, the
input gate updates the information stored in the cell state,
and its output at time t is calculated as follows:

it � σ Wt · ht − 1, Zt􏼂 􏼃 + bi( 􏼁. (8)

Te output gate result can be determined via three main
components—the previous moment’s input information,
the information stored after the cell state is updated, and the
output information at the last moment. Tus, the output at
moment t can be expressed as follows:

Ot � σ WO · ht− 1, Zt􏼂 􏼃 + bO( 􏼁,

ht � Ot · tan h Ct( 􏼁,
(9)

where W denotes the weight value, b denotes the bias term,
and tan h denotes the hyperbolic slice employment factor.

2.4. Improved PSO-LSTM Algorithm for Rail Transit Short-
Time Passenger Flow Prediction. PSO is an exploratory
method and a classical swarm intelligence algorithm used for
solving the optimal search problem. Te principle un-
derpinning this optimization method originated from the
search learning of particle foraging behavioral approach,
wherein each bird is abstractly viewed as a particle and used
to represent a feasible solution [21]. By evaluating the de-
grees of superiority and inferiority of each particle through
a ftness value, a series of random searches are performed,
and the current optimal solution search is dynamically
tracked by exchanging information with other particles,
discovering information, and adaptively changing the

×

tanh

×
×

tanh

ct-1

ht-1

Zt

ct

ht

ht

+

σ σ σ

Figure 1: LSTM structure.

×

tanh

×
×

tanh

ht-1

ct-1

ht-1

Zt-1
Zt+1Zt

ct

ht

ht
ht+1

+

σ σ σ

Figure 2: LSTM network structure.

4 Journal of Advanced Transportation



direction of the next search by collective information sharing
such that the group can determine the optimal destination
location.

To overcome the shortcomings of traditional PSO
algorithms, which can easily fall into optimal solutions,
the particle swarm algorithm was improved by in-
troducing an inertia factor, which can reasonably and
efectively regulate the global search and partial search
capabilities of the algorithm, such that it can change
during the PSO search process based on the search

function of the PSO algorithm [22]. When the particles
update their velocity and position vectors with each re-
peated motion, the best value of these two results can be
obtained by tracking the positions through which the
particles and swarm pass. Te specifc method can be
expressed as follows:

vi � vi + c1 pbesti − xi( 􏼁 + c2 gbesti − xi( 􏼁,

xi � xi + vi,
(10)

Start

Initialize particle swarm
and parameter setting

T=1

To calculate the
objective function

Update individual best pbest and
group best gbest

Determining whether the
convergence basis is

satisfied

Output optimal results
and parameters

End

Update the position vector and
velocity vector of each particle

Evaluate the fitness value of the
function for each particle

Update the historical optimal
position of each particle

Update global optimal position

T=T+1

YES

NO

Figure 3: Improved PSO solution process.
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where i � (1, 2, . . . , N), N denotes the total number of
particles in the swarm, xi denotes the current position of the
particle, vi denotes the velocity of the particle, c1 and c2
denote the learning factors, pbesti denotes the most opti-
mum point for a mass to pass through, and gbesti denotes
the optimal position experienced by the swarm as a whole
[20].

vi&9; � w × vi + c1 pbesti − xi( 􏼁 + c2 gbesti − xi( 􏼁,

w&9; � we + ws − we( 􏼁 · 1 −
t1

t
􏼒 􏼓,

(11)

where ws denotes the weight at the beginning of the inertia
factor, we denotes the weight at the end of the inertia factor, t
denotes the maximum number of iterations after all itera-
tions are completed, and t1 denotes the number of iterations
at the current moment [23].

Te improved PSO solution can be obtained by con-
structing the LSTM short-time passenger fow prediction
model and using a modifed PSO optimization algorithm to
discover the optimal parameters for the LSTM prediction
model [24], as shown in Figure 3. Te pseudocode of the
improved PSO algorithm is shown in Figure 4.

Te specifc operational steps are as follows:

Step 1: Initialize the particle swarm and set the relevant
parameters, including the population size, random
position, and velocity.
Step  : Determine the ftness value of each particle, as
well as the optimal positions for the particle and
particle population to pass.
Step 3: Determine whether the particles satisfy the
convergence condition, and if they do, output the re-
sult. If they do not satisfy the convergence condition,
continue with the following steps.
Step 4: Te velocity vector is updated with the opti-
mum positions passed by the particles and particle
swarm, and the position vector of the particles is
updated with the updated velocity vector, after which
all optimal particles are updated.
Step 5: Return to Step 3 until the convergence con-
dition is met, before outputting the optimal result and
number of iterations.

3. Design of Short-Time Passenger Flow
Forecasting Algorithm for Rail Transit
Based on Chaos Theory and Improved EMD-
PSO-LSTM

Te EMD algorithm can decompose the time series of rail
transit short-time passenger fow into IMF components of
diferent frequencies based on their intrinsic characteristics,
which describe the local characteristics of the original series
more clearly. An improved PSO-LSTM prediction model
can then be separately built for each subsequence, before
adding the predicted values of each subsequence to obtain
the fnal output [25]. Te model construction process is
shown in Figure 5. Te pseudocode of the improved EMD-

PSO-LSTM passenger fow forecasting algorithm based on
the chaos theory is shown in Figure 6.

Step 1: By performing EMD on the rail trafc short-
time passenger fow data, several IMFs and RES terms
can be obtained.
Step  : Te decomposed components are screened,
which are then reconstructed in the phase space.
Step 3: An improved PSO-LSTM prediction model is
developed for each component after phase-space re-
construction, and the improved PSO algorithm is then
used to fnd the optimal parameters and train the
LSTM model.
Step 4: Te predicted values of each component are
superimposed and ftted to obtain the fnal prediction
results of the model.
Step 5: Te fnal prediction results are output [26].

4. Results: Case Studies

4.1. AFC Data and Processing. Te operational data of the
North Railway Station of Chengdu Metro Line 1—that is, its
incoming passenger fow data from January 4–13,
2020—were selected for this study. In the Chengdu rail
transit system, the AFC platform recorded the entrance and
exit information of each passenger using smart card data
from the automatic ticketing system at each metro station.
Inbound trafc data at the metro stations were obtained
between 5 : 00 and 00 : 55 the following day, with a data
collection interval of 5min. Te data contained a total of
2,260 time series, each of which included the start time, end
time, input fow, and output fow. Te Chengdu Metro Rail
Transit North Station road network map is shown in
Figure 7.

A total of 2260 time series of data were input in the
experiments of this paper. Te input data are inbound
passenger fow in person/5 min. Te output data are the
inbound passenger fow in person/5 min. Te simulation
environment used to test the predictive performance of
the model in this study was MATLAB 2019a. Generally,
the larger the training set, the more accurate the pre-
diction results. Terefore, to take full advantage of the
data, the frst 90% of the original trafc data (that of eight
days from January 4–11) were used in the training set,
and the remaining 10% (January 12) were used in the
test set.

First, anomalies and missing data from the original data
were processed, wherein the anomalous data were consid-
ered asmissing data. Lagrangian interpolationmethods were
used to process the missing data, wherein four neighboring
data before and after the missing datum are selected for
interpolation to ensure the reliability of the
interpolated data.

Te data was then normalized using the min-max
method as follows:

y
∗

�
y − ymin

ymax − ymin
, (12)
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where ymin and ymax are the minimum andmaximum values
of the trafc fow, respectively, and y∗ and y are the trafc
fow data before and after normalization, respectively.

4.2. Prediction Results of the LSTM Model. Te LSTM rail
trafc short-time passenger fow prediction model was
established, the results of which are shown in Figure 8.

4.3. Prediction Results of the Improved PSO-LSTM Model.
Te prediction results show that the prediction performance
of the LSTM model is poor. Consequently, an improved
PSO-LSTM model was introduced, the prediction results of
which are shown in Figure 9. By running the model through
repeated iterations, its prediction results were found to be
optimal with an optimal number of hidden nodes of 167,
optimal learning rate of 0.0310, and optimal number of
iterations of 30.

4.4. Prediction Results Based on Chaos Teory and Improved
EMD-PSO-LSTM Model

4.4.1. EMD of Trafc Flow Change Series. Because the
original rail trafc fow data have characteristics of non-
linearity and nonsmoothness [27], the noise in it will have
some infuence on the prediction results, resulting in in-
accurate prediction results. Te noise in the time series data
can be mitigated through the EMD algorithm, thus im-
proving the predictive power of the model. Based on the
EMD algorithm, the EMD of the rail trafc fow variation

series can be divided into nine empirical modal components
and one residual component. Te EMD results are shown in
Figure 10.

It can be observed from the fgure that the IMF1, IMF2,
and IMF3 empirical modal components have higher fre-
quencies and are high-frequency components of the original
rail trafc passenger fow data. IMF4, IMF5, and IMF6
empirical modal components have more obvious periodicity
and are low-frequency components of the original rail trafc
passenger fow data.Te residuals are the overall trend of the
time series data and are the trend components of the original
rail trafc passenger fow data. Te EMD of the rail trafc
short-time passenger fow time series provides a clearer
understanding of the passenger trafc fow data fuctuation
and overall trend.

4.4.2. Phase Space Reconstruction Based on Chaos Teory.
Te EMD of the rail trafc fow change sequence can
determine the trafc fow fuctuations more accurately.
However, because the three components—that is, IMF7,
IMF8, and IMF9—do not show the intrinsic properties of
the data, the model only selects the remaining seven
components, reconstructing them in phase space by
fnding the time delay using the mutual information
method [28] and the embedding dimension using the Cao
method. If phase-space reconstruction parameters are
carefully selected, the reconstructed phase space can
describe the states in the original system, and the mul-
tidimensional phase space can show the dynamic char-
acteristics of the trafc fow change sequence [29]. Te

Input: Population size M, random position P, velocity V

Output: Outputs optimal results and related parameters

1 Initialize the particle swarm

2 Set population size M, random position P, velocity V

3 Set the parameter T←1

4 Computes the objective function value

5 Update individual optimals Update (pbest) , population optimal Update (gbest)

6 If (convergence condition satisfied)

7 Output optimal results and related parameters

8 quit ( )

9 Else (does not meet the convergence condition)

10 Updates the particle's position vector P and velocity vector V

11 Calculate the adaptation value W for each particle

12 Update the historical optimal position of each particle Update (pbest)

13 Update the global optimal location of the population Update (gbest)

14 Set the parameter T← T+1

15 Recalculate the objective function value

16 End if

Figure 4: Pseudocode of the improved PSO algorithm.
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remaining seven component phase-space reconstruction
parameters are listed in Table 1.

After phase-space reconstruction, the improved PSO
algorithm for the components was used to determine the
optimal number of hidden nodes, learning rate, and number
of iterations of the LSTM prediction model. Te optimal
parameters of each component are listed in Table 2.

4.4.3. Prediction Results Based on Chaos Teory and Im-
proved EMD-PSO-LSTM Model. Owing to the nonlinear
and nonsmooth characteristics of the original rail trafc
passenger fow data, the noise in its time series data has
a certain infuence on the prediction results, resulting in
inaccurate predictions. Consequently, using the improved
PSO-LSTM model, the trafc fow variation sequence could
be empirically decomposed. Based on the chaos theory, the
decomposed subsequence could be reconstructed in the
phase space and an improved EMD-PSO-LSTM-combined
optimization model was constructed. Te PSO search and
prediction results for each component are shown in

Figures 11 more specifcally, the superimposed predictions
are shown in Figures 11(a)–11(g), which show the plots of
the PSO search results for each component, whereas
Figures 11(h)–11(n) show the predicted results for each
component. Figure 12 shows the predictions for each
component overlay.

4.4.4. Prediction Results of the Improved EMD-PSO-LSTM
Model. To further validate the prediction efect of the
combined optimization model based on the chaos theory
and the improved EMD-PSO-LSTM model, a set of com-
parison models were added—that is, phase-space re-
construction of the components without considering the
chaos theory. Te components obtained after EMD were
screened, and the remaining seven components were se-
lected to build the improved PSO-LSTM prediction model.
Te optimal number of hidden nodes, learning rate, and
number of iterations of the LSTM prediction model were
determined using the improved PSO algorithm.Te optimal
parameters of each component are listed in Table 3. Te

Original time series of traffic flow

Empirical modal
decomposition

IMFkIMF2 RESnIMF1

Superimpose the prediction
results of each subsequence

Final Forecast Results

Phase space
reconstruction
based on chaos

theory

Phase space
reconstruction
based on chaos

theory

Phase space
reconstruction
based on chaos

theory

Phase space
reconstruction
based on chaos

theory

Improved PSO-LSTM
prediction

model

Improved PSO-LSTM
prediction

model

Improved PSO-LSTM
prediction

model

Improved PSO-LSTM
prediction

model

Figure 5: Improved EMD-PSO-LSTM model construction process.
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Input: Rail transit short-term passenger flow data

Output: Outputs the final prediction and performs an error analysis

1 Enter the short-term passenger flow data of rail transit

2 EMD empirical modal decomposition of the data

3 Fori←0 to n do

4 Modal function INF[i]←Data[i]

5 Filter the individual components after decomposition Choose ()

6 Performing Phase Space Reconstruction Recon ()

7 Establishing an Improved Predictive Model for Components Predict ()

8 Look for the optimal parameter M

9 Train the LSTM model

10 End for

11 For i←0 to n do

12 Overlay the prediction results for each subseries

13 Sum+=Pre[i]

14 End for

15 Outputs the final prediction

Figure 6: Pseudocode of the improved EMD-PSO-LSTM passenger fow forecasting algorithm.

SubwayStation
Subway 0 0.5 1 km

Figure 7: Chengdu Metro Rail Transit North Railway Station road network map.
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prediction results shown in Figures 13(a)–13(g) show the
plots of the PSO search results for each component.
Figures 13(h)–13(n) show the predicted results for each
component. Figure 14 shows the predictions for each
component overlay.

4.5. Evaluation Indicators. To better compare the pre-
dictions between the LSTM model, improved PSO-LSTM
model, improved EMD-PSO-LSTM model, and improved
EMD-PSO-LSTM model are based on the chaos theory. Te
mean absolute error (MAE) and root mean square error
(RMSE) and the coefcient of determination (R2) metrics
were chosen to compare their errors [30].Teir formulas can
be expressed as follows:

RMSE �
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where xi denotes the actual inbound trafc at time i, 􏽢xi

denotes the forecast inbound trafc at time i, x indicates the
average value of trafc volume, and N denotes the total
volume of inbound trafc in the trafc sequence.

To visually evaluate the prediction results of the four
prediction models, the aforementioned errors were used
to compare and analyze the strengths and weaknesses of
the model predictions [17]. Te evaluation indicator
values of the prediction results are listed in Table 4, and
the percentage improvements in the prediction results are
listed in Table 5.

Te comparative analysis of the error metrics shown in
Tables 4 and 5 indicates that the improved EMD-PSO-LSTM
prediction model based on the chaos theory exhibits higher
prediction accuracy. In addition, the improved PSO-LSTM
and improved EMD-PSO-LSTM models and the improved
EMD-PSO-LSTMmodel based on the chaos theory improve
the passenger fow prediction results by using the LSTM
model prediction results as a benchmark. Te percentage
improvement of RMSE values is 25.53, 29.97, and 58.76%,
respectively, and the percentage improvement of MAE
values is 30.41, 40.13, and 63.08%, and the percentage im-
provement of R2 values is 13.36, 16.31, and 32.30%. Tese
results indicate that the proposed model has great potential
for short-time passenger fow forecasting applications in rail
transit.
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Figure 8: LSTM model prediction results.
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Figure 9: Improved PSO-LSTM model prediction results.
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To further validate the experimental results, the
EMD-PSO optimization algorithm based on the chaos
theory was compared with combinations of deep learning-
based deep belief networks (DBN) and gated recurrent unit
(GRU) neural networks. Moreover, combinations of neural
network prediction commonly used in the feld of trafc fow

prediction, including the model radial basis function neural
network (RBF) and multilayer perceptron (MLP), were also
compared. Te experimental results and error results are
presented in Figure 15 and Table 6, respectively.

Te experimental results showed that the proposed
EMD-PSO-LSTM model of rail transit short-time
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Figure 10: EMD results.

Table 1: Phase space reconstruction parameters.

Portion size IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 RESn
Time delay τ 99 99 4 8 23 36 99
Embedded dimensions m 6 6 6 5 5 4 6

Table 2: Optimal parameters of each subsequence after phase-space reconstruction.

Optimal parameters IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 RESn
Hidden nodes 172 184 126 150 200 139 100
Learning rate 0.0051 0.0010 0.0010 0.0010 0.0088 0.0010 0.0010
Number of iterations 30 30 30 30 30 30 30
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Figure 11: Optimization search results and predictions for each component based on chaos theory : (a) IMF1’s search results, (b) IMF2’s
search results, (c) IMF3’s search results, (d) IMF4’s search results, (e) IMF5’s search results, (f ) IMF6’s search results, (g) RESn’s search
results, (h) IMF1’s predicted results, (i) IMF2’s predicted results, (j) IMF3’s predicted results, (k) IMF4’s predicted results, (l) IMF5’s
predicted results, (m) IMF6’s predicted results, and (n) RESn’s predicted results.
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Figure 12: Prediction results of the improved EMD-PSO-LSTM model based on chaos theory.
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Table 3: Optimal parameters of each subsequence after phase-space reconstruction.

Optimal parameters IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 RESn
Hidden nodes 126 116 139 100 182 100 200
Learning rate 0.0010 0.0010 0.0010 0.0010 0.0010 0.0010 0.0013
Number of iterations 30 30 30 30 30 30 30
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Figure 13: Optimization search results and predictions for each component: (a) IMF1’s search results, (b) IMF2’s search results, (c) IMF3’s
search results, (d) IMF4’s search results, (e) IMF5’s search results, (f ) IMF6’s search results, (g) RESn’s search results, (h) IMF1’s predicted
results, (i) IMF2’s predicted results, (j) IMF3’s predicted results, (k) IMF4’s predicted results, (l) IMF5’s predicted results, (m) IMF6’s
predicted results, and (n) RESn’s predicted results.
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Figure 14: Improved EMD-PSO-LSTM model prediction results.

Table 4: Results of various models.

Predictive models
Evaluation indicators

RMSE MAE R2 (%)
LSTM 39.0150 30.7984 71.02
Improved PSO-LSTM 29.0557 21.4331 80.51
Improved EMD-PSO-LSTM 27.3210 18.4379 82.60
Improved EMD-PSO-LSTM based on chaos theory 16.0908 11.3704 93.96

Table 5: Percentage improvements in the prediction results.

Predictive models
Evaluation indicators (%)

RMSE MAE R2 (%)
Improved PSO-LSTM 25.53 30.41 13.36
Improved EMD-PSO-LSTM 29.97 40.13 16.31
Improved EMD-PSO-LSTM based on chaos theory 58.76 63.08 32.30
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Figure 15: Experimental results of the fve models.
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passenger fow prediction based on the chaos theory
obtained better prediction accuracy than the deep belief
network (DBN), gated recurrent unit (GRU) neural
network, radial basis function (RBF) neural network,
and multilayer perceptron (MLP) models.

 . Conclusions

Te search performance was signfcantly improved by im-
proving the PSO algorithm. Moreover, by decomposing the
time series using EMD and recombining them in a phase-
space based on the chaos theory, the characteristic in-
formation in the trafc data series could be fully captured,
thereby improving the accuracy of the prediction results. It
was also found that the chaos theory could further explore
the intrinsic characteristics of the time series data, which
considerably improved the prediction results. Terefore,
combining chaos theory with EMD and an improved
PSO-LSTM model for optimization is an efective method
for short-time passenger fow forecasting of rail trafc.
However, the prediction of short-term trafc fows from the
perspective of historical fows alone is somewhat one-
dimensional and ignores the impact of data uncertainty.
Future research must focus on exploring deep neural ar-
chitectures to address data uncertainty and making addi-
tional improvements to model prediction capabilities. Tese
include rough autoencoder (RAE), interval probability
distribution learning(IPDL), and deep temporal dictionary
learning (DTDL).
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