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Crash risk analysis and prediction are considered the premise of highway trafc safety control, which directly afects the accuracy
and efectiveness of trafc safety decisions. A highway trafc crash risk prediction method considering temporal correlation
characteristics is proposed in this research. Firstly, the case-control sample analysis method is used to extract 6 time series sample
data composed of crash trafc fow data and corresponding non-crash trafc fow data for crash risk analysis and prediction.
Secondly, the multiparameter fusion clustering analysis method is used to indicate that the sample data of diferent time series
have diferent efects on the crash risk. Ten, the random forest model is used to screen several trafc fow variables that afect the
highway crash risk.Tereafter, the downstreammean speed (ASD1D2), the upstreammean occupancy (AOU1U2), and the speed
diference (DSU1D1) on the nearest detector were determined as the explanatory variables of the crash risk prediction model.
Finally, based on the three variables, the dynamic Bayesian network model for highway trafc crash risk prediction is proposed.
Te overall prediction accuracy of this model is 84.9%, the crash prediction accuracy is 60.8%, and the non-crash prediction
accuracy is 92.3%. Also, the prediction results show that the dynamic Bayesian model has better prediction efect than the static
Bayesian model for the same sample data.

1. Introduction

Research on road trafc safety has a long history. Early
studies about road trafc safety focused on the crash cause
mechanism and infuencing factors analysis. Yang et al.
explored and analyzed the infuence of diferent geo-
graphical conditions and environmental factors on highway
crash risk by using the improved association rule algorithm
[1–4]. Wang et al. [5–7] analyzed the trafc crash causative
factors under diferent trafc modes from the microscopic
perspective. However, it is not realistic to consider all the
factors (drivers, vehicles, roads, and environments) in the
trafc crash cause modeling. Te randomness of trafc
crashes makes trafc crash-causing analysis fall into the
bottleneck.

In recent years, the concept of active safety has gradually
entered the vision of researchers. More and more studies

[8–10] have found that trafc fow state has a strong cor-
relation with the road trafc crash occurrence. For example,
Lee et al. used the trafc fow data within 5 minutes before
the crash to study the infuence of trafc fow dynamic
characteristics on the collision pattern of the crash [11].
Golob and Recker divided the trafc fow pattern before the
crash into diferent trafc fow states and found that diferent
trafc fow states likely led to diferent types of trafc crashes
[12]. Golob et al.’s study frstly extracted six variables rep-
resenting the trafc fow characteristics before the crash,
then divided the trafc fow state by using these six variables
as the clustering index, and fnally analyzed the types of
trafc crashes that are prone to occur in various trafc fow
states [13, 14]. Golob et al.’s study indicates that in trafc
fow running state, there is a certain relationship with the
trafc crash [15]. However, these studies are all based on the
trafc fow data before the crashes. It is difcult to refect the
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randomness of trafc crashes. Also, it is not conducive to
accurately identify the prone crash trafc state from the
normal trafc fow state.

Te highway trafc system is a dynamic, undulating, and
non-linear complex system. From the perspective of spatial
dimension, the trafc fow variables closest to the crash site,
that is, the trafc fow variables upstream and downstream of
the crash site, are most correlated with crash risk. From the
time dimension, the trafc fow state variables in a period of
time before the crash are most likely to have a certain
correlation with the crash occurrence [16–19]. At present,
a large number of studies [20–22] have used trafc state
parameters such as fow/speed/density as explanatory var-
iables to analyze and predict the possibility of trafc crashes.
However, the trafc fow data collected by coil, microwave
radar, and foating vehicle have strong time-varying char-
acteristics. Terefore, the temporal and spatial characteris-
tics of trafc fow state variables have a certain degree of
infuence on crash risk modeling. Moreover, the essence of
highway crash risk prediction and discrimination is the
causal relationship between the running trafc fow state
variables of upstream and downstream and the possibility of
crash occurrence. Ten, we establish linear or non-linear
relationship model and determine whether there is a risk in
the future trafc safety running state. At the same time, the
trafc safety data have certain temporal correlation char-
acteristics. Te long scale cumulative trafc fow sequence
generally contains multiple subsequences with diferent
stage characteristics. Te time correlation between the se-
quences will have a certain infuence on the crash risk
prediction model. Conventional real-time crash risk pre-
diction models do not consider the temporal characteristics
of trafc fow sequences, which may afect the prediction
accuracy of the model.

In order to solve this problem, this paper proposes
a highway crash risk prediction model considering time
sequence correlation. Te dynamic Bayesian network model
is used to characterize the infuence of time correlation
characteristics on crash risk prediction model. Firstly, the
random forest model is used to screen the trafc fow state
variables that afect the highway crash risk. Ten, the dy-
namic Bayesian network model is used to explain the in-
fuence of the temporal correlation of trafc fow state
variables on the modeling of trafc safety crash risk pre-
diction. Te infuence of time sequence characteristics be-
tween variables on highway crash risk modeling is illustrated
by comparative analysis. Te results show that the proposed
method has better identifcation rate and lower error rate. It
further shows that the dynamic Bayesian network model can
better describe the dynamic time-varying characteristics of
trafc fows before crashes.

Te rest of the text is arranged as follows. Section 2
briefy introduces the study area, sample data sources, and
temporal characteristics of crash trafc fow variables.
Section 3 presents the research problems, solutions, and
related model methods involved. Section 4 introduces the
comparative analysis and discussion of the model operation
results. Te research results are summarized in Section 5.

2. Study Area and Data Survey

2.1. Data Collection and Processing. Te main research feld
of this paper is to reveal the infuence of trafc fow timing
characteristics on highway crash risk prediction. Te data
involved include trafc crash data and corresponding up-
stream and downstream trafc fow data within a certain
time range. Te sample data used in this study are the trafc
safety crash data and corresponding trafc fow state data on
the 495.493–539.045 miles section of interstate highway I5 in
California, USA. In order to control the infuence of weather,
road conditions, and other factors on crash risk prediction
modeling, the case-control sample structure was used to
match the sample data. Based on the location where each
kind of crash data occurred, the trafc fow state data of the
four detectors closest to the crash were extracted, and the
two detectors upstream were named U2 and U1, and the two
detectors downstream were named D2 and D1, as shown in
Figure 1(a). In order to accurately identify the infuence of
time series characteristics of crash trafc fow variables on
crash risk prediction model, the data of trafc fow variables
within 30 minutes before the crash were extracted. Tey are
divided into 6 time segments every 5minutes, including time
series 0 (i.e., 0–5 minutes before the crash), time series 1 (i.e.,
5–10 minutes before the crash), time series 2 (i.e., 10–15min
before the crash), time series 3 (i.e., 15–20min before the
crash), time series 4 (i.e., 20–25min before the crash), and
time series 5 (i.e., 25–30 minutes before the crash), as shown
in Figure 1(b). It should be noted that since time series 0 is
after the crash, it is only suitable for crash detection, but not
for crash risk estimation. In addition, trafc crash identi-
fcation and taking corresponding measures need response
time. Only the model established by using the trafc de-
tection information in time series 2, series 3, and series 4 has
practical value for active safety management.

2.2. Initial Variable Extraction. In order to facilitate the
establishment of crash risk prediction model by using dy-
namic Bayesian network model, the original trafc fow
variables on the four detectors and the mean and diference
values of upstream and downstream trafc variables are used
as the initial variables of the model. Relevant studies show
that the trafc safety state upstream and downstream of the
crash site can comprehensively refect the infuence of
various factors on crash risk. In order to determine the
mechanism of this infuence, the original data collected by
the detector are fused to further explore the impact of
upstream and downstream trafc state on crash risk.
Terefore, explanatory variables of the model can be divided
into three types. Te frst type refers to the original trafc
fow data extracted from four detections, the second type is
the diference between trafc variables of upstream and
downstream detectors, and the third type is the mean value
of trafc variables of upstream and downstream detectors.
Te specifc names of the three types of variables are shown
in Table 1. Te frst letter of the variable name represents the
type of the variable, O represents the original variable, D
represents the diference of the upstream and downstream
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detector variables, and A represents the mean value of the
upstream and downstream detector variables. Te second
letter represents the variable name, S for speed, V for fow,
and O for occupancy. Te part underlined in the variable
represents the name of detector, U1 represents the frst
upstream detector, U2 represents the second upstream
detector, D1 represents the frst downstream detector, and
D2 represents the second downstream detector. According
to this coding rule, DOU1D1 is the average density difer-
ence between the frst upstream detector and the frst
downstream detector, and other variables are named in the
same way.

In this study, according to the data sample matching
principle, 247 crash and 1096 non-crash trafc fow original
data (i.e., volume, speed, and occupancy) of U1, U2, D1, and
D2 30 minutes before the crash were extracted. Finally,
a total of 1370 sets of data samples were obtained for
highway crash risk modeling, in which the ratio of crash
trafc fow to non-crash trafc fow was 1 : 4. According to
the above method, it is divided into 6 time series, and each
segment contains a total of 30 trafc fow variables, which
are used as the basic sample data for crash risk prediction
modeling. It should be pointed out that in the extracted data
samples, the trafc fow variables in each time segment
contain not only the three original variables of cumulative
fow, average speed, and average occupancy rate on the four
upstream and downstream detectors but also the diference
and mean value of the trafc fow variables on the upstream
and downstream detectors. Tat is, each of the 6 time series
contains 30 variable values as explanatory variables of
the model.

2.3. Analysis of Trafc Flow Temporal Characteristics. In
order to more intuitively express the infuence of the
temporal correlation characteristics of trafc fow state
variables on the modeling of highway crash risk, the trafc
safety state is divided by the trafc fow state variable data in
the six time segments mentioned above. According to the
classifcation results, we can see the changing trend of trafc
fow state in diferent time segments at the same place. In this
paper, the average speed index of upstream and downstream

in two adjacent time segments (time series 1 and series 2) is
selected to draw scatter charts, so as to more intuitively
analyze the changes of trafc fow state in diferent time
segments. As shown in Figure 2, the horizontal axis is the
average speed of upstream trafc fow, and the vertical axis is
the average speed of downstream trafc fow.

It can be seen from the fgure that the overall trend of
trafc fow status did not change much in two consecutive
periods before the crash, mainly because non-crash trafc
fow accounted for a large proportion in the sample.
Trough further analysis, it is found that in the two 5-minute
time intervals, the proportion of non-crash trafc fow state
change is much less than the proportion of crash trafc fow
state change. In all 274 crash trafc fow samples, 79 crash
trafc fow samples (28.8%) exhibited state transition, while
in all 1096 non-crash trafc fow samples, 36 non-crash
trafc fow samples (3.2%) exhibited state change. From the
proportion of state transition data, it can be seen that in the
adjacent time series, the proportion of state transition in the
accident trafc fow is much higher than that in the non-
accident trafc fow. Tis indicates that under the same
conditions, compared with non-accident trafc fow, time
factor has a greater impact on accident trafc fow. In other
words, it shows that the change of trafc fow state in dif-
ferent time series before the crash has a strong infuence on
the highway crash. Terefore, trafc fow characteristics of
diferent time series have diferent impacts on road trafc
risks. It is necessary to consider the state transition process
of trafc data capture with multiple time intervals when
building the crash risk prediction model.

3. Methodology

At present, there is no fxed procedure and process for
constructing highway crash risk prediction model. In order
to establish a reasonable crash risk prediction model, it
usually has a strong relationship with the types of trafc
safety data, the physical signifcance of explanatory variables,
and the purpose of establishing the model. On the basis of
existing studies, the general steps to be followed in highway
crash risk prediction are proposed in this study, as shown in
Figure 3.
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Figure 1: Schematic diagram of sample data extraction based on temporal and spatial features. (a) Spatial feature. (b) Temporal feature.
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Model preparation stage: the preparatory stage of
highway crash risk modeling mainly includes defning
modeling objectives, understanding the advantages and
disadvantages of existing prediction models, and col-
lecting relevant basic data according to the re-
quirements of the models.
Model establishment stage: according to the purpose of
modeling, analyze variable requirements and basic
data, select appropriate models, assign corresponding
physical meanings to model variables, and make cor-
responding model assumptions for problems that
cannot be considered.
Model application stage: according to the established
model, with the help of necessary mathematical soft-
ware and computer technology to solve the model for
parameter estimation, model results are discussed and
analyzed, such as error analysis, sensitivity analysis, and
prediction accuracy analysis.

In addition, the following problems need to be con-
sidered and solved during the of highway crash risk pre-
diction modeling. Firstly, there are many trafc fow
variables that afect the highway crash risk. How to select the
variables with the highest correlation with the crash risk as
the explanatory variable of the crash risk prediction model?
Secondly, how long are the trafc fow sequence data before
the crash used to predict the highway trafc crash risk?
Tirdly, what methods ormodels are used to characterize the
crash and non-crash trafc fow data samples with temporal
correlation characteristics, so as to establish an efective
highway crash risk prediction model?

Aiming at the problems in the modeling process men-
tioned above, we put forward the modeling steps of highway
crash risk assessment model in this paper. First of all, data
matching was carried out by using matched case-control
sample structure to eliminate the infuence of other factors
on crash risk modeling to the maximum extent. Secondly,
the random forest model is used to explore the correlation
between the initial variables of the model and the trafc
crash risk, and the variable with the largest correlation
coefcient is extracted as the input variable of the crash risk

prediction model. Ten, the dynamic Bayesian network
model is used to quantify the infuence of trafc fow timing
sequence correlation characteristics on highway crash risk,
and the highway crash risk prediction model based on
dynamic Bayesian network is established. Finally, the ef-
fectiveness of the proposed model is verifed by comparison
with the prediction results of the static Bayesian network
model. Te steps of model analysis are as follows.

According to the above crash risk modeling process, the
random forest model and dynamic Bayesian network model
are used for variable selection and model structure con-
struction. In order to facilitate understanding, the random
forest model and dynamic Bayesian network model used in
this paper are introduced, respectively.

3.1. Random Forest. Random forest algorithm is an en-
semble learning algorithm proposed by Cutler et al. in 2001
[23]. A major advantage of the model is that it is easy to
measure the relative importance of each characteristic
variable to the prediction [24]. Random forest algorithm is
a supervised machine learning algorithm that builds mul-
tiple decision trees and merges them together to obtain more
accurate and stable classifcation or regression results [25].
In the random forest algorithm, there are two indexes used
to evaluate the importance of variables, which are, re-
spectively, the evaluation indexes of the importance of
variables based on Gini value and OOB (out-of-bag) error
rate. Te infuence of diferent trafc variables on highway
crash risk was explored by using OOB error rate evaluation
index in this research [26]. Relevant studies have shown that
random forest algorithm can solvemulticollinearity problem
without separate cross validation, and this method can ef-
fectively deal with data samples with multiple variables.
Terefore, random forest algorithm is used to extract the
trafc fow variables highly related to the highway crash risk
as the explanatory variables of the prediction model.

3.2. Dynamic Bayesian Networks. Based on probability
network, dynamic Bayesian network combines original
static network structure with time information to form
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Figure 2: Trafc fow state change in diferent time segments. (a) Time series 1 (5–10min before crash). (b) Time series 2 (10–15min before
crash).
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a new stochastic model with time sequence data. With the
introduction of time factor, the data formed at diferent
moments refect the change and development law of de-
scriptive variables. For Bayesian networks, the key problem
is to make probabilistic inference about the hidden states of
a group of random variables, and the random variables
representing the hidden states in dynamic Bayesian net-
works have the characteristics of time series. Tese observed
samples can be represented in terms of decomposition or
distribution. In addition, because dynamic Bayesian network
is a typical directed acyclic graph model, the conditional
probability distribution of each node in it can be estimated
independently. Terefore, the dynamic Bayesian network
model is easier to explain and learn [27].

As a more general spatial-temporal state analysis model,
the dynamic Bayesian network model actually extends the
static Bayesian network to stochastic process model with
time factor. Such an extension would make the distribution
of random variables very complicated and difcult to solve.
In order to facilitate modeling and solving, it is generally
necessary to make simplifed treatment and necessary
condition assumption [28]. First, the conditional probability
process is assumed to be uniformly stable for all T in fnite
time. Second, the dynamic probabilistic process is assumed
to be Markov. Tat is, future satisfaction P(X[t+ 1] |X[1], X

[2], . . ., X[t])�P(X[t+ 1] |X[t]). Finally, the conditional
probabilistic process of adjacent time is assumed to be
stationary. Tat is, P(X[t+ 1] |X[t]) has nothing to do with
the time t.

Based on the above assumptions, the dynamic Bayesian
network model is defned as a random process of joint
probability distribution on time trajectory. It consists of
a pair of states (B0, B⟶). B0 is defned as a priori network,
which is used to describe the joint probability P(X1) on the
initial state. B⟶ is defned as the transfer network, which is
used to describe the variable transfer probability P(Xt+1 |Xt).
Te network graphical expression is shown in Figure 4.

When there are only two time series, (B0, B⟶) is
a Bayesian network with two time series. It includes the
functions of both transition probability and observation
probability models. Te node probability of this Bayesian
network containing two time series can be calculated by

P Xt | Xt−1(  � 
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P X

(i)
t | Pa X

(i)
t  , (1)

where X
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t is the ith node (including hidden node and

observation node, N�Nh+No) in time series T. Pa(X
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a Bayesian network containing two time series, the frst time
series has no parameters, and only the nodes in the second
time series have node probability parameters. Similarly, for

dynamic Bayesian networks containing T time series, the
node probability distribution can be calculated by

P X
(1: N)
1: T  � 

N

i�1
PB0

X
(i)
1 | Pa X

(i)
1   × 

T

t�2


N

i�1
PB⟶

X
(i)
t | Pa Z

(i)
t  . (2)

In dynamic Bayesian networks, the hidden state of time
seriesT is represented by a series of random variables, denoted
as H

(i)
t , i ∈ 1, . . . , Nh . Meanwhile, the observation state can

also be represented by a series of random variables, denoted as
E

(j)
t , j ∈ 1, . . . , No . Each hidden and observed state variable

can be a discrete or continuous variable. In spatial-temporal
state analysis models such as hidden Markov model and state
space model, there is usually a transition probability
P(Ht | Ht−1), an observation probability P(Et | Ht), and an
original state distribution P(H1). However, this kind of
model cannot accurately describe the causal relationship
between variables, while the dynamic Bayesian network
model can consider both the causal relationship between
variables and the dynamic change of the causal relationship
caused by time factors, which are more suitable for analyzing
the highway crash risk considering the space-time charac-
teristics. Terefore, the structure diagram of dynamic
Bayesian network model can be given as shown in Figure 5.

As shown in Figure 5, nodes are used to represent hidden
state variables or observed state variables. Te hidden state
uses a discrete random variable to represent the probability
of picking every possible value. Te hidden state variable Ht
is a binary variable in the highway crash risk model. Te
crash and non-crash trafc fow variables are considered as
the observed variable Et. It should be pointed out that when
only a time segment is considered, it is static Bayesian
network structure. When multiple time segments are con-
sidered, it is a dynamic Bayesian network structure. Te
fgure takes two time series as an example. Its network
structure is time series dimension extension based on static
network structure. Te connecting lines between nodes are
also divided into two types in DBN. One is the connection
line within the same time segment, which represents the
instantaneous correlation between variables and is repre-
sented by a solid line. Te other is the connection line
between diferent time segments, which is used to describe
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Figure 4: Graphic representation of dynamic Bayesian network.
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the transition between the crash states of two time series, and
is represented by dashed lines.

Teoretically speaking, the more the input variables of
the model, the higher the model accuracy. However, the
complexity of the corresponding model is higher, and the
solving time and computing resources required for the
model will also increase. Relevant research results show that,
when the number of modeling variables exceeds a certain
number, the improvement range of model accuracy is very
small, which is far less than the negative efect caused by the
increase of model solving time. Trough several modeling
experiments, it is found that three variable indexes are
considered the optimal scheme when establishing dynamic
Bayesian network model. It can not only ensure the accuracy
of the model but also achieve the highest computational
efciency. Terefore, the three variables with the highest
correlation with road accident risk were selected as modeling
indicators in this study.

According to the diferent characteristics of specifc
research felds, the application of Bayesian network mod-
eling technology is mainly designed from the following three
aspects.

Te frst step is describing the variables of the research
problem and their value range. In this study, hidden vari-
ables (including crash state and non-crash state) and ob-
servation variables (including trafc fow, speed, and
occupancy on upstream and downstream detectors) are
mainly included.

Te second step is structural learning that represents the
dependencies between variables. For dynamic Bayesian
networks, structural learning should not only consider the
causal relationship between variables in the same time
segment but also consider the causal relationship between
variables in diferent time segments. Terefore, static
Bayesian network structure learning algorithms such as
mountain climbing algorithm, simulated annealing algo-
rithm, and genetic algorithm cannot be directly used in
dynamic Bayesian network structure learning [29].
According to the above model variable selection results, it
can be seen that there are not many trafc observation
variables afecting crash risk. Also, there is a clear causal
relationship between variables, so the network structure can
be given directly. In addition to observation variables and

state variables, the number of time segments is a relatively
important infuencing factor in the establishment of dy-
namic Bayesian network model.

Te third step is to learn the parameter estimation of
conditional probability distribution between observed var-
iables. Dynamic Bayesian network parameter learning is
similar to static Bayesian parameter learning algorithm. In
order to avoid the error of parameter estimation caused by
missing trafc fow observation variables, the expectation-
maximization algorithm is used to estimate the maximum
likelihood of parameters [30].

4. Case Study

4.1. Results

4.1.1. Variable Selection Results Based on Random Forest
Model. Tere is usually a few minutes delay between the
recorded time and the actual time of the crash occurrence
[31]. Terefore, trafc fow data 5–10 minutes before the
crash are used as the basic variables of the random forest
model. Tis paper uses R language computing platform to
realize the random forest model program.Te 30 trafc fow
variables were taken as the initial variables, and the trafc
fow data 5–10 minutes before the crash were taken as the
sample data. Te random forest algorithm was used to
calculate the importance of each variable. Te calculation
results are shown in Figure 6, where the horizontal axis is the
name of the variable, and the vertical axis represents the
average model accuracy reduced by the variable, namely, the
importance of the variable.

It can be seen from the fgure that the index with the
largest average variation of model classifcation accuracy is
the downstream average speed. Te second is the average
occupancy rate of upstream detector, and the average var-
iation of accuracy is between 0.03 and 0.035.Te efect of the
diference index of upstream and downstream detectors on
the model classifcation accuracy is obviously weaker than
the detector original index and mean index. At the same
time, it can be seen that for the same type of indicators, the
impact of speed and density indicators on model accuracy is
signifcantly higher than that of fow indicators. Te reason
for this result may be that the data used for modeling are

H

(a) (b)

H(1) H(2)

T=2T=1
Hidden

state
variable 

Observation
variable E1

(1) E2
(1) E3

(1) E1
(2) E2

(2) E3
(2)E2 E3E1

Figure 5: Structure diagram of dynamic Bayesian network model. (a) SBN. (b) DBN.
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5min accumulated fow data, while the speed and density
indicators are 5min average data. Tis makes the data
signifcantly diferent at the dimensional level, which may
cause variables to have diferent efects on the model.
According to the ranking results of the importance of
variables, the variables with high importance should be
selected as the input variables of the crash risk model.
Meanwhile, in order to reduce the complexity of the model,
the number of input variables should not be too much.
Terefore, the three variables with the highest importance
are selected as the input variables of the prediction model,
namely, the mean speed variable ASD1D2 of downstream
detector, the mean occupancy variable AOU1U2 of up-
stream detector, and the speed diference variable DSU1D1
of upstream and downstream nearest detector.

4.1.2. Highway Crash Risk Prediction Results Based on Dy-
namic Bayesian Network. In order to ensure the general-
ization ability of the model, the sample data were randomly
divided into training dataset and validation dataset. Te
proportion of crash and non-crash sample data in the two
datasets remains unchanged, namely, the sample ratio of
crash trafc fow to non-crash trafc fow is 1 : 4. Te
proportion of crash sample data in the dataset is much
smaller than that of non-crash sample data. For the clas-
sifcation prediction model based on such unbalanced data,
only the overall classifcation accuracy cannot completely
explain the quality of the model. It is necessary to construct
a confusion matrix based on the prediction results to il-
lustrate the prediction accuracy of such classifcation models
based on unbalanced samples, and the confusion matrix is
shown in Table 2.

Te overall prediction accuracy, crash prediction accu-
racy and non-crash prediction accuracy, and the F-value
measure of crash prediction can be calculated as the

evaluation index of the model prediction validity. Its cal-
culation formula is as follows:

Overall prediction accuracy� (Tcrash +Tnon-crash)/
(Tcrash + Fcrash + Fnon-crash +Tnon-crash) ∗ 100%.
Non-crash prediction accuracy�Tnon-crash/(Fnon-
crash +Tnon-crash) ∗ 100%.
Crash prediction accuracy�Tcrash/(Tcrash + Fcrash) ∗
100%.
G-value�

������������������������������������������������
crash prediction accuracy ∗ non − crash prediction accuracy

 .
Crash accuracy rate � Tcrash/(Tcrash + Fcrash) ∗ 100%.
Crash recall rate � Tcrash/(Tcrash + Fnon-crash) ∗ 100%.
F-value � 2 ∗ crash accuracy rate ∗ crash recall rate/
(crash accuracy rate + crash recall rate).

From the 1370 groups of sample data collected above
(274 groups of crash sample data and 1096 groups of non-
crash sample data), 870 groups of data (174 groups of crash
sample data and 696 groups of non-crash sample data) were
randomly selected as training sample data. Also, the
remaining 500 groups of sample data (100 groups of crash
samples and 400 groups of non-crash samples) were vali-
dation samples. Te structure learning and parameter
learning process of dynamic Bayesian network is realized by
using R language mathematical statistics analysis platform.
Te validation dataset is input into the trained model to
analyze the validity of the predictive evaluation model. Te
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Figure 6: Ranking of the importance of variables.

Table 2: Te confusion matrix of prediction result.

Actual results
Predicted results

Crash Non-crash
Crash True crash (Tcrash) False non-crash (Fnon-crash)
Non-crash False crash (Fcrash) True non-crash (Tnon-crash)
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confusion matrix of single prediction results is shown in
Table 3.

Overall prediction accuracy� (72 + 361)/(72 + 39 + 361
+ 28) ∗ 100%� 86.6%.
Non-crash prediction accuracy� 361/(28 + 361) ∗
100%� 92.8%.
Crash prediction accuracy� 72/(72 + 39) ∗ 100%�

64.9%.
G-value�

�����������
0.928∗ 0.649

√
� 0.776.

Crash accuracy rate� 72/(72 + 39) ∗ 100%� 64.9%.
Crash recall rate� 72/(72 + 28) ∗ 100%� 72.0%.
F-value� 2 ∗ 64.9% ∗ 72%/(64.9%+ 72%)� 0.682.

In order to reduce the error caused by the randomness of
sample data extraction, 10 training datasets and validation
datasets were randomly divided from the original dataset.
Te mean value of multiple model estimates is taken as the
fnal estimate value of the model, and the mean value of
multiple validation results is taken as the predicted value of
the model to illustrate the validity of the model. Te pre-
diction results are shown in Table 4. From the perspective of
prediction accuracy, the overall prediction accuracy of dy-
namic Bayesian network model is above 80%, the prediction
accuracy of crash is between 55% and 65%, and the pre-
diction accuracy of non-crash is about 90%. Tis is mainly
because the proportion of crash trafc fow to non-crash
trafc fow in the sample data is 1 : 4, and the proportion of
non-crash trafc fow sample is signifcantly higher than that
of crash trafc fow sample. Terefore, there will be a phe-
nomenon that the accuracy of non-crash prediction is sig-
nifcantly higher than that of crash prediction. Nevertheless,
from the perspective of prediction accuracy index, the
predictive ability of dynamic Bayesian network model for
trafc crash risk has reached a high level.

4.2. Discussion

4.2.1. Comparative Analysis of Prediction Results. In order to
further illustrate the efectiveness of Bayesian network
model considering temporal correlation characteristics, the
prediction results of dynamic Bayesian network model and
static Bayesian networkmodel are compared and analyzed in
this study. Te data used for the static Bayesian network
model include time segment 1, that is, the trafc fow
variable sample in 5–10 minutes before the crash. Te dy-
namic Bayesian network uses two time series data, time
segment 1 and time segment 2, for model training and
verifcation. Te structure learning and parameter learning
of static and dynamic Bayesian network models are realized
by the R language package BNLearn. Te fnal prediction
results of the two models are shown in Figure 7.

As can be seen from Figure 7, the overall prediction
accuracy of the dynamic Bayesian model is 1.8% higher than
that of the static Bayesian model. Te prediction accuracy of
the dynamic Bayesian model is 2.1% higher than that of the
static Bayesian model. Te non-crash prediction accuracy of
the dynamic Bayesian model is 1.9% higher than that of the

static Bayesian model. Te F-value of the dynamic Bayesian
model is 0.023 higher than that of the static Bayesian model.
Te G-value of the dynamic Bayesian model is 0.017 higher
than that of the static Bayesian model. Terefore, the pre-
diction results show that the dynamic Bayesian model has
better prediction efect than the static Bayesian model for the
same sample data.

4.2.2. Infuence Analysis of Time Segment Number. As
mentioned above, when establishing the dynamic Bayesian
network model, the selection of time segment is an im-
portant infuencing factor in the process of establishing the
dynamic Bayesian network model. Te 5min cumulative
trafc fow state index is generally accepted as an explanatory
variable of highway crash risk. Terefore, the unit time
length of each time segment is set to 5min. In addition,
another important variable afecting model performance is
the number of time fragments, that is, each dynamic network
model is composed of several variables of time fragments. In
this paper, trafc fow index data of upstream and down-
stream detectors were extracted in 30min before the crash (a
total of six time segments). Due to the error of 3–5 minutes
between the recording time of the crash sample and the
actual time of the crash, time segment 0, that is, the crash
sample data accumulated 0–5 minutes before the crash
occurred, has a certain error, so it is omitted. If fve time
series are considered into the model, the dynamic Bayesian
network structure will be composed of fve static Bayesian
networks. Also, there is correlation between adjacent frag-
ment variables, so the computation and complexity of model
parameter estimation are very high. If only two or three
adjacent time segments are considered, the prediction results
cannot fully refect the infuence of temporal correlation
between trafc fow observation variables on crash risk.

In order to ensure the operation efciency and pre-
diction accuracy of the model, this paper establishes 10
dynamic Bayesian network models with 2, 3, 4, and 5 time
series, respectively. Among them, there are four combina-
tions of models including two time series, which are, re-
spectively, training models with sample data of series 1 and
series 2, series 2 and series 3, series 3 and series 4, or series 4
and series 5. Te model containing three time series has
three combinations, which are modeled with sample data of
series 1, series 2, and series 3, series 2, series 3, and series 4, or
series 3, series 4, and series 5, respectively. Te model
containing four time series has two combinations, which are
modeled with sample data in series 1, series 2, series 3, and
series 4 or series 2, series 3, series 4, and series 5, respectively.
Tere is only one combination method for the model
containing 5 time series, that is, modeling with sample data
in series 1, series 2, series 3, series 4, and series 5. Terefore,

Table 3: Te confusion matrix of single prediction result.

Actual results
Predicted results

Crash Non-crash
Crash 72 (Tcrash) 28 (Fnon-crash)
Non-crash 39 (Fcrash) 361 (Tnon-crash)
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the infuence of the number of time series on the crash risk
model can be illustrated by comparing the crash prediction
accuracy of 10 dynamic Bayesian network models. Te
prediction results are shown in Table 5.

As can be seen in Table 5, in terms of prediction ac-
curacy, the prediction results obtained by modeling with
diferent number of time periods are diferent. Te model
with the highest accuracy is the dynamic Bayesian network
model with the sample data in the time series 1, series 2,
and series 3. Meanwhile, it is noted that the prediction
accuracy of the model does not increase with the increase
of the number of time series. Tis indicates that in the

modeling process, it is not the more the time segments
considered, the better the prediction accuracy of the
model is. In addition, it is found that the prediction ac-
curacy of the model containing time series 1 is higher than
that of the model without time series 1. Also, the pre-
diction accuracy of the model containing both series 1 and
series 2 is higher than that of the model without these two
time series. Tis indicates that the variables closer to the
crash occurrence time have a greater impact on the crash
risk prediction model, and taking them as model training
and validation data can efectively improve the prediction
accuracy of the model.

Table 4: Te confusion matrix of multiple prediction results.

Te serial number
Predicted results

Overall prediction accuracy
(%)

Accuracy of crash
prediction (%)

Accuracy of non-crash
prediction (%) G-value F-value

1 86.6 64.9 92.8 0.776 0.682
2 82.2 54.8 90.4 0.704 0.586
3 83.4 56.4 93.2 0.725 0.644
4 84.2 59.1 91.7 0.736 0.633
5 86.8 68.5 90.0 0.789 0.656
6 86.2 62.6 93.9 0.767 0.691
7 84.8 60.1 92.0 0.746 0.645
8 85.6 63.7 91.2 0.762 0.644
9 82.6 55.5 91.1 0.711 0.603
10 86.4 61.8 95.6 0.768 0.712
Mean 84.9 60.8 92.3 0.748 0.649
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Figure 7: Prediction result comparison between dynamic Bayesian network model and static Bayesian network model.
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5. Conclusion

Crash risk analysis and prediction are considered the
premise of highway trafc safety control, which directly
afects the accuracy and efectiveness of trafc safety de-
cisions. Tis paper analyzes the infuence of temporal cor-
relation characteristics of trafc fow state variables on
highway crash risk. A highway crash risk prediction method
considering time series correlation feature is proposed.
Firstly, the “case-control” analysis method is used to extract
crash trafc fow data and corresponding non-crash trafc
fow data as sample data for crash risk prediction modeling.
Meanwhile, the sample data of half an hour were divided
into 6 time segments every 5 minutes as sample data for
model training and verifcation. Ten, the random forest
model is used to select the trafc fow variables highly
correlated with the risk of highway crashes from 30 initial
variables. Te downstream mean speed variable ASD1D2,
the upstream mean occupancy variable AOU1U2, and the
speed diference variable DSU1D1 on the upstream and
downstream nearest detector are determined as the ex-
planatory variables of the crash risk prediction model. Fi-
nally, based on the dynamic Bayesian network modeling
method, the highway trafc crash risk prediction model
considering the temporal correlation feature is proposed.
Te validity of the model is illustrated by comparing the
prediction accuracy of the model with that of the static
Bayesian network model in the test dataset. Te results of
case study show that the prediction accuracy of the crash risk
prediction model considering the temporal correlation
features is higher than that of the static Bayesian network
method. Also, the prediction model using the frst three time
series has the best efect.

Although the crash risk prediction model proposed in
this study improves the accuracy of crash risk prediction to
a certain extent, there is still a lot of room for improvement.
Firstly, the infuence of time series factors on crash risk
prediction model is mainly considered in this model. Besides
time factor, space factor is also one of the important factors
afecting the accuracy of the model. How to consider the
infuence of both time and space factors in the process of
accident risk modeling is the direction of future research. In
addition, the essence of the prediction model proposed in
this research is a dichotomous prediction of crash and non-

crash trafc fow, so only two kinds of prediction results with
or without risk can be obtained. In order to meet the re-
quirements of highway safety risk management practice,
more detailed crash risk classifcation level is needed. In the
future, the crash severity index can be considered as the
dependent variable of the prediction model. Te dichotomy
problem can be extended to multiclassifcation problem to
achieve the classifcation and prediction of highway crash
risk level.

Data Availability

All datasets were collected from the Performance Mea-
surement System which can be freely downloaded from
https://pems.dot.ca.gov/.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis research was supported by the National Key R&D
Program of China (2017YFC0803900).

References

[1] Y. Yang, Z. Yuan, J. Chen, and M. Guo, “Assessment of
osculating value method based on entropy weight to trans-
portation energy conservation and emission reduction,”
Environmental Engineering & Management Journal.vol. 16,
no. 10, pp. 2413–2424, 2017.

[2] Y. Yang, Z. Yuan, and R. Meng, “Exploring trafc crash
occurrence mechanism towards cross-area freeways via an
improved data mining approach,” Journal of Transportation
Engineering Part A Systems, vol. 148, no. 9, Article ID
04022052, 2022.

[3] Y. Yang, K. He, Y. P. Wang, Z. Z. Yuan, Y. H. Yin, and
M. Z. Guo, “Identifcation of dynamic trafc crash risk for
cross-area freeways based on statistical and machine learning
methods,” Physica A: Statistical Mechanics and Its Applica-
tions, vol. 595, Article ID 127083, 2022.

[4] Y. Yang, K. Wang, Z. Yuan, and D. Liu, “Predicting freeway
trafc crash severity using XGBoost-bayesian network model
with consideration of features interaction,” Journal of Ad-
vanced Transportation, Article ID 4257865, 2022.

Table 5: Prediction results of dynamic Bayesian network model considering diferent time series.

Te model number
Accuracy of prediction results

Contains time seriesOverall prediction accuracy
(%)

Accuracy of crash
prediction (%)

Accuracy of non-crash
prediction (%) G-value F-value

1 84.9 60.8 92.3 0.748 0.649 12
2 83.8 58.8 93.4 0.741 0.640 23
3 83.5 57.7 91.8 0.728 0.634 34
4 81.7 50.7 88.4 0.670 0.589 45
5 85.9 61.1 92.9 0.753 0.653 123
6 83.5 58.7 91.4 0.733 0.640 234
7 82.5 54.7 90.4 0.703 0.615 345
8 84.8 59.7 92.8 0.744 0.645 1234
9 83.8 56.7 92.1 0.723 0.627 2345
10 85.1 59.8 93.2 0.746 0.646 12345

12 Journal of Advanced Transportation

http://pems.dot.ca.gov/


[5] W. Wang, Z. Yuan, Y. Yang, X. Yang, and Y. Liu, “Factors
infuencing trafc accident frequencies on urban roads:
a spatial panel time-fxed efects error model,” PLoS One,
vol. 14, no. 4, Article ID e0214539, 2019.

[6] S. Yu, Y. Jia, and D. Sun, “Identify factors that infuence the
patterns of road-crashes by using association rules: a study
case from Wisconsin, United States,” Sustainability, vol. 11,
2019.

[7] W. Wang, Z. Yuan, Y. Liu, X. Yang, and Y. Yang, “A random
parameter logit model of immediate red-light running be-
havior of pedestrians and cyclists at major-major in-
tersections,” Journal of Advanced Transportation, vol. 2019,
Article ID 2345903, 13 pages, 2019.

[8] Y. Yang, N. Tian, Y. Wang, and Z. Yuan, “A parallel FP-
growth mining algorithm with load balancing constraints for
trafc crash data,” International Journal of Computers,
Communications & Control, vol. 17, no. 4, p. 4806, 2022.

[9] D. Sun, Y. Ai, Y. Sun, and L. Zhao, “A highway crash risk
assessment method based on trafc safety state division,”
PLoS One, vol. 15, no. 1, Article ID e0227609, 2020.

[10] D. Sun, Y. Ai, and L. Wang, “Freeway trafc safety state
classifcation method based on multi-parameter fusion
clustering,” Modern Physics Letters B, vol. 36, no. 20, Article
ID 2250088, 2022.

[11] A. H. Lee, K. Wang, J. A. Scott, K. K. Yau, and
G. J. McLachlan, “Multi-level zero-infated Poisson regression
modelling of correlated count data with excess zeros,” Sta-
tistical Methods in Medical Research, vol. 15, no. 1, pp. 47–61,
2006.

[12] T. F. Golob andW.W. Recker, “An analysis of truck-involved
freeway accidents using log-linear modeling,” Journal of
Safety Research, vol. 18, no. 3, pp. 121–136, 1987.

[13] T. F. Golob and W. W. Recker, “Relationships among urban
freeway accidents, trafc fow, weather, and lighting condi-
tions,” Journal of Transportation Engineering, vol. 129, no. 4,
pp. 342–353, 2003.

[14] T. F. Golob,W.W. Recker, and V.M. Alvarez, “Freeway safety
as a function of trafc fow,”Accident Analysis and Prevention,
vol. 36, no. 6, pp. 933–946, 2004.

[15] T. F. Golob and W. W. Recker, “A method for relating type of
crash to trafc fow characteristics on urban freeways,”
Transportation Research, Part A (Policy and Practice), vol. 38,
no. 1, 80 pages, 2004.

[16] L. Li, X. Sheng, B. Du, Y. Wang, and B. Ran, “A deep fusion
model based on restricted Boltzmann machines for trafc
accident duration prediction,” Engineering Applications of
Artifcial Intelligence, vol. 93, Article ID 103686, 2020.

[17] Y. Lin, L. Li, H. Jing, B. Ran, and D. Sun, “Automated trafc
incident detection with a smaller dataset based on generative
adversarial networks,” Accident Analysis & Prevention,
vol. 144, Article ID 105628, 2020.

[18] L. Li, C. G. Prato, and Y. Wang, “Ranking contributors to
trafc crashes on mountainous freeways from an incomplete
dataset: a sequential approach of multivariate imputation by
chained equations and random forest classifer,” Accident
Analysis & Prevention, vol. 146, Article ID 105744, 2020.

[19] L. Li, Y. Lin, B. Du, F. Yang, and B Ran, “Real-time trafc
incident detection based on a hybrid deep learning model,”
Transportmetrica: Transport Science, vol. 18, no. 1, pp. 78–98,
2022.

[20] D. Lord and F. Mannering, “Te statistical analysis of crash-
frequency data: a review and assessment of methodological
alternatives,” Transportation Research Part A: Policy and
Practice, vol. 44, no. 5, pp. 291–305, 2010.

[21] S. Roshandel, Z. Zheng, and S. Washington, “Impact of real-
time trafc characteristics on freeway crash occurrence:
systematic review and meta-analysis,” Accident Analysis &
Prevention, vol. 79, pp. 198–211, 2015.

[22] J. Sun and J. Sun, “Proactive assessment of real-time trafc
fow accident risk on urban expressway,” Journal of Tongji
University, vol. 42, no. 6, pp. 873–879, 2014.

[23] A. Cutler, D. R. Cutler, and J. R. Stevens, “Random forests,”
Machine Learning, vol. 45, no. 1, pp. 157–176, 2004.

[24] R. Harb, X. Yan, E. Radwan, and X. Su, “Exploring precrash
maneuvers using classifcation trees and random forests,”
Accident Analysis and Prevention, vol. 41, no. 1, pp. 98–107,
2009.

[25] C. Strobl, A. L. Boulesteix, T. Kneib, T. Augustin, and
A. Zeileis, “Conditional variable importance for random
forests,” BMC Bioinformatics, vol. 9, no. 1, p. 307, 2008.

[26] K. J. Archer and R. V. Kimes, “Empirical characterization of
random forest variable importance measures,” Computational
Statistics and Data Analysis, vol. 52, no. 4, pp. 2249–2260,
2008.

[27] C. G. Enright, M. G. Madden, and N. Madden, “Bayesian
networks for mathematical models: techniques for automatic
construction and efcient inference,” International Journal of
Approximate Reasoning, vol. 54, no. 2, pp. 323–342, 2013.

[28] Q. Xiao and S. Gao, Application of Bayesian Network in In-
telligent Information Processing, National Defense Industry
Press, Beijing, China, 2012.

[29] I. N. Junejo, “Using dynamic Bayesian network for scene
modeling and anomaly detection,” Signal, Image and Video
Processing, vol. 4, no. 1, pp. 1–10, 2010.

[30] K. P. Murphy, “Te Bayes net toolbox for matlab,” Compu-
tational Statistics, vol. 33, no. 2, pp. 1024–1034, 2001.

[31] H. Hassan and M. A. Abdelaty, “Exploring visibility-related
crashes on freeways based on real-time trafc fow data,”
Transportation Research Board Meeting, vol. 11, 2011.

Journal of Advanced Transportation 13




