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Tis study proposes a two-level optimization model system for vehicle control and signal timing at isolated signal intersections
under themixed trafc fow environment composed of intelligent connected autonomous vehicles (CAVs) and connected human-
driven vehicles (CHVs), to minimize the energy consumption and vehicle delay at intersections. Te proposed two-layer op-
timization model is composed of a two-layer vehicle trajectory control model and a fuzzy control signal timing optimization
model. Te two-layer vehicle trajectory control model includes a signal-oriented vehicle trajectory control model and a car-
following oriented vehicle trajectory control model. Te former calculates expected acceleration and speed commands at each
time step according to the coming signal information, to help vehicle pass the closest signal intersection without stopping during
the green light interval; the latter uses the variable headway (VTH) strategy to follow the preceding vehicle by maintaining a safe
distance. A microscopic simulator based on SUMO is developed to test the performance of the proposed optimization algorithm.
In the simulation experiment, with the driving characteristics of CHV drivers considered, the results show that our model
performs well under a CAV penetration rate of 30%–60% and under small or moderate levels of trafc fow. Te average waiting
time of vehicles is reduced by about 25% compared with the uncontrolled scheme. Under the condition of penetration rate of 60%,
the average energy consumption of vehicles in the proposed model is 17.56% lower than that of the uncontrolled scheme. In
addition, the proposedmodel reduces by 21.94% compared with the scheme of only controlling vehicles. When the trafc fow is at
a low or medium level, the average energy consumption and waiting time of vehicles are reduced by nearly 35% with the
proposed model.

1. Introduction

In recent years, intelligent transportation and transportation
big data have developed rapidly. For a long time to come, the
trafc fow on the road will include both traditional manual
driving vehicles and connected and autonomous vehicles
(CAVs). It will be a big trend to transition from a homogeneous
fow composed of one vehicle type to a mixed trafc fow
composed of at least two types. At the meanwhile, with the
rapid growth of car ownership, the problem of trafc con-
gestion has become increasingly prominent. Road intersections
are often the bottleneck of urban road network trafc fow. In
addition, the control of trafc lights at intersections makes
vehicles at intersections accelerate and decelerate frequently,
resulting in low trafc efciency and low fuel economy. Trafc

signal coordination is an important way to enhance trafc
safety, to improve trafc efciency, and to reduce trafc
emissions. Trafc signal coordination is through vehicle-to-
vehicle (V2V) communication and vehicle-to-infrastructure
(V2I) communication to obtain information about the motion
status of surrounding vehicles, as well as signal phase and
timing (spit) information from signals hundreds of meters
away. Trough the obtained information and the trajectory
optimization control combined with the signal information,
the vehicle fnally realizes the ecological driving of the signal
intersection.

Many existing studies have conducted relevant research
on the guidance, control, and signal timing of intelligent
connected vehicles in the networked intersection
environment.
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Jiang et al. [1] evaluated the performance of ecological
approach control systems at signalized intersections in
partially connected and automated vehicle (CAV) envi-
ronments. Tey tested two diferent networks, including an
isolated signalized intersection and a corridor with two
signalized intersections. Te results show that the controller
generally improves fuel efciency without afecting ma-
neuverability, and its environmental performance is afected
by the lowest CAV speed, green ratio, congestion level, and
sign penetration rate. Ghiasi et al. [2] proposed a CAV-based
trajectory smoothing model to coordinate trafc, which
could improve fuel efciency and reduce environmental
impact. Tis real-time control algorithm for trafc co-
ordination is applicable to the mixed trafc environment of
manual driving vehicles (HDVs), connecting vehicles (CVs),
and CAVs. Yao et al. [3] proposed a two-level joint opti-
mization framework for trafc signals and vehicle trajec-
tories to reduce gasoline consumption and transport
emissions. Tere are good results under diferent conditions
of CAV permeability. Gutesa et al. [4] proposed an in-
tersection management strategy for automated vehicle
corridors based on the vehicle trajectory-driven optimiza-
tion method. Te automated driving trajectory driven op-
timization model was based on the vehicle position, trafc
conditions, and signal status on the corridor to calculate the
optimal trajectory for CAV, and reduced vehicle delays
along the signal corridor with fxed time signal control. Guo
and Ma [5] proposed a signaling corridor management
framework based on CAV technology for vehicle layout and
trajectory control (SCoPTO). In this framework, when ve-
hicles on the main roads arrived at the downstream in-
tersections in the form of a platoon, the framework could
request to extend the green time to reduce unnecessary
parking and improve the utilization rate of green time as
much as possible and improve the trafc stability. Guo and
Ma [6] proposed a real-time learning and control framework
for signalized intersection management, including signal
optimization and CAV trajectory control. By using efcient
trajectory planning algorithms, you can control the vehicle
trajectory of CAV, maximize the use of green time, and
reduce the startup loss time. Lu et al. [7] proposed an
ecological intelligent driver model (EcoSDM) to improve the
fuel efciency and trafc fow of vehicles by adjusting the
speed of leading vehicles in feets. Yi et al. [8] had established
a hybrid equilibrium model for CAV platoon and human-
driven vehicle (HDV), taking into account both the positive
and negative aspects of CAV platoon. In addition, the study
proposes an optimal path layout method that integrates the
travel costs of CAV and HDV into its objective function to
reduce negative defects. Te numerical results indicate that
introducing CAV platoons may increase initial travel costs,
and this method can efectively reduce platform disturbance
interference, thereby promoting the widespread application
of CAV platoons. Hea and Wu [9] proposed an optimal
control model that utilizes promising connected vehicle
technology and proposes two eco-driving consulting strat-
egies. Te model better solves the problem of reducing the
energy consumption of all vehicles when traditional gasoline
vehicles (GVs) and electric vehicles (EVs) form a platoon

that is considered energy friendly transportation mode. Te
results of numerical experiments show that it is important
for eco-driving consulting system to consider the energy
consumption characteristics of the vehicle as a whole. Gong
and Du [10] have developed a coordinated control algorithm
of CAV and HDV to ensure the smoothness and stability of
system level trafc fow, as well as the mobility and safety of
individual vehicles. Long et al. [11] proposed a compre-
hensive optimization method based on trafc signals and
vehicle motion tracks. Wang et al. [12] described a co-
operative ecology-driven (CED) system for signal corridors,
focusing on how the penetration rate of CAVs afects the
energy efciency of transport networks. In addition, they
proposed a role switching protocol that lets CAVs switch
between the leader and subsequent vehicles in the string.
Aiming at traditional vehicles and diferent cabs in the
network, a longitudinal control model is developed
according to their roles and distance from the intersection.
PTV VISSIM simulation results show that with the increase
of CAV penetration, the energy consumption and pollutant
emissions of the system decrease gradually. When all ve-
hicles in the proposed system are CAVs, energy con-
sumption can be reduced by more than 7 percent and
pollutant emissions by more than 59 percent. Pourmehrab
et al. [13] compared two state-of-the-art intersection
management algorithms (IMAs) for CAVs and conventional
vehicles (CNVs), as well as an actuated signal control system
(ASCS). Two IMAs are adopted, Intelligent Intersection
Control Algorithm (IICA) and Hybrid Autonomous In-
tersection Management (H-AIM), to improve the efciency
of intersections through vehicle automation and connec-
tivity. Berbar et al. [14] proposed a dual agent (DA) in-
telligent trafc signal module control based on the
reinforcement learning (RL) method. Te speed agent (VA)
aimed to minimize fuel consumption by controlling the
speed of the platoon and single CAVs crossing the signal
intersection and efectively reduce trafc delay through
signal sequencing and phases. Zhou et al. [15] proposed
a vehicle tracking model based on reinforcement learning
to obtain appropriate driving behavior and to improve the
driving efciency, fuel consumption, and safety of sig-
nalized intersections in real time. Yao et al. [16] evaluated
the impact of connected and autonomous vehicles on fuel
consumption and emissions of mixed trafc fow on
highways. Tree following models were used to capture the
following behavior in mixed trafc fow. Te efects of
connected and autonomous vehicles on fuel consumption
and trafc emissions of mixed trafc fow were studied
through numerical simulation. Finally, some factors af-
fecting fuel consumption and trafc emissions of mixed
trafc fow were discussed.Te simulation results show that
networked automated vehicles can signifcantly reduce fuel
consumption and transportation emissions. Nie and Far-
zaneh [17] proposed a real-time dynamic predictive cruise
control (PCC) system. In the comprehensive trafc situ-
ation of the comprehensive driving scene, the constraints of
the previous vehicle and the infuence of trafc lights are
considered to improve the driving performance of the
vehicle.



It can be seen from the above studies that most of the
previous studies focused on controlling the vehicle’s tra-
jectory to achieve the minimum fuel consumption, or
controlling the vehicle’s trajectory to achieve the highest
trafc efciency at the signalized intersection, or compre-
hensively considering the vehicle’s energy consumption and
trafc efciency at the intersection. However, most of the
studies that comprehensively consider the above two ob-
jectives are achieved by controlling the signal phase and
timing of the signalized intersection or jointly controlling
the vehicle trajectory and the timing and phase of the sig-
nalized intersection, but the method is relatively simple.
Most of them did not consider the impact of diferent types
of drivers and the diferences of CAV car-following behavior
in diferent situations. Terefore, the goal of this paper is to
develop an intersection control optimizer based on the
secondary development of SUMO using Python according
to diferent driving situations and the uncertainty brought
by manual driving vehicles:

(1) A mixed trafc fow driving situation (which can be
realized in the real world in the near future) is
constructed to comprehensively consider the mini-
mization of vehicle delay and vehicle energy con-
sumption, so as to realize the comprehensive
optimization applicable to isolated signalized
intersections.

(2) A two-level model predictive control system for
vehicles is proposed to distinguish driving scenarios
through switching logic algorithm to realize recog-
nition, classifcation, and control of vehicle driving
status.Te vehicle two-level model predictive control
system mainly includes two parts: the vehicle tra-
jectory control model based on signal and the vehicle
trajectory control model oriented to car-following.

(3) Te randomness of Connected Human-Driven Ve-
hicle (CHV) is considered in the SUMO simulation
process.

(4) Te fuzzy control algorithm is proposed to optimize
the signal phase duration. Under the driving situa-
tion of mixed trafc fow (which can be realized in
the real world in the near future), the minimization
of vehicle delay and vehicle energy consumption
shall be comprehensively considered to achieve the
comprehensive optimization applicable to isolated
signal intersections.

2. Methods

2.1. Environment Construction of Mixed Connected Auto-
mated Vehicle Signal-Controlled Intersection. Tis paper
designs a bidirectional four-lane cross-intersection scene, as
shown in Figure 1. Te two types of vehicles in the scenario
are CAV and CHV, both of which have network commu-
nication capabilities. CAV is a fully autonomous vehicle with
intelligent sensing, decision-making, and control capabil-
ities. CAV also can communicate with other vehicles or
trafc lights. CHV can communicate with nearby vehicle
V2V. Trafc lights at intersections also have network
communication capabilities, which can realize V2I com-
munication with vehicles in the scene.

In addition, in order to focus on the problem, this paper
makes the following assumptions:

(1) Before entering the intersection area, vehicles do not
change lanes, reverse, turn around, and other be-
haviors. Only the straight behaviors of vehicles en-
tering the intersection area are considered and follow
the principle of frst-come frst reservation.

(2) Te efective communication range of V2I is within
400m of connected trafc lights (central point of
intersection). When vehicles enter the efective
communication range of signal lights, CAV shall
obey the intersection control and CHV will obey the
intersection control with a certain probability. Te
network communication is set as real-time and re-
liable communication, without considering the po-
tential network packet loss, delay, and other
unreliable network conditions.

(3) Vehicles entering the intersection control range can
obtain the position, speed, and other state in-
formation of surrounding vehicles by V2V and the
phase information of connected trafc lights by V2I.

2.2. Problem Formulation and System Modeling

2.2.1. Construction of Vehicle Double-Layer Model Predictive
Control System. Tis paper aims to develop a real-time
predictive control system for vehicles to minimize the en-
ergy consumption of vehicles in urban trafc systems and
improve the efciency of crossing trafc, taking into account
the constraints of preceding vehicles and the infuence of
trafc lights. Te method is shown in Figure 1. drel indicates

CHV

CAV

drel

(a)

Signal light
control

Vehicle trajectory
control

(b)

Figure 1: Double-layer model predictive control system.



the distance between the controlled vehicle and the vehicle in
front; dTL indicates the relative distance to an upcoming
signalized intersection.

For vehicles on the road, we divide them into afected
CAVs and unafected CAVs according to whether they are
afected by the preceding vehicle. Te signal-based vehicle
trajectory control model described in 3.1.1 is implemented
for the CAV that is not afected by the preceding vehicle, and
the trajectory control model based on car-following behavior
established in Section (1) is implemented for the
afected CAV.

(1) Signal-Based Vehicle Trajectory Control Model. In the
context of vehicle-road coordination, CAVs can conduct

real-time two-way wireless communication with trafc in-
frastructure (such as trafc lights) and perceive and obtain
relevant information about the surrounding environment. If
CAVs detect the presence of vehicles in front of them, CAVs
should adjust the vehicle trajectory by the vehicle trajectory
control model oriented to real-time trafc signal in-
formation optimization at this moment, to cross the up-
coming signal intersection at the green light time. Te
optimal control command of CAVs is calculated based on
real-time trafc signal information, and the optimal control
strategy is used to minimize the energy consumption when
vehicles pass through the signalized intersection. Te ob-
jective function of the signal-based vehicle control algorithm
is as follows:

min 

k+Ne−1

i�k

E vhost,i, ahost,i, Tm,i  + φ1 vhost,i − vtarget 
2

+ φ2ε
2
1,i + φ3ε

2
2,i , (1)

wherein E(vhost,i, ahost,i, Tm,i) represents the energy con-
sumption of the vehicle, vtarget represents the target vehicle
speed optimized based on signal phase information, and ε1,i

and ε2,i are relaxation variables. φ1, φ2, and φ3 are weighting
factors, respectively. From this, it can be seen that the vehicle
control model based on signal consists of four parts to
control diferent targets. Te frst goal is to minimize the
energy consumption of vehicles passing through the in-
tersection. However, we consider that if only the frst term
exists as our objective function, the vehicle will stop at the
intersection, because the frst term forces the vehicle to
consume as little energy as possible. When the vehicle stops,
the vehicle will consume the least energy.Terefore, in order
to avoid this phenomenon, we introduced the second term
to punish the diference between the vehicle speed and the
reference target vehicle speed, so that the vehicle can be as
close as possible to the reference target speed to further
minimize the energy consumption. Te third item penalizes
ε1 the slack variable to force the vehicle as close to the stop
bar as possible, while stopping appropriately within the red
interval. Te fourth item is introduced with relaxation
variables ε2 to minimize the derivative of acceleration to
ensure driving comfort.
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dTL,i+1 � dTL,i −
vhost,i + vhost,i+1

2
, (3)

0≤dTL,i ≤ dTL,max + ε1,i, (4)

vmin ,i ≤ vhost,i ≤ vmax ,i, (5)

amin ,i ≤ ahost,i ≤ amax ,i, (6)

jmin ,i − ε2,i ≤ ahost,i+1 − ahost,i ≤ jmax ,i + ε2,i, (7)

0≤Tm,i ≤Tm,max. (8)

Te speed of the driving vehicle is calculated through
constraint (2), where meq is the total mass of the vehicle, ig is
the single transmission ratio, ηe is the total mechanical ef-
fciency of the transmissions system, rw is the wheel radius,
cr is the rolling resistance coefcient, g is the gravity ac-
celeration, θ is the road slope, ρa is the air density, Af is the
front area of the vehicle, and CD is the air resistance co-
efcient. Constraint (3) obtains the distance from the signal
intersection, and the soft constraint (4) is used to avoid
active parking away from the signal intersection. Te vehicle
speed is limited in constraint (5).Te vehicle acceleration,
deceleration, and motor torque are limited by the technical
characteristics of the vehicle itself to constrain (7) to (8).

After solving the above optimization problem in each
time step, the specifc control strategy of the vehicle can be
obtained. Te vehicle is controlled and SUMO simulated by
the control strategy. Ten, the above process is repeated for
the next controllable vehicle, namely, CAV, to achieve the
real-time update of vehicle status at the whole intersection
and achieve the goal of minimizing vehicle energy con-
sumption at the intersection by continuously repeating the
signal-based vehicle control algorithm.

(2) A Car-Following Oriented Vehicle Trajectory Control
Model. If the presence of the vehicle ahead is detected by
CAVs, CAVs should follow the vehicle in front of it, while



maintaining a safe distance from the vehicle in front and
achieving a higher road resource utilization rate. In this case,
a car-following oriented vehicle trajectory control model is
adopted, which is developed to manage the trafc scene of
the previous vehicle within the detection range of the vehicle
sensor.

Te objective function of this control algorithm is as
follows:

min 

k+Ne−1

i�k

E vhost,i, ahost,i, Tm,i,ωm,i +,
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2
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2
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0≤Tm,i ≤Tm,max, (15)
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2
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Dsafe,i ≤drel,i ≤Dsafe,i + ε3,i. (20)

In constraint (9), ε3 is a relaxation variable; Dsafe refers to
the dynamic safety distance between the CAV and the
previous vehicle; dmin refers to the minimum distance be-
tween two vehicles at rest; and τ1, τ2, and τ3 are all constant
values greater than zero. A car-following oriented vehicle
trajectory control model has similar objectives as the pre-
vious problem. During vehicle following, the speed of CAV
approaching the reference target speed is not constrained,

but another relaxation variable ε3 is introduced, in order to
maintain a safe distance between the CAV and the previous
vehicle during following. According to constraint (18), we
can calculate the relative speed between two cars, and the
dynamic safe distance between two vehicles is calculated by
constraint (19). Te real-time relative distance model is
calculated by constraint (20). Constraint (21) ensures
driving safety and includes a soft constraint that pushes the
CAV forward to achieve subsequent functions. Once the
distance between them is greater than Dsafe, the relaxation
variable ε3 is increased to make the CAV drive faster.

Considering driving safety and road utilization, the safe
distance between the CAV and the previous vehicle is cal-
culated as follows:

Dsafe � CTH ∙ vhost + dmin, (21)

where CTH represents the time progression of a constant.
Instead of using constant time interval (CTH), a cus-

tomized variable time interval (VTH) strategy is designed in
this paper, which not only considers the speed of the CAV
but also the relative speed between the CAV and the pre-
vious vehicle, which is expressed as follows:

VTH � τ1 + τ2 ∙ vhost − τ3 ∙ vrel,

vrel � vpreceding − vhost,
(22)

where vrel is the relative speed between CAV and the vehicle
in front of it; τ1, τ2, and τ3 are constants greater than 0. By
replacing CTH with VTH in the above expression, the
adaptive safe distance can be obtained:

Dsafe � VTH ∙ vhost + dmin

� τ1 ∙ vhost + τ2 ∙ v
2
host − τ3 ∙ vrel ∙ vhost + dmin.

(23)

(3) Switching Logic Algorithm. Te core functional module
consists of two linear model predictive controllers, namely, the
signal-based vehicle trajectory control model and the car-
following behavior-based vehicle trajectory control model.
Both controllers calculate the optimal control instruction u at
each time step as the input of the CAV. In the context of
vehicle-road coordination, the instantaneous output of the
CAV can be obtained, including its speed vhost, the distance
between vehicles drel, and the relative distance to the nearest
signalized intersection dTL, as well as phase and time in-
formation of real-time trafc lights, speed of the vehicle ahead
vpre, and the speed limit of certain road sections vlimits, and
these information are fed into the switch logic algorithm to
correctly select one of the two vehicle trajectory controlmodels.
Te specifc control process is shown in Figure 2.

Te specifc control logic is as follows:
Te detected sensor drel is compared with a limit value

dlimit.
If drel is not greater than dlimit, then select the vehicle

trajectory control model based on car-following behavior to
control the CAV to follow the vehicle in front.

If drel is not less than dlimit, then based on a customized
variable time interval strategy, a vehicle trajectory control
model based on car-following behavior will be selected to



maintain a safe, comfortable, and efcient road resource
usage distance between vehicles.

Terefore, the vehicle trajectory control of the CAV in
diferent driving states can be realized through the switch
logic algorithm, thereby achieving the goal of minimizing
energy consumption.

(4) Signal Fuzzy Control Algorithm. Set detection points in
each lane of the intersection, place detectors, and transmit the
detected vehicle data arriving at the intersection to the control
system. Te system controls the timing strategy of each phase
and then sends these timing data to the signal lights for timing.

Tis paper studies the trafc signal control of a single
intersection.Tere are three directions of trafc fow: left turn,
straight ahead, and right turn at the four entrances.Te signal
timing diagram represents the signal timing scheme. Tis
paper adopts the two-phase signal timing diagram, as shown
in Figure 3, and the phase sequence of the signal lights is
switched according to the phase sequence in the diagram.

Fuzzy control algorithm is an efective way to solve signal
timing optimization at signal intersections, so this paper plans
to use the fuzzy control algorithm to optimize intersection
signals. Among them, this paper refers to the literature [18]
and optimizes the idea of the fuzzy control system as follows:
the observation module obtains vehicle queuing information
and trafc arrival situation according to various detection
equipment, calculates the trafc intensity of the current phase
and the next phase, and compares the trafc intensity of the
two phasesTe trafc intensity is input to the decision-making
module, and before the green time of the current green-light
phase ends, the decision-making module determines the
green-light extension time of the current green-light phase.

Terefore, we take the number of queuing vehicles and
vehicle arrival rate as the input of the observation module
and take the trafc intensity of the evaluated phase as the
output of the module.

Te specifc trafc signal control algorithm is as follows:

(1) Step 1: Give the phase that is currently allowed to
pass the shortest green light time gmin.

(2) Step 2: Before the end of the green time of the current
green light phase, input the vehicle queuing in-
formation and trafc arrival information of the
current green light phase and the next green light
phase into the observation module and obtain the

trafc intensity of the two phases through fuzzy
reasoning.

(3) Step 3: Input the current green light phase and the
next green light phase intensity into the decision-
making module and obtain the green light extension
time of the current green light phase through fuzzy
reasoning. If the extension time is >8 s and
gduration + extension time<gmax, then the current
green light phase extends the time and go to step 2; if
the extension time> 8 s and gduration + extension
time≥gmax, go to step 4; if the extension time≤ 8 s,
go to step 5.

(4) Step 4: After the green light of the current phase is
extended (gmax − gduration) and then switched to the
next green light phase, go to step 5.

(5) Step 5: Switch to the next green light phase after the
yellow light lasts for gyellow, and go to step 1.

Among them, gmin indicates the minimum green light
time; gmax indicates the maximum green light time; gduration
indicates the current phase to last the green light time; and
gyellow indicates the yellow light time. Its unit is second (s).

Te structure of the fuzzy control system in this paper is
shown in Figure 4. Te fuzzy control system includes an
observation module and a decision module. Te observation
module evaluates the trafc intensity of the current phase
and the next phase. Te decision module determines the
green light extension time of the current green light phase
according to the current green light phase trafc intensity
and the next green light phase trafc intensity.

CAV
Energy

consumption
model

a car following oriented vehicle trajectory
control model

drel

Dsafe

Vtarget a signal oriented vehicle trajectory control
model

VTH

Signal
fuzzy

control
algorithm

Switch
logic

algorithm

Signal
information

Vpreceding

Vlimits

Vrel

Figure 2: Schematic diagram of data fow in two-layer model predictive control system under switching logic.

1 2 3 4

5 6 7 8

Figure 3: Two-phase signal timing diagram. (a). First phase. (b).
Second phase.



(1) Observation module
Te observation module calculates the trafc in-
tensity of the current green light phase and the next
green light phase according to the detected real-time
trafc fow. Tis module has two input variables, the
number of queuing vehicles between the upstream
and downstream detectors of the evaluated phase
and the vehicle arrival rate of the phase, and the
output variable is the trafc intensity of the evaluated
phase. Vehicle arrival rate, the number of vehicles
arriving at an intersection approach lane per second,
is calculated from the number of vehicles arriving in
a cycle measured by a lane checker. Te discourse
domain of the number of queuing vehicles is set to [0,
20], where it can be divided into fve fuzzy subsets:
{few, few, medium, many, many}, abbreviated as
{NS, S, M, L, PL}; the membership function of each
subset is shown in Figure 5. Te domain of vehicle
arrival rate is set to [0, 1], which is divided into fve
fuzzy subsets: {very low, low, medium, high, very
high}, abbreviated as {NS, S, Z, M, PM}.
Te domain of trafc intensity is [0, 6], divided into
fve fuzzy subsets: {very low, low, medium, high, very
high}, abbreviated as {VD, D, M, U, VU}; see Table 1
for the fuzzy rules.

(2) Decision-making module
Te decision-making module determines the green
light extension time of the current green light phase
according to the current phase trafc intensity and
the next phase trafc intensity. Tis module has two
input variables, which are the current phase trafc
intensity and the next phase trafc intensity, and the
output variable is the current green light phase ex-
tension time.Te fuzzy subset division of the current
phase trafc intensity and the next phase trafc
intensity is the same as before. Te extended time
domain is [0, 30], divided into 5 fuzzy subsets: {very
short, short, medium, long, very long}, abbreviated
as {NS, S, M, L, PL}; see Table 2 for the fuzzy rules.

(3) Fuzzy reasoning and reconciliation fuzzifcation
Fuzzy reasoning is based on the input fuzzy
number, controlled by fuzzy rules to complete fuzzy
reasoning to solve fuzzy relational equations. Te
fuzzy control system designed in this paper adopts
the product inference method and center of gravity
method to defuzzify. Te exact calculation method
of the center of gravity method is shown in the
following formula:

u
∗

�


I
i�1 uiμi( 


I
i�1μi

, (24)

In the formula, u∗ is the precise output of the decision
result; ui is the central value of the consequent membership
function of the i-th fuzzy rule triggered; μi is the product of
the membership degrees of all input variables of the i-th rule
being triggered; and I is the number of triggered fuzzy rules.

(5) Energy Consumption Model. Te energy consumption
model of a vehicle is usually related to speed or acceleration.
And when we control the vehicle, we mainly control the
speed and acceleration of the vehicle. Terefore, we choose
an energy consumption model related to speed and accel-
eration to calculate the total energy consumption of vehicles
at the intersection. Tis paper plans to adopt the in-
stantaneous gasoline consumption function proposed by
Akcelik (1989) because it takes acceleration and velocity into
account. Te gasoline consumption rate is calculated based
on the instantaneous speed and acceleration of the vehicle.

Te specifc model is as follows:

F(v, a, t) � α + β1P(t) + β2meqa(t)
2
v(t) 

a> 0,

P(t) � max

0, d1v(t) + d2v(t)
2

+ d3v(t)
3
,

+
meq

1000
a(t)v(t).

⎧⎪⎪⎪⎨
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Figure 4: Structure of the fuzzy control system.



where α is the constant idle gasoline consumption rate
(mL/s), β1 is an efciency parameter related to engine ef-
fciency (mL/KJ), β2 is the positive acceleration
(mL/KJ ∙m/s2) related to gasoline consumption parameters,
v is the vehicle speed, and a is the vehicle acceleration. P

represents the total power of the vehicle running (KW),
(mL/KJ) is the rolling resistance, d2 is the engine drag
coefcient, and d3 is the air drag coefcient.

Referring to Akcelik (1989) for parameter values,
d1 � 0.269, d2 � 0.0171, d3 � 0.000672, β1 � 0.072,
β2 � 0.0344, and α � 0.666.

(6) Description of Driving Behavior of Manual Driving Ve-
hicle. In this paper, a random vehicle tracking model, the
improved two-dimensional intelligent driver model, is used to
capture the random driving behavior of CHV. Due to the
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Figure 5: Membership function of (a) the number of queued vehicles, (b) arrival rate, (c) current phase, and (d) next phase.

Table 1: Fuzzy rules of the observation module.

Trafc intensity Vehicle arrival rate
NS S Z M PM

Queuing vehicles

NS VD D M U U
S VD D M U VU
M D M M U VU
L D M M VU VU
PL D M U VU VU

Table 2: Fuzzy rules of the decision module.

Extension of time
Current phase trafc

intensity
VD D M U VU

Next phase trafc intensity

VD NS NS NS NS NS
D S S NS NS NS
M M L M S S
U PL L L M S
VU PL PL PL L M



randomness of the vehicle tracking model we choose, the
vehicle’s motion trajectory will be diferent in diferent oper-
ations. Terefore, the following model can better solve the
uncertain behavior of manual driving vehicles and refect the
diference of driving behavior of manual driving vehicles [19].
See Table 3 for themeaning of parameters in the above formula.

a
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3. Evaluation

In order to verify the efectiveness and reliability of the
proposed model and system, this paper uses Python to
conduct the secondary development of SUMO simulation
platform and build a simulation environment. Te built test
scenario is shown in Figure 6, and the setting parameters are
shown in Table 4.

In the process of simulation, we fully considered the
infuence of the driving style of the network connected
driving vehicles on the simulation efect and divided it into
conservative network connected manual driving vehicles,
stable network connected manual driving vehicles, and
aggressive network connectedmanual driving vehicles. Since
our control scheme is aimed at CAVs, in order to prove the
inclusiveness and efectiveness of our two-layer control
model under diferent CAV permeabilities and diferent
vehicle fows, we used Python to carry out the secondary
development of SUMO, output relevant result data, and
compare SUMO self-control condition, controlling vehicle
tracks, and two-layer model control. Tat is, the trafc ef-
fciency and energy consumption of intersections under the
three schemes of vehicle trajectory control and signal joint
control. Te average waiting time and average energy
consumption of vehicles are selected as the evaluation and
comparison indicators [20].

3.1. Comparison of Diferent Schemes under Diferent CAV
Permeabilities

3.1.1. Comparative Analysis of Vehicle Energy Consumption
at Intersections. Figure 7 shows the comparison of the av-
erage vehicle energy consumption of diferent schemes
under diferent CAV permeabilities. Te pros and cons of
intersection energy consumption control under diferent
control schemes are shown in Figure 7. Compared with the
schemes with fx signal timing control and only control

Table 3: Symbols and meanings.

Notation Explanation
n Vehicle number
a Maximum acceleration
b Safety deceleration
vlim Limited speed of the studied road segment
s0 Minimum spacing gap
lv Vehicle length
∆t Simulation time step
Tmin Minimum time gap in the improved 2D-IDM model
Tmax Maximum time gap in the improved 2D-IDM model

r, r1

Two independent uniformly distributed random
numbers between 0 and 1 in the improved 2D-IDM

model

p
Changing probability of target time gap in the

improved 2D-IDM model

∆T
Limit of changing rate of the desired time gap in the

improved 2D-IDM model

dn(t)
Spacing gap between the preceding vehicle n− 1 and

the current vehicle n
xn(t) Position of vehicle n at time t
vn(t) Velocity of vehicle n at time t
an(t) Acceleration of vehicle n at time t

a2D−IDM
n (t)

Acceleration of vehicle n at time t in the improved
2D-IDM model

d2D−IDM
desired,n (t)

Desired spacing gap of vehicle n in the improved
2D-IDM model

Tdesired,n(t)
Desired time gap of vehicle n at time t in the

improved 2D-IDM model

Ttarget,n(t)
Target time gap of vehicle n at time t in the improved

2D-IDM model

Figure 6: SUMO simulation scenario.



vehicle trajectory, the joint control of vehicle trajectory and
signal has a signifcant advantage.

As can be depicted from Table 5, when the permeability
reaches 10%, the energy consumption saved by the joint
control of vehicle trajectory and signal is −5.37% higher than
that of controlling vehicle trajectory and 7.90% higher than
that of no control scheme at all. At this time, due to the small
amount of CAV in the road, the joint control strategy has no
obvious efect on reducing the average energy consumption
of the vehicle due to the infuence of the randomness of the
artifcial vehicle driving. When the penetration rate reaches
60%, the energy consumption saved by the combined
control of vehicle trajectory and signal is increased by
21.94% compared with only the control of vehicle trajectory
and by 17.56% compared with the scheme of no control at
all. At this time, CAVs in the road account for a large
proportion. Trough the control and guidance of the tra-
jectory of CAVs, the movement trajectory of other CHVs is
restricted, which avoids the phenomenon of large-scale
queuing and start-stop of vehicles and thus signifcantly
reduces the average energy consumption of vehicles at the
intersection.

By analyzing the overall trend of the joint control scheme
of vehicle trajectory and signal, it can be concluded that under
this scheme, when the CAV penetration rate is between 0%
and 30%, the efect of this control scheme on improving the
overall energy consumption at the intersection is not very
obvious. With the gradual increase of CAV permeability, the

Table 4: Simulation parameter setting.

Parameter Value
Total mass of the vehicle meq (kg) 1400
Single transmission ratio ig 2.73
Total mechanical efciency of the transmission system ηe (%) 85
Rolling resistance coefcient cr 0.017
Wheel radius rw (m) 0.325
Simulation step (s) 1
Gravity acceleration g (m/s2) 9.8
Road slope θ 1.2
Air density ρa (kg/m3) 1.12256
Te front area of the vehicle Af (m2) 2.1
Air resistance coefcient CD 0.54
Vehicle length (m) 4.8
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Figure 7: Comparison of average energy consumption of vehicles under diferent CAV permeability schemes.

Table 5: Average reduction rate of vehicle energy consumption.

Penetration rate (%)

Optimization efect (average energy
consumption reduction rate (%))

Compared to out of
control

Compared to just
vehicle control

10 −6.89 0.85
20 3.50 10.94
30 5.15 12.98
40 8.31 6.24
50 12.56 12.16
60 17.56 21.94
70 9.53 7.68
80 26.10 22.96
90 24.74 23.74
100 23.43 23.04



scheme achieved a signifcant improvement in the overall
energy consumption at the intersection when the CAV
permeability reached 30%–60%. After that, with the increase
of CAV market penetration, the signifcance of improvement
showed an insignifcant or even slightly increasing trend.Tat
is, with the increase of CAV penetration, the average energy
consumption of vehicles at intersections under this control
scheme did not change much. It is concluded that the control
model proposed in this paper can better adapt to intersections
with low and medium CAV.

Trough a more detailed analysis of the simulation re-
sults, it can be concluded that when the permeability of CAV
reaches 70%, the average energy consumption of vehicles at
the intersection presents a slightly increasing trend. In order
to better analyze the causes of this phenomenon, the average
energy consumption diagram of CAV and CHVs under
diferent CAV permeabilities under the joint control strategy

of vehicle trajectory and signal was analyzed, as shown in
Figure 8. It can be concluded that the reason for the slight
increase in the average vehicle energy consumption at this
time may be that the average vehicle energy consumption of
CHVs at this time shows a trend of increasing compared
with that before. Under this scenario, some CHVs may have
more start-stop phenomena, resulting in the increase in the
average vehicle energy consumption. Under the infuence of
CHV, some CAVs also show more start-stop phenomena.
Tus, in this case, the average energy consumption of all
vehicles presents a higher phenomenon than before.

3.1.2. Comparative Analysis of the Average Waiting Time of
Vehicles at Intersections. As shown in Figure 9, the average
waiting time of vehicles under diferent CAV permeability
schemes is compared. With the increase of CAV permeability,
the average waiting time of vehicles under the three control
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schemes shows a downward trend, which shows that our
control strategy for CAV is efective. Te greater the perme-
ability of CAV, the greater the implementation of our control
plan and the more comprehensive the control of intersections.

In addition, the average waiting time of vehicles under the
joint control of signal and vehicles is signifcantly lower than
the average waiting time of vehicles under the out of control
and only control of the vehicle. Table 6 shows the decrease
percentage of vehicle waiting time at intersections under the
vehicle control scheme and the double-layer control model. It
can be clearly seen that our control scheme has the best
optimization efect under the conditions of medium and low
permeability; with a decrease percentage of about 25%, the
average waiting time of vehicles decreases greatly. With the
increase of the penetration rate, the decreasing range grad-
ually decreases. Tis situation is mainly caused by the fol-
lowing two reasons. On the one hand, it shows the
uncontrollability of the manual driving of the Internet con-
nected vehicles. According to the user equilibrium principle,
all travelers look for the travel path that minimizes their travel
time for their own interests, but the driving scheme

determined by themselves is not necessarily the optimal
scheme, and its driving track will also afect the efciency of
the whole intersection. On the other hand, it also shows that
our two-layer control scheme is more suitable for the con-
ditions where the vehicle penetration rate is at a moderate
level, that is, under the conditions of mixed trafc fow, and it
is highly consistent with our research background.

3.2. Index Comparison of Various Schemes under Diferent
Trafc Volumes. In order to explore the trafc fow con-
ditions that our two-level control model can adapt to, we
compared and analyzed the operating results of each scheme
under diferent trafc fows.

3.2.1. Comparative Analysis of Vehicle Energy Consumption
at Intersections. It can be seen from Figure 10 that with the
increase of trafc fow, trafc fow gradually transitions from
free fow state to steady fow state, and the energy con-
sumption of vehicles shows an upward trend. However, for
the vehicle energy consumption under out-of-control scheme,

Table 6: Reduction percentage of average waiting time of vehicles under vehicle control scheme and two-layer control model scheme.

Penetration rate (%)
Control scheme

Control
of vehicle (%)

Signal and vehicle
joint control (%)

0 11.67 24.92
10 9.06 25.81
20 6.29 25.42
30 9.49 25.30
40 6.67 24.52
50 10.33 24.46
60 3.83 19.75
70 3.95 20.50
80 8.95 22.95
90 4.52 15.63
100 10.34 19.54
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since the vehicle is not controlled, the energy consumption
under diferent trafc fows has been high, and with the
increase of the trafc fow, the increase of energy con-
sumption is not obvious. In contrast, the control of vehicle
scheme and the control scheme of the double-layer model
have a signifcant efect on the reduction of the average energy
consumption of the vehicle, especially compared with the
fxed signal timing scheme, the average energy consumption
of the whole vehicle is reduced by about 32%. Tis dem-
onstrates the efectiveness of our control scheme. Our pro-
posed two-layer control scheme, with the increase of trafc
fow, the average energy consumption of vehicles has no
obvious upward trend and has always been at a low level,
which also shows that our model has good stability and
adaptability. Te control efect is better at low and medium
levels of trafc fow.

3.2.2. Comparative Analysis of Average Waiting Time of
Vehicles at Intersections. It can be seen from Figure 11 that
with the increase of trafc fow, the average waiting time of
the three modes of out of control, control of vehicle, and
signal and vehicle joint control all gradually increases. Under
any level of trafc fow, vehicle trajectory control and joint
control of vehicles trajectory and signal have optimization
efects on the average waiting time. Among them, the signal
and vehicle joint control mode has the best optimization
efect on the average waiting time, and only control vehicle
optimization had the second best efect on average waiting
time. Let us take the fow rate of 1200 veh/h as an example.
When no control is performed, the average waiting time is
10 s. When only vehicle control is performed, the average
waiting time is 8.13 s, which is about 18.7% lower. Te
average waiting time of signal and vehicle joint control is
6.54 s, which is about 34.6% lower, and the optimization
ability of the signal and vehicle joint control in the entire
trafc fow range is almost unchanged. Te control ability of
controlling the vehicle in the middle and low trafc fow
interval is almost unchanged, and the optimization ability in

the high trafc fow interval is relatively enhanced. To sum
up, our combined signal and vehicle control method can
signifcantly reduce the average waiting time and improve
the trafc capacity and trafc efciency of the intersection.

4. Conclusion

To sum up, the two-layer model optimization system pro-
posed in this paper, namely, the model of signal and vehicle
joint control, has achieved good results in achieving the
binocular goals of minimizing vehicle energy consumption
and maximizing trafc efciency at intersections.

Experimental simulation data show that the two-layer
control model in this paper has good applicability when
CAV permeability is 30%–60%, which greatly reduces the
average energy consumption and average waiting time of
vehicles. Compared with the no-control scheme, the average
waiting time of vehicles decreases by about 25%. Under the
condition of 60% permeability, the average energy con-
sumption of the vehicle was reduced by 17.56% compared
with the uncontrolled scheme and 21.94% compared with
the control scheme. For the average energy consumption of
vehicles, when the CAV permeability is between 0% and
30%, the scheme has a general improvement efect on the
average energy consumption of vehicles. When the per-
meability is more than 60%, the improvement efect of the
scheme has little change with the increase of the perme-
ability, but the average energy consumption of the vehicle is
signifcantly improved. For the average waiting time, under
diferent permeability conditions, the average waiting time
of the joint control scheme of vehicle trajectory and signal
shows a downward trend, and the optimization efect is
signifcant. Especially, when the CAV permeability is be-
tween 0% and 50%, the average waiting time of the vehicle
decreases by about 25%, which is a large decrease.

In addition, the two-layer model optimization system in
this paper has good applicability when the trafc fow is at
a moderate level. Te application of the two-layer model
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optimization system was able to signifcantly reduce the
average vehicle energy consumption and the average vehicle
waiting time by nearly 35 percent.

Te two-layer control model proposed in this paper
provides a benefcial reference scheme for the optimization
of temporal and spatial resources at intersections with mixed
trafc fow. At the same time, it efectively reduces the
vehicle energy consumption at intersections and improves
the trafc efciency at intersections, which has strong
practical signifcance and application value.
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