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Travel time reliability assessment has been widely used in recent years to evaluate the performance of transportation networks and
measure the operation level of transportation systems. Weather, as one of the important factors infuencing travel time reliability,
afects the relationship between the supply and requirement of urban road networks. Considering the trafc characteristics under
diferent trafc conditions, a study on the infuence of weather on travel time reliability under diferent conditions is proposed to
predict the probability of travelers completing their trips within the expected time under diferent weather conditions. Based on
the urban road network data and cab trajectory data of Harbin city, this paper correlates the foating vehicle location with the road
network information through a hiddenMarkovmodel to reduce the infuence of vehicle trajectory errors on the calculation results
of path travel time. To analyze the entire distribution of extreme travel time and its impact on the reliability of travel time under
various trafc situations, it captures the tail features of the travel time distribution based on extreme value theory.Ten, to increase
the predictability of each quantile, it combines a deep-learning LSTM model and a quantile regression model to create
a probabilistic travel time prediction model utilizing combined layers. Te proposed model is compared with the linear quantile
regression and neural network quantile regression models, and the model is evaluated in terms of point prediction results and
probabilistic prediction results, respectively, to ensure the accuracy of predictions from the model. As a result, the prediction
accuracy of the model in this paper is greatly improved, and the degree of violating quantile constraints is greatly reduced.

1. Introduction

Travel time reliability (TTR) is one of the most important
factors to measure the stability of transportation systems. It
also serves as a guide for travelers, advising them on when
to begin their journey and how to get at their destination on
time. According to a study [1], travelers are more con-
cerned with the accuracy of journey time predictions than
with the actual travel time. With the improvements of high
quality and comprehensiveness of datasets by modern
monitoring instruments and data collection mothers, it is
now possible to anticipate travel time by using real-time
trafc data [2].

Many factors infuence travel time reliability, including
the time of day, whether it is a weekday or not, trafc ac-
cidents, trafc capacity, trafc control measures, and
weather. According to the supply-demand relationship of
the transportation system, these factors can be divided into
two categories: unrepetitive and repetitive infuencing var-
iables. For example, trafc accidents and weather circum-
stances fall under the frst category, whereas the time of day,
weekdays or not, falls under the second category [3]. It is
critical to concentrate research eforts on these occurrences,
which are important to travel time reliability. Tey are also
fundamental requirements of advices about trafc policy or
a traveler counseling [4].
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Reliability of travel time prediction has always been
a major issue in the intelligence transportation system (ITS).
ASAKURA [5] proposes the concept of travel time reliability,
which is thought to be one of the earliest studies. Te fol-
lowing research focuses on ways to increase the accuracy of
TTR, particularly TTR measuring indicators. Statistical ap-
proaches are based on statistics of travel time under diferent
quantiles to verify TTR. Pu and Wenjing [6] defne a co-
efcient of deviation as the measurement index, which is the
ratio of travel time to the average travel time. Tu et al. [7] use
the term travel time variability (TTV) to represent the range
of the travel time, which is defned as the diference between
the 90th and the 10th percentile travel time. Van Lint and van
Zuylen [8] depict travel time reliability by the inclination and
width of travel time distribution.Te statistical characteristics
of travel time variability, according to statistical methodol-
ogies, are more resilient than those based on the mean and
variance. By computing the extra travel time, bufer time
methods provide the uncertainty of travel time. Te bufer
time index and the travel time index are two of the bufer time
methods that have been studied and applied extensively.
Lomax et al. [9] investigate the associations between the 95th
percentile and free fow travel time by using the bufer time
index. Chen et al. [10] study the travel time index to in-
vestigate the various ratios of travel time between average and
free popular. Te bufer time index and the travel time index,
on the other hand, accurately describe the reliability of travel
time of the normal distribution, but they are insufcient to
assess the nonnormal distribution.Te pain index and the on-
time arrival rate are two of the travel delay methods that are
used to analyze the head and tail distributions in the entire
span of travel time. Te pain index is defned as the ratio
between 20% of the higher travel rate and the average travel
rate, and the on-time arrival rate is defned as the probability
that the travel rate is less than 110% of the average travel rate.

Owing to the regular occurrence of adverse weather,
academics have been paying increasing attention to the im-
pact of weather on travel time in recent years. Many research
studies have been conducted on the efect of weather on travel
time reliability. Faouzi et al. [11] research the global frame-
work of the expressway travel time prediction system, which
confrms that meteorological conditions have an impact on
travel time. Li et al. [12] propose a soft set theory-based
function model to establish the relationship between weather
and travel time. Te model also considers how rainfall in-
tensity and visibility afect expressway travel time. Andersen
and Torp [13] collect 5-year high-speed road driving statistics
in Denmark. According to this dataset’s study, snow will
increase travel time by 27%, while a strong headwind will
increase travel time by 19%. Tsapakis et al. [14] observe that
rain and snow have an efect on expressway travel time. Te
heavier the rain and snow are, the worse the travel time is
infuenced. Zou et al. [15] investigate the impact of weather on
travel time on expressway and main roads, respectively,
during rush hour and not during peak hour. Te study
discovered that bad weather has a greater impact during rush
hours. Wang et al. [16] study the impact of snowfall on bus
travel time and fnd that, for every 1millimeter increase in
snowfall accumulation, bus travel time increases by

0.483minutes. Kamga and Yazıcı [17] divide weather types
into sunny, light rain, heavy rain, light snow, and heavy snow
and put forward diferent views: in terms of weather impact,
bad weather may reduce the coefcient of variation (COV)
and standard deviation in some time periods, improving the
reliability of travel time. Shi et al. [18] discover that light rain
has little infuence on travel time variability; however, heavy
rain increases unpredictability and so afects reliability.

Te study of travel time reliability necessitates the use of
travel time distribution (TTD). Scholars have been using
many models to describe travel time distribution in recent
years. Kim and Mahmassani [19] use a gamma distribution
to simulate the model, which matches well. Furthermore,
Castillo et al. [20] think beta distribution, Al Deek and
Emam [21] think Weibull distribution, and Yang et al. [22]
think bimodal distribution can better characterize travel
time distribution. Ansari Esfeh et al. [23] propose a com-
posite generalized extreme value distribution (CGEV) to
study the impact of monthly and seasonal changes in ex-
treme travel delay in the road network in their most recent
work. Te ftting of the travel time distribution is a variable
in diferent research studies, which is due to the diferences
in trafc environments, trafc legislation, and driver psy-
chology in various countries and locations. However, dif-
fering weather conditions will have an impact on the travel
time distribution. For example, according to Shi et al. [18], in
high-speed sections, the lognormal model fts best in good
weather, light rain, and medium rainfall circumstances, and
the Weibull model fts best in blizzard conditions.

Te impact of weather on travel time reliability has been
the subject of numerous studies. However, the majority
studies focus on the travel time reliability of expressway,
which is uncommon in urban roads [12]. Simultaneously,
researchers place a greater emphasis on average travel time.
Travelers in numerous cases are concerned about extreme
travel time [24].

Te paper aims to analyze the infuence of diferent
weather types on upper quantile travel time and predict
travel time under diferent quantiles based on the quantile
regression model and deep-learning model, combined with
foating car data on urban roads in Harbin, in order to
further explore the weather’s infuence on travel time re-
liability. Te following are the paper’s main contributions:

(1) Te paper uses a hidden Markov model (HMM) to
map match the track data of a foating automobile.
Te paper also develops a method for calculating
journey time, as well as obtaining the travel duration
of foating cars on Harbin’s urban highways and the
probability distribution of travel time.

(2) Te paper divides the weather into categories and
examines the impact of weather on the upper per-
centile travel time over time.

(3) To estimate trip times under diferent quantiles,
a model incorporating quantile regression and LSTM
is proposed in this study. Meanwhile, the research
investigates and provides restriction constraints to
avoid crossing between adjacent quantiles. Te cu-
mulative experience distribution of the travel rate

2 Journal of Advanced Transportation



may be obtained based on the travel rate of each
quantile, which can be used to record the variation of
the travel rate at diferent times and provide guid-
ance for passengers.

Te rest of this paper is arranged as follows: Section 2
gives a description of the data and the travel time prediction
model. Te experimental description is given in Section 3.
Te conclusions of this efort are given in Section 4.

2. Methodology

Te section introduces the data used and the model of travel
time prediction.

2.1. Data Introduction. Te investigation of the reliability of
travel time is based on GNSS data. Te information for this
study came from Harbin Transportation Bureau, which
contains the driving records of roughly 5000 taxis. Table 1
shows the comprehensive details for some of the data.

As given in Table 1, the data recorded the taxi’s unique
number (DEVID), LONGTITUDE, LATITUDE, SPEED,
ORIENTATION, and UNIXTIME. Te data for this study
were collected from hundreds of millions of foating vehicles
between June 1, 2016, and December 31, 2016. Previous
studies have determined that time periods of 10 to
15minutes are appropriate for analyzing trafc conditions
[7, 25]. As a result, data in this paper are separated into 15-
minute time slots, and the data for a day are divided into 96
time slots.

Te data used in this paper meet the research re-
quirements both in terms of time and space. In terms of
time, foating car data include data from both working and
nonworking days, as well as peak and fat peak times
throughout the day. Because the travel time fuctuated with
seasons, the collection of data was begun on June 1, 2016,
and ended on December 31, 2016 when there was sufcient
rain and snow. In terms of space, foating car data are fed
into the road network and generally cover all Harbin’s
roadways.

Tere are inaccuracies in GPS equipment due to building
occlusion and other factors, and some abnormal data are
contained in the original data. Before using GNSS data, they
must frst be cleaned to remove any aberrant data in-
terference of abnormal data. In this paper, anomalous data
were fltered out based on their speed. Data with an in-
stantaneous speed of 0 for more than 5minutes, as well as
data with an instantaneous speed substantially beyond the
speed limit on the road, were regarded as abnormal and
eliminated. It is important to match the trajectory points due
to the presence of GPS track positioning mistake. Tis paper
uses a hidden Markov model (HMM) to perform map
matching.Te efect diagram of the road network before and
after matching is shown in Figure 1. Te HMM algorithm
can successfully match the track points to the road network
based on the matching results. Tis study proposes using the
travel rate (TR) instead of travel time for research focused on
map matching. Te travel rate refers to the time it takes the
foating car to go one kilometer, and it can be used to reduce

errors caused by the length of a road section.Tis paper fnds
out all vehicles passing through the study path and acquires
the starting and fnishing points as well as the travel time
stamps of vehicles based on the vehicle ID in order to de-
termine the travel rate of various vehicles. Te travel rate is
the ratio of the total travel distance and travel time.

2.2. Infuence of Rain and Snow on Travel Time Reliability.
Te variety of reliability measurement methodologies is due
to the complexity of network features and impacting factors.
Currently, researchers and scholars ofer four types of re-
liability measurement methods: statistical methods, bufer
time methods, travel delay methods, and probability mea-
suring methods. Te bufer time method ofers a decent
description for the normal distribution, but it is insufcient
to analyze the “heavy tail” travel time distribution.
According to the distribution of travel time in Harbin which
is shown in Figure 2, the lognormal distribution best fts the
path travel time of Harbin by distribution ftting and hy-
pothesis testing. As a result, using the bufer time method to
assess the reliability of trip times in Harbin is insufcient.
Furthermore, the travel delay method and the probability
measurement method are used to calculate the likelihood of
trip delay and road congestion, and travelers are unable to
quantify specifc trip times using the above indicators. Te
statistical features of travel time changes are more robust
than those based on the mean and variance in statistical
methods [23]. As a result, travel time variability (TTV) is
used to characterize the reliability of trip times at a given
point of time.

In China, rainfall and snowfall are classifed as follows:
Rainfall less than 10mm within 24 hours is classifed as light
rain, rainfall between 10 and 25mm is classifed as moderate
rain, and rainfall larger than 25mm is classifed as heavy
rain. A snowfall of 0.1–2.4mm within 24 hours is considered
light snow, a snowfall of 2.5–4.9mm is considered moderate
snow, and snowfall greater than 5mm is considered heavy
snow. Te weather of Harbin city from June to December
2016 can be classifed using this criterion, with clear, light
rain, moderate rain, heavy rain, light snow, moderate snow,
and heavy snow.

Since trafc patterns vary on diferent days of the week
and at diferent times of the day, and the impact of weather
on travel time reliability changes as trafc patterns change
[24], it is important to evaluate trafc characteristics at
diferent times of the week before analysis. Te amount of
time it takes to travel varies depending on the day of the
week.Te data from June to December 2016 are summarized
in Figure 3 to create a thermal map of average travel time for
diferent days of the week. Te tendency is very similar from
Monday to Friday, and tendencies are also very similar on
Saturday and Sunday. Weekend travel times are often more
consistent than weekday travel times, with no noticeable
morning peak, which is in keeping with travelers’ travel
patterns. Te impact of rain and snow weather on the re-
liability of travel time should be evaluated on weekdays and
weekends, respectively, due to the clear cyclical tendency of
travel time.
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In this paper, the efect of rain and snow on travel time
reliability is investigated by dividing datasets into distinct
weather conditions. Figure 4 depicts how rain and snow
afect TTV. It is deduced from the statistic graphic that,
during morning rush hour, light rain days increase TTV
compared to bright days, while other weather types decrease
TTV. Tis implies that, in addition to light rain, additional
weather conditions improve travel time reliability. Te most
signifcant increases were in moderate rain and moderate
snowfall. Rain and snow have little impact on travel time
reliability on weekends because there is no evident morning
peak. Rain and snow, in general, reduce travel time reliability
throughout the night periods (20:00–8:00) and also improve
travel time reliability during the day. It is depicted in
Figure 5.

Rain and snow have a greater impact on the reliability of
travel time in the morning peak, as can be seen from the
preceding statistics (7:00 am–9:00 am). Severe weather has
also been shown to have a major infuence on travel time
only when trafc volume exceeds a particular threshold [26].

As a result, quantitative analysis is deployed on the morning
peak time independently, taking the 90th percentile travel
rate as an example to study the infuence of rain and snow on
the reliability of the morning peak travel time. Tables 2 and 3
demonstrate this. Except for light rain, all other weather
conditions reduced the 90th percentile travel rate, with
moderate rain and moderate snow having the greatest
impact.

2.3. Probability Prediction Method Based on LSTM Quantile
Regression. Rain and snow will have diferent impacts on
the reliability of travel time at diferent times, as shown in
the above analysis. It is critical for travelers to obtain the
chance of travel arriving on time. Tis paper predicts the
travel rate of diferent quantiles under diferent weather
circumstances using a quantile regression model and an
LSTM model and then constructs the empirical cumulative
distribution curve of travel time. Quantile regression theory
combines the memory characteristics of LSTM with the
probability prediction function of quantile regression to
directly explain the link between response variables (travel
rate) and explanatory variables (weather and time) under
diferent quantiles. Te predicted values under diferent
quantiles may cross due to the inherent properties of
quantiles, afecting the accuracy of the model prediction
results. Te reliability of travel time can be determined by
the quantile of travel time. For example, the 10% quantile
and 90% quantile can be used to calculate TTV and thus

Before matching After matching

Figure 1: Track diagram of the road network foating car.
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Figure 2: Fitting diagram of travel time probability distribution.
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Figure 3: Average travel time thermal map.

Table 1: Floating car data example.

DEVID LONGTITUDE (E°) LATITUDE (N°) SPEED (100m/h) ORIENTATION (°) UNIXTIME
100322318 126.61708 45.76433 18 7 1467327699
100307956 126.67012 45.72983 261 84 1467327842
100322118 126.61708 45.76433 18 7 1467328120
100322776 126.69008 45.79545 122 76 1467327639
. . . . . . . . . . . . . . . . . .

Note.Orientation is a direction of a vehicle moving, with 0 degrees indicating due north, 90 degrees indicating due east, 180 degrees indicating due south, and
270 degrees indicating due west.
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determine the range of the distribution of travel time. As
a result, this paper proposes a combination layer that vi-
olates the penalty term of the quantile prediction value
constraint in order to minimize quantile crossing.

In a word, this paper provides a constrained LSTM
quantile regression model that properly accounts for the
timing and nonlinearity of travel time prediction based on
this. Te following is an introduction to a specifc model.
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Figure 4: Impact of rain and snow on TTV on weekdays.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time of day

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
Time of day

Clear
Light rain

Moderate rain
Heavy rain

Clear
Light snow

Moderate snow
Heavy snow

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

4.0

3.5

3.0

2.5

2.0

1.5

1.0
0.5

TT
V

TT
V

Figure 5: Impact of rain and snow on TTV on weekends.

Table 2: Efects of rain during morning peak on the 90th percentile travel rate.

Clear Light rain Light rain (%) Moderate rain Moderate rain (%) Heavy rain Heavy rain (%)
7:00–7:15 5.762 5.972 3.6 4.82 −19.5 5.382 −7.1
7:15–7:30 6.092 8.157 33.9 4.529 −34.5 5.641 −8.0
7:30–7:45 9.187 10.447 13.7 4.961 −85.2 8.775 −4.7
7:45–8:00 10.436 10.914 4.6 5.61 −86.0 8.169 −45.6
8:00–8:15 10.329 9.75 −5.9 5.233 −97.4 6.7 −54.2
8:15–8:30 8.957 9.698 8.3 4.98 −79.8 6.798 −31.8
8:30–8:45 8.869 9.067 2.2 4.966 −78.6 7.029 −26.2
8:45–9:00 7.164 7.686 0.9 4.572 −66.5 5.918 −28.7
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2.3.1. LSTM Neural Network. Te LSTM model is a typical
gated recurrent neural network (RNN). Te memory unit of
LSTM introduces a gating mechanism to preserve long and
short-term memory, in contrast to the standard RNN loop
structure. Figure 6 depicts its unit architecture, which
consists primarily of an input gate, a forgetting gate, and an
output gate. Te input gate regulates the entry and exit of
new data, the forgetting gate regulates the degree to which
historical data are forgotten, and the output gate defnes the
fnal output data.

Te computation method is as follows, given the current
input xt, the hidden layer state ht−1, and the storage state
Ct−1 at the fnal moment. Te detailed calculation process is
shown as follows:

it � σ Wi xt, ht− 1 
T

+ bi ,

ft � σ Wf xt, ht− 1 
T

+ bf ,

ot � σ Wo xt, ht− 1 
T

+ bo ,

Ct � tanh Wc xt, ht− 1 
T

+ bc ,

Ct � Ct−1 ⊗ft + it ⊗ Ct,

ht � ot ⊗ tanh Ct( .

(1)

W stands for the associated weight matrix, and b stands
for the corresponding bias vector.Te hidden layer state ht is
used to determine the fnal output.

yt � Wsht + bs, (2)

where Ws and ht are the hidden layer and output layer
connection weight matrix and bias vector, respectively.

2.3.2. Quantile Regression. Te quantile regression model
for the response variable Y, which is afected by K factorsX1,
X1. . . XK, is calculated as

QY(τ | X) � X
′β(τ). (3)

Te estimation of the parameter vector is one of them
that can be translated into solving the optimal problem:

min
β(τ)



t Yt| ≥X′β(τ)

τ Yt − X′β(τ)




+ 

t Yt| <X′β(τ)

(1 − τ) Yt − X′β(τ)


.
(4)

2.3.3. Single-Point LSTM Quantile Regression Model. Te
value of the response variable Y at a quantile τ can be
predicted using a single-point LSTM quantile regression
model (Q-LSTMi model). Take any quantile τi. Te loss
function of the Q-LSTMi model under the quantile τi is as
follows:

L τi(  � min
W τi( ),b τi( )



N

t�1
ρτi

Yt − f Xt, W τi( , b τi( ( ( 

+ λ1  W
2 τi( .

(5)

W(τi) and b(τi) are the weight parameter matrixes and
the ofset vectors under quantiles τi, respectively. λ1 is the
regular term penalty parameter, and ρτ(a) is the test
function. Formula (6) is as follows:

ρτ(a) �
τa, a≥ 0,

(τ − 1)a, a< 0.
 (6)

Te gradient descent method is used to update the
parameters in order to obtain the optimal parameter
W(τi), b(τi) opt. Te model’s training process is shown in
Figure 7.

2.3.4. Quantile Regression Model of LSTM considering
Quantile Constraint. It is necessary to estimate the proba-
bility distribution of travel time through a succession of
distinct quantiles 0< τ1 < τ2...< τi < ...< τr < 1 in order to
gather more thorough probability distribution information.
As a result, this paper established a constrained LSTM
quantile regression model (CQ-LSTM model) using Q-
LSTMi (i � 1, 2 ... r) units. Te CQ-LSTM model can

Table 3: Efects of snow during morning peak on the 90th percentile travel rate.

Clear Light snow Light snow (%) Moderate snow Moderate snow (%) Heavy snow Heavy snow (%)
7:00–7:15 5.562 5.402 −3.0 4.768 −16.7 5.211 −6.7
7:15–7:30 7.677 7.594 −1.1 5.781 −32.8 6.412 −19.7
7:30–7:45 9.161 8.735 −4.9 8.69 −5.4 6.886 −33.0
7:45–8:00 10.302 10.015 −2.9 7.087 −45.4 5.952 −73.1
8:00–8:15 9.625 9.299 −3.5 5.001 −92.5 5.77 −66.8
8:15–8:30 7.684 7.632 −0.7 6.813 −12.8 5.499 −39.7
8:30–8:45 8.514 7.666 −11.1 6.059 −40.5 6.195 −37.4
8:45–9:00 7.493 7.482 −0.1 5.881 −27.4 7.049 −6.3

Ct-1

Ct Ct

tanh

ht

σ (Wf) σ (Wi) σ (Wo)

ft

it

Ct
~ Ot

tanh (Wc)

ht-1

xt

Figure 6: Architecture of the LSTM unit.
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accurately estimate the distribution of travel time over
a given time interval. Te CQ-LSTM model is shown in
Figure 8.

Te loss function of LSTM multiple quantiles is con-
structed using formula (5), and the quantile loss function
under R quantiles is combined. Te quantile, on the other
hand, has its inherent characteristics. Te conditional
quantile of Yt should satisfy

QYt
τ1 Xt

 ≤QYt
τ2 Xt

 ≤ . . . . . . ≤QYt
τr Xt

 . (7)

Te combination layer of penalty terms violating the
quantile predicted value constraint relationship is added in
this study to ensure that the model avoids intersecting
neighboring quantiles as much as possible. Formula (8) is
about the function of the CQ-LSTM model:

Floss � min
W τi( ),b τi( )



r

i�1


N

t�1
ρτi

Yt − QYt
τi Xt

   + λ1W
2 τi(  

+ λ2 

r−1

i�1


N

t�1
ζ QYt

τi Xt

  − QYt
τi+1 Xt

  .

(8)

Te penalty parameter is λ2 in this case. Te rest of the
model is identical to the single-point LSTM quantile regression
model. Te constrained penalty function may successfully
avoid the cross between quantiles when using the CQ- LSTM

model to determine the conditional quantile of trip times at
several quantiles at the same time. Pretraining of the Q-LSTM
model is also included before the overall training of the
CQ-LSTM model. Te initial parameter values of the
CQ-LSTM model are W(τi), b(τi) opt obtained by training
each Q-LSTMi, which can improve the model training ef-
ciency. Te CQ-LSTM model’s training and prediction pro-
cedure is shown in Figure 9.Te following are the specifc steps:

Obtain the optimal
parameters of the model

YES

YES

END

Start

Initialize weights, ofsets

Calculate each output of LSTM

Calculate loss function: L(τi)

L(τi) ≤ 10–6

Reach maximum
number of workouts

Calculate the unit errors of
output layer and hidden layer

Calculate the gradient of each weight and ofset

Update weights and ofsets

NO

NO

Figure 7: Te process of Q-LSTM model training.
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Figure 8: CQ-LSTM model.
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(i) Travel time data and infuencing factors for N
sample days (mostly rainfall, snowfall, holiday data,
etc.) are entered. Te data to get Xt, Yt N are
normalized.

(ii) Te dataset is divided into three sections: training
set, test set, and validation set, and model hyper-
parameters like the neuron number M and penalty
parameter λ1 are set.

Yes

Start

Input and normalize data

Training set or not? No

No

No

No

No

Yes

Yes

Set model hyperparameters

Initialize Q–LSTM weights and biases

Train Q–LSTM under quantile τ (τ=0)

Iteration termination condition is
reached?

Iteration termination condition is
reached?

Yes

Yes

Yes

τ=1?

τ=τ+0.01

τ=τ+0.01

Train CQ–LSTM

Determine the optimal weight and bias parameters

Te optimal hyperparameters of the model are
selected according to the validation error

Te quantile prediction results were obtained by
inverse normalization

End

Validation set or not?

Test set or not?

Figure 9: Te process of CQ-LSTM model training.
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(iii) Temodel parameters of Q-LSTMi (i � 1, 2 ..., r) are
randomly initialized, and Q-LSTMi is trained. Te
initial parameters of CQ-LSTMmodel training were
set to W(τi), b(τi) opt acquired through training.

(iv) Te CQ-LSTM model is trained, W(τi), b(τi) r is
fne-tuned, and the optimal weight and bias pa-
rameters are established.

(v) Te validation set sample is input into the trained
CQ-LSTM model, and the best hyperparameter of
the model based on the validation error is selected.

(vi) Te best hyperparameters were used to input test
samples into the CQ-LSTM prediction model with
t, and the output prediction results were reverse
normalized to obtain r quantiles of travel time at
each time on the anticipated day.

(vii) Te empirical accumulative distribution function is
calculated based on the aforementioned results, the
travel time probability prediction result is com-
pared to the actual travel time value, and the model
is reviewed and analyzed.

2.3.5. Model Evaluation Index. Te paper proposes an
evaluation index that takes quantile constraints into account.
In addition, one of the evaluation indices of the model in this
study is the quantile score (QS), which is a typical index for
evaluating probability prediction results:

(i) Te quantity score (QS) is
Pt,τi

τ, yt τi( ( &9; � max τi − 1(  yt − yt τi( ( ,(

&9; τi yt − yt τi( ( ,

(9)

XQS �
1

r × N


r

i�1


N

t�1
Pt,τi

τ, yt τi( ( . (10)

Here, Pt,τi
is the pinball loss at the τi quantile, yt(τi)

is the predicted value at the time t and quantile τi,
and N is the number of all test moments.

(ii) Constraint Score (CS)

Tis index can consider the constraint relationship be-
tween quantiles and is the normalization coefcient of the
quantile constraint error squared. As can be seen from
equation (7), quantiles have their inherent characteristics.
Terefore, the paper needs to consider the relationship
between these quantiles and propose the following
indicators:

vt,i �
0, yt τi( ≤ yt τi+1( ,

yt τi(  − yt τi+1( , yt τi( ≥ yt τi+1( ,


Xcs �

����������

2θ
N



N

t�1


r−1

i�1
v
2
t,i




.

(11)

vt,i is 0 when adjacent quantiles meet the relationship;
otherwise, it is the diferent between adjacent quantiles,
refecting the degree of constraint violation. θ is the step size

between adjacent quantiles. When XQS and XCS are both
low, it indicates that the predicted quantile is performing
well. In this paper, the model evaluation indexes XQS and
XCS are applied.

3. Experiments

Te section discusses the test results of the proposed
CQ-LSTM model. Te comparisons between CQ-LSTM
with other models are also performed.

To perform the probability prediction model research on
trip times, the foating car dataset for Harbin city from June 1,
2016, toDecember 31, 2016, was used.Tedatawere collected as
training samples from June 1, 2016, to November 30, 2016, with
each sample interval of 15minutes and 192 samples per day.
Tere were 35,136 samples in the training set. Floating auto-
mobile data from December 1 to 15 are included in the test set.
Tere were 2880 samples in the test set. Te training set covers
summer time and winter time. Adding summer time to the
training data is to increase the size of the training data. Deep
neural networks need to use a large amount of data to complete
training. In addition, the model constructed in this paper only
predicts the next 15minutes of travel time, and seasonal var-
iation of travel time is not taken into consideration. Tis article
iterates 100 epochs of LSTM under each quantile using the
Keras deep-learning framework, and the LSTM structure is
a 64-gate structure. Data should be standardized before training
using equation (9), which can enhance training efciency:

Xt �
Xt − Xmin

Xmax − Xmin
, (12)

where Xt is the sample vector at time t and Xmax and Xmin
denote the maximum and minimum values, respectively.

According to the provided information, the CQ-LSTM
model was used to forecast 2880 intervals between December 1
and 15, 2016. With a 0.01 gap, the prediction varied from 0.01
to 0.99. Figure 10 depicts the model loss. Te model has
a decent efect, as shown in Figure 10. Te loss of both the
training and test sets converges to a low level after 100 epochs.
Te test set’s loss converges to 0.0336. Te expected values of
distinct quantile travel rates may be acquired using the model’s
prediction fndings, and empirical cumulative distribution
curves of predicted points can be constructed using themodel’s
prediction results. From the prediction points 0 to 2880, four
intervals (248, 640, 1656, and 2656) are chosen at random.Te
cumulative distribution curves of the four intervals are shown
in Figure 11. Te blue curve represents the actual cumulative
travel rate distribution curve for the specifed time slot, while
the red curve represents the CQ-LSTM model’s anticipated
curve. Te model can completely predict the cumulative dis-
tribution of journey time under the 15-minute time slot, as
shown by the anticipated cumulative distribution curve, and
the predicted value is quite comparable to the true value. It
clearly demonstrates that the CQ-LSTM model developed in
this paper can accurately estimate trip times at diferent
quantiles and forecast travel time fuctuations.

In order to further determine the accuracy of the
CQ-LSTM regression prediction model, this paper selects
the same dataset and adopts the linear quantile regression
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model (L-QR) and the neural network quantile regression
(QRNN) model for training prediction. Te QRNN model
selects the number of hidden layer nodes as 64 and the
penalty parameter as 1. Te L-QR model, QRNN model,
Q-LSTM model, and CQ-LSTM model are compared. Te
statistical pairs of the predicted results of each model are
shown in Table 4. XQS and XCS of all sample days in the test

set are shown in Figures 12 and 13. Comparing the pre-
diction results of diferent models, XQS of the Q-LSTM
model and the CQ-LSTM model is much lower than that of
the QRNN model and the L-QR model, indicating that the
quantile regression model based on LSTM has better pre-
diction performance than the QRNN model. Although the
XQS index of CQ-LSTM is slightly higher than that of
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Figure 10: CQ-LSTM model loss diagram.
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Q-LSTM on some sample days, the XCS index of CQ-LSTM
is lower than that of Q-LSTM. Te CQ-LSTM model can
efectively avoid the crossover of quantiles and improve the
rationality of prediction quantiles on the premise of basically
not reducing prediction accuracy.

To demonstrate the application potential of the
CQ-LSTM method proposed in this paper, the CQ-LSTM
model is compared with the gated spatiotemporal attention
model (GSTA) proposed by Khaled and Alfateh [27]. Te
GSTA method predicts based on the temporal correlation
and spatial correlation of travel time and is able to predict
the average travel time of the target road segment over
a future period. CQ-GSTA can only predict the average
travel time and cannot provide travel time reliability.
CQ-LSTM does not consider the spatial correlation of travel
time but can provide travel time reliability. Te advantage of
GSTA is that it provides travel time reliability for travelers
and enables travelers to judge the probability of reaching
their destination on time.

Studies [10] have shown that cabs follow the same trafc
rules as private cars, and using cabs to represent private cars
does not introduce additional errors. Te driving pattern of
buses is diferent from that of private cars, but buses account
for a smaller share of the overall trafc volume and have
a smaller impact on the prediction results.

4. Conclusion

In order to study the infuence of diferent weather on the
reliability of urban road trip times at diferent times, this
paper uses Harbin road network data and taxi data to cal-
culate travel time and combines Harbin weather data to
conduct an empirical study. In this paper, the log-normal
distribution can better ft the trip rate, and travel time
variability (TTV) is selected as the index to measure the
reliability of travel time. Te infuence of the weather on the
travel time on weekdays and nonweekdays is studied, re-
spectively, and the quantitative analysis is made on the peak
hours alone. In addition, this study also proposes a quantile
regression model of LSTM considering quantile constraints.
It can well predict the travel rate under diferent quantiles,
and the model does better in prediction accuracy and re-
duces the quantile constraints compared with other models
such as QRNN. Based on these studies, the empirical cu-
mulative distribution of the travel rate can be predicted. Te
main fndings of this paper can be summarized as follows:

(1) Te travel rate of vehicles on urban roads in Harbin
can be well ftted by the log-normal distribution. Te
travel rate distribution shows an obvious “heavy
tail” trend.

(2) Diferent weather has diferent efects on the re-
liability of travel time in Harbin at diferent times.
Overall, except for light rain, other weather has
increased the reliability of travel time in early peak
hours, among which moderate rain has the largest
increase, up to 97.4%.

(3) Te quantile regression model based on constrained
LSTM well predicts the travel rate of each quantile at
a specifc time and then forms an empirical cumu-
lative distribution curve. Compared with the QRNN
model, the prediction accuracy is greatly improved
and the degree of violating quantile constraints is
greatly reduced.

Table 4: Comparison of model evaluation indexes.

Models XQS (min/km) XCS (min/km)

L-QR 4.731 3.67
QRNN 1.713 0.792
QR-LSTM 0.354 0.861
CQR-LSTM 0.479 0.135
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For future work, based on the study of the impact of
weather on travel time reliability, it is necessary to consider
the impact of other nonrepetitive variables on travel time
reliability, such as trafc accidents. In addition, the work of
predicting the travel rate of diferent quantiles can be more
studied in buses. Tis can provide travel basis for diferent
types of travelers.
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