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With the rapid development of the electric vehicle industry, the problem of electric vehicle mileage limitation still exists. Recent
studies focus on the minimum energy consumption path planning method or the charging route planning method, with a lack of
studies considering midway charging scenarios. In this study, we propose a graph processing method for the electric vehicle, given
the energy consumption and road conditions, and establish a mixed integer planning model for the electric vehicle path planning
problem. Te objective is the shortest time, with energy consumption as a constraint, aiming at the problem of shortest path
planning for electric vehicles with midway charging. Taking into account real-time trafc information and energy consumption
information related to road conditions, a three-step heuristic algorithm based on preprocessing trafc network, charging path
planning, and subpath planning is proposed for the electric vehicle path planning problem. Te simulation results show that the
proposed method can determine optimal paths including charging stations and efectively alleviate electric vehicles’ “range
anxiety” problem during medium- and long-distance travel.

1. Introduction

New energy vehicles, particularly electric vehicles, are
a promising option for reducing the impact of road trafc on
the environment.Te promotion and application process for
electric vehicles has become the primary restriction for pure
electric vehicle development due to the limited range and
low level of charge pile coverage, leading to the emergence of
the electric vehicle “range anxiety” problem [1]. Especially in
the north with cold winters and the south with hot summers,
the problem is more serious. Based on the existing electric
vehicle power battery materials, electric power storage
technology, and existing infrastructure construction such as
charging piles, it is important to investigate the method of
path planning during driving to alleviate the “range anxiety”
problem and promote the use of electric vehicles.

Te shortest path planning problem (SPP) induced by
the column generation algorithm for solving the vehicle path
planning problem also emerged as a result. Exact algorithms

for solving SPP have been researched extensively, including
Dijkstra’s algorithm [2], Bellman–Ford’s algorithm [3], and
Floyd’s algorithm [4]. Te SPP is often solved by graph,
including minimum energy path planning [5, 6] and electric
vehicle charging path planning [7]. On the other hand,
a variant of the constrained shortest path problem (CSPP)
has also appeared [8], which is described in the literature.
Te diferences between the CSPP and SPP problems are
described in detail, and the common algorithms used to
solve this problem are summarized. Te shortest path
planning problem for electric vehicles can be classifed as
CSPP [9, 10], and various algorithms have been proposed to
solve this problem, such as heuristic algorithms combining
the variable neighbourhood search algorithm and particle
swarm optimization algorithm, or the branch-and-cut al-
gorithm based on the LP algorithm and other accurate
algorithms.

Te CSPP fnds the feasible optimal path subject to the
resource constraint and does not consider the replenishment
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of resources. Te electric vehicle shortest path planning
problem that considers midway charging is closer to the
constrained shortest path problem with relays (CSPPR)
[11–14].Te CSPPR is also defned in the graph and needs to
fnd the feasible optimal path. It requires that the weights
constrained to a certain node cannot exceed the given limit.
Likewise, the power consumption of the electric vehicle
cannot exceed its battery capacity during the trajectory.
However, due to the occurrence of midrecharge, the
problem has more possible feasible paths compared to CSPP.
Recently, the CSPPR has generally been solved by the im-
proved label-correcting algorithm as well as the heuristic
algorithm [15–20].

To solve the shortest path planning problem for electric
vehicles considering charging, a more accurate model of
energy consumption is required. Te establishment of an
energy consumption model is generally divided into two
approaches, including the direct establishment of a simple
model of energy consumption linearly related to driving
distance, and taking into account the payload energy con-
sumption model of the driving power and terrain of the
vehicle and auxiliary equipment (air conditioner, heater,
etc.) [21–26]. In addition, it is feasible to use machine
learning-related methods to predict the driving energy
consumption of electric vehicles based on historical data
[27, 28]. Te driving status of EVs under the infuence of
diferent trafc conditions must also be taken into account,
including the speed, driving time, and energy consumption
of EVs under the infuence of diferent speeds and durations
of driving. Changes in trafc conditions while driving will
afect fnal path planning outcomes. A common way is to
consider the travel time attribute in detail in the road graph
[29–33]. Since diferent road links typically represent dif-
ferent road conditions, path planning for electric vehicles in
diferent trafc conditions can be investigated.

Tis study establishes a mixed integer planning model for
electric vehicles and proposes a three-step heuristic algorithm
for preprocessing trafc network, charging path planning, and
subpath planning. Te model aims at the shortest travel time
with the energy consumption constraints afected by the road
conditions. Simulation results show that the proposed method
can achieve optimal route planning results and efectively al-
leviate the “mileage anxiety” problem of electric vehicles in
medium- and long-distance travel. Section 2 describes the
electric vehicle problem considering charging. Section 3 in-
troduces the graph deloop treatment and the model of the
problem. Section 4 proposes a three-step heuristic algorithm to
solve the problem, and fnally, we verify the model and al-
gorithm through simulation experiments.

2. Electric Vehicle Path Planning
Problem Description

Te electric vehicle path planning problem is established in
the graph G � (N, A) with the shortest path from the origin
to the destination, to determine the feasible optimal driving
path under the satisfaction of the electric vehicle energy
consumption constraint. Electric vehicles are limited by
battery capacity and have a lower range compared to

traditional fuel cars, and during winter and summer climate
extremes, air conditioners will further consume energy and
decrease the efective driving distance. In addition, charging
station facilities for pure electric vehicles are still under
construction. Tere are only a few unevenly distributed in
less-developed cities. Te charging speed of electric vehicles
will take a lot of time, and it is more difcult to popularize
the exchange station than the charging station, which leads
to the limitation of the driving range of electric vehicles and
the problem of electric vehicle mileage anxiety. To address
the problem of mileage anxiety, when planning the path of
electric vehicles, it is necessary to take into account the
dispatch location of charging stations and current battery
energy, so that when insufcient battery power is available
while driving, electric vehicles can reach charging stations to
be charged in time with the remaining current energy, and to
ensure that the whole electric vehicle driving route is
optimal.

Te electric vehicle path planning problem aims at
optimal planning of electric vehicle driving routes, making
decisions on the roadway nodes and charging station nodes
so that the fnal planned paths have the minimum travel
time. Te trafc network model can be developed based on
road conditions and trafc conditions such as road travel
time and the average speed of the trafc fow.Te problem is
defned on a road network that includes node attributes and
road segment attributes. Te node attributes of the road
network include intersection nodes and load station nodes,
and the charge time in each charge station is known and
fxed as an independent constant. Te attributes of the road
segments include the arcs connected to nodes and the
weights of the paths on the arcs, such as path segment length
and path segment travel time. According to the road seg-
ment length and road segment travel time, its speed can be
calculated. Based on the electric vehicle energy consumption
model, the road segment energy consumption can be cal-
culated. Given the origin and destination, the shortest time
path should be on the premise that the electric power is
enough to reach the destination. When the distance between
the starting place and the destination is close and the vehicle
can be driven to the destination without recharging midway,
only the shortest route of driving time from the starting
place to the destination needs to be planned according to the
driving time weights. When the distance between the
starting place and the destination is far and the electric
vehicle needs to charge halfway, it is necessary to determine
the charging station nodes that can be reached by the electric
vehicle and decide the charging station nodes for charging
halfway to fnd the feasible optimal path. When the distance
between the charging station and destination cannot be
reached directly due to the limitation of battery capacity, the
recharging station node needs to be decided before getting
all charging stations and the complete driving path.

Electric vehicle power can be considered as a resource
constraint in the constrained shortest path problem with
relays (CSPPR), and the charging station is equivalent to
replenishing the consumed resources at the point.Terefore,
the problem can be classifed as the CSPPR. Te problem is
to fnd the shortest path among all the paths that satisfy all
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the constraints and allows intermediate replenishment of
satisfying the resource constraints.

As shown in Figure 1(a), it is assumed that the charging
station is node 4, the battery capacity of the electric vehicle is
5, and the travel time of the road section is 1. As can be seen
in the fgure, the power consumption of the road segment is
marked. Tere are two paths from the start point 1 to the
endpoint 5, respectively, expressed as p1 � (1, 2, 3, 5) and
p2 � (1, 2, 3, 4, 3, 5), where path p2 charges at the charging
station node 4. Considering the power limit, only path p2 is
the feasible optimal solution. In Figure 1(b), wij is the travel
time of the road section, and Eij represents the power re-
quired to pass the road section. Assuming that node 2 is
a charging station node, the battery capacity is still 5, and the
feasible path from starting point 1 to ending point 4 includes
p1 � (1, 2, 4), charged at node 2, p2 � (1, 3, 2, 4), no
charge required, and p3 � (1, 3, 2, 4), charged at node 2.
Te three paths are all feasible solutions, but considering the
travel time, the path p2 is the optimal solution. In
Figure 1(a), the only feasible solution is the optimal solution,
which includes the loop (3, 4, 3). It is diferent from the
general shortest path problem. Tat is, the solution with the
loop is allowed in the electric vehicle path planning problem
considering charging.

In summary, the electric vehicle path planning problem
in this study ensures that the electric vehicle has enough
power for driving in a complex trafc road network and
makes decisions about the charging station nodes to fnd the
minimum travel time path.

3. Establishment of the Problem Model

Te electric vehicle path planning problem considering
charging is to determine the optimal path given the actual trafc
network and the battery capacity. Terefore, it is necessary to
determine the connection between nodes in the trafc network,
including whether the nodes connect directly and the weight of
the connected sections between nodes, whichmeans we need to
establish a trafc network model. Furthermore, the power is
related to the speed of the vehicle, and the speed afects the real-
time position of electric vehicles in the road network. All of
these are associated with electric vehicle charging stations.
Terefore, it is necessary to determine the energy consumption
model under the infuence of speed. In order to determinewhen
to charge the vehicle as well as the location of the charging
station, and to plan a time-optimal path, the path planning
model is required as well. Given that the optimal solution exists
with loops, the graph can be processed based on the theory of
strong connectivity and loop detection in the road network
model established by graph theory, and the corresponding
model can be built using the processed graph. As a result, this
section will construct the trafc network model, the processed
graph of the road networkmodel, and the path planningmodel.

3.1. Trafc Network Model. Te urban trafc network is
composed of a large number of adjacent or intersecting
roads, and the trafc fow in diferent sections may be
diferent. To distinguish the diference between trafc fow

on the road and the starting and stopping points of vehicles,
the road network nodes are fxed, and the road between
adjacent nodes is called the road section, so the road is
composed of sections and nodes. Roads have corresponding
trafc directions, and there are certain diferences in road
trafc fow in diferent directions, so the trafc fow in
diferent directions may also be diferent. In many cases, the
road trafc fow in the same direction between the adjacent
two nodes is the same. Te road impedance is used to
represent the road trafc fow attribute. Although there is
only one link between adjacent nodes, each node may have
more than one adjacent node, so there can be more than one
link connecting each node. Te trafc network model is to
establish a directional road network model including a road
impedance model by taking the intersection and start-stop
points of diferent trafc fows between roads as nodes and
the roads connected between the nodes as sections.

3.1.1. Establishment of the Trafc Network Model. Graph
theoretic modelling has become a widely used method in the
feld of trafc research. Te graph is a mathematical
structure used to describe the pairwise relationship between
objects, composed of a large number of given points and
lines connecting points. Nodes and straight segments are
often used to describe the trafc network, where nodes
represent intersections or vehicle start-stop points and
straight segments represent sections between nodes. Tis
study uses the directed graph in the graph theory method to
model the trafc network. In order to consider the direction
of the trafc network, the road attributes in the trafc
network are assigned as the edges’ weights in the graph.

Nodes and sections constitute the essential elements of
the trafc network. Nodes are not actual points but abstract
concepts of actual road points such as intersections. Te
attributes of road trafc fow at nodes will change with time
and afect the fnal planning results. Considering the par-
ticularity of EVRP, the node set also includes charging
stations. To facilitate planning, we should identify nodes
from number 1 to n, representing all the nodes included in
the collection of N � i| � 1, . . . , n{ } and including all
charging stations. A road section links two adjacent nodes,
abstracted as an arc in graph theory. A road can have
multiple sections, and individual sections have the same
properties. Sections should be individually identifed and
associated with nodes. Te section of the serial number (i, j)

is, respectively, nodes at both ends of the road. All sections
are listed in collection A � (i, j)|i ∈ N, j ∈ N, i≠ j . Road
attributes include the length of the road itself and trafc fow
attributes. Te section length is set as dij, representing the
length of section (i, j) and listed in collection D, repre-
senting the length attributes of all sections. Te trafc fow
attribute is represented by the section impedance, which is
specifc to section travel time wij. Te road section im-
pedance can be calculated by using the general impedance
model, and the travel time set of all sections is set as
W � wij|(i, j) ∈ A . Te intersection nodes are labelled 1–5
as shown in Figure 2(a), and the rest of the nodes are stops.
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Te graph-theoretic method abstracts a trafc network of
nine nodes comprising stops, and each node’s connection
relation is illustrated in Figure 2(b).

Te trafc network is defned as G � (N, A, D, W),
where N represents all nodes including intersections and
charging stations, while A denotes road section set, D

represents the length of road sections, and W represents the
travel time set through road sections, which is determined by
the BPR impedance function. On the basis of the above
analysis,

N � i|i � 1, . . . , n{ },

A � (i, j)|i ∈ N, j ∈ N, i≠ j ,

D � dij

(i, j) ∈ A ,

W � wij

(i, j) ∈ A .

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Establishing the trafc network needs to consider the
adjacency relations between nodes, arcs, and other elements,
which can be concluded from connectivity and direction.
Connectivity refers to the connection between nodes in the
trafc network, mainly including whether nodes are adjacent
and whether adjacent nodes are passable. Directivity mainly
considers whether there are diferences in the attributes of
diferent directions of the same road section. Te attributes
of the two directions of the same road section are diferent.
Te road section in a single direction of the trafc network
may be connected but not reachable in the opposite di-
rection, as shown in Figure 3. Te directed graph is typically
used to represent the trafc network.

Trafc network assignments include the adjacency list
method and the adjacency matrix method. Tis study uses
the adjacency matrix method. When node set is
N � 1, 2..., n{ }, the weight of edge (i, j) is set to bij. When
node i is connected to node j, bij � 1; otherwise, bij � inf ,
which indicates the weight is infnite and the edge is not
reachable. bii is set to 0 within the matrix, representing the
node’s distance. Te adjacency matrix E of trafc network
weight is expressed as follows:

(2)

3.1.2. Improved BPR Impedance Function Model. Road re-
sistance is a quantitative index needed to select the optimal
path. Diferent sections (i, j) correspond to diferent road
resistance. Road resistance can represent diferent concepts,
including road trafc time, section length, and electric ve-
hicle in the corresponding section of power consumption or
travel expenses. Tis study uses travel time as trafc fow
attributes. Road resistance is closely related to the road trafc
fow, which is the number of accessible vehicles in this
section during a specifc period. When the trafc fow
density increases, the trafc volume increases frst and then
decreases, and the trafc condition generally changes from
unchecked to congested.

To simulate this process, the US Highway Bureau has
put forward the BPR impedance function [34] through
regression analysis of numerous data and established the
monotonically increasing function related to road travel
time and road fow. However, the function can’t refect the
changes in trafc conditions with increasing trafc vol-
ume. As shown in Figure 4, considering the large number
of intersections in the city and the travel time of in-
tersection nodes related to the trafc volume of the sec-
tions, the road weight is divided into two parts: the
attributes of intersections and road sections. Section
travel time is the sum of intersection travel time and linear
section passage time, excluding any intersection. Te road
resistance wij of section (i, j) consists of section imped-
ance Rij and node impedance Zi, which are determined by
the trafc state of sections. Road resistance wij is defned
as follows:
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Figure 1: An example of the electric vehicle path planning problem.
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wij � Rij + Zi. (3)

Te road impedance model Rij describes the linear
section of travel time related to trafc volume. When road
trafc increases, the corresponding road travel time will
increase. When the trafc increases to a certain degree, the
road will be inaccessible. Te BPR model introduces road
saturation S, which is positively correlated with trafc fow
density. Due to the limit of the number of vehicles that the
road can accommodate, there is a maximum road trafc
density. Bounded by trafc fow 0 < S≤ 1 and trafc jam
1 < S≤ 2, the passage time of linear sections is described as
follows:

Rij �
t0 1 + αS

β
 , 0< S≤ 1,

t0 1 + α(2 − S)
β

 , 1< S≤ 2,

⎧⎪⎨

⎪⎩
(4)

where α and β are the parameters to be calibrated which are
afected by trafc network trafc conditions, usually α � 0.15
and β � 4.

Te node impedance model Zi describes the travel time
of intersection nodes. Te travel time calculation at in-
tersections is more susceptible to trafc density than the
section impedance model.Terefore, the required saturation
division is more precise when the road is unblocked. When
0 < S≤ 0.8, the trafc situation at the intersection is rela-
tively stable, and the number of vehicles reaching the in-
tersection is equal to the number of departures. At this time,
the impedance at the intersection only includes the delay and

random delay caused by the signal lamp. When the trafc
condition becomes worse and the road saturation is more
signifcant than 0.8, the intersection trafc time also includes
the waiting time of vehicles passing through the intersection.
Te node impedance model is established as follows:

Zi �

9
10

d(1 − λ)
2

2(1 − λS)
+

S
2

2q(1 − S)
 , 0< S≤ 0.8,

d(1 − λ)
2

2(1 − λS)
+
1.5 S − S0( 

1 − S
S, S> 0.8,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where S0 refers to the saturation critical value and d, λ, and q

are the infuencing factors of road trafc conditions, usually
d � 30, λ � 0.7, and q � 0.8.

In the entire impedance model, saturation S is the only
variable, and other parameters are calibrated according to
trafc network conditions. Te congestion status of the
trafc network is determined, and path planning is carried
out according to the saturation change of each road section.
Te model parameters are defned in Table 1.

3.2. Electric Vehicle Energy Consumption Model. EVRP
needs to determine whether the electric power is enough
for the whole journey. In other words, it is necessary to
determine the power consumption of electric vehicles on
the road. Te power consumption of electric vehicles on
the road is related to many factors, such as air conditioning
temperature, air resistance, tire friction, and other factors.
Te braking force accelerates and decelerates when the car
runs at a constant speed. At a constant high speed, the air
resistance consumes the most energy, and at a lower speed,
the power transmission system causes the most energy
loss. From the perspective of aerodynamics, the energy
consumption of electric vehicles is afected by air re-
sistance and driveline resistance factors at a constant
speed, ignoring the infuence of auxiliary system factors
such as air conditioning temperature. Te energy con-
sumption model of electric vehicles was established by
referring to the energy consumption formula related to
driving speed [35]:

Eij v, wij  � 0.0385v
3

+ 0.5v
2

+ 85.25v + 575 wij, (6)
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Figure 2: Te real trafc network and the corresponding graph.
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Figure 3: Te example of direction attribute.
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Figure 4: BPR impedance.
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where v is trafc speed, which is the ratio of road section
distance to road section impedance. According to the known
speed v and travel timewij, the energy consumptionmodel is
used to calculate the power consumption required when
passing the road section and determine whether the vehicle
needs to charge midway according to the road section power
consumption.

3.3. Eliminate Loop and Tarjan’s Algorithm. As the optimal
solution will allow loop for the electric vehicle path
planning problem considering charging, the loop must
include the charging station node when it exists in the
optimal solution. It is assumed that if there is no charging
station node in the loop, there is no loop in the optimal
path. Te proof of this proposition is simple. If there is no
charging station node in the loop Q and the loop Q is in the
optimal path, it can be deduced that the optimal path does
not need to charge in Q; thus, the optimal path does not
need to go through Q, and there is no loop in the optimal
path, which is contradictory to the assumption. So when
the loop exists in the optimal solution, it must include the
charging station node.

Te existence of charging loops for the optimal path
can be divided into the following cases: the loop directly to
charging station nodes and the loop including other
noncharging station nodes, as shown in Figures 5(a) and
5(b). Te optimal path in Figure 5(a) is [1,2,3,2,4] with
node 3 being the charging station node, where [2,3,2]

forms the loop. Te optimal path in Figure 5(b) is
[1,2,3,4,5,2,6] with node 3 being the charging station node,
where [2,3,4,5,2] forms the loop. Since only the loop
containing charging station nodes needs to be considered
when fnding the optimal path, it can be inferred that only
the subloop containing charging stations needs to be
eliminated from the graph. It is considered to use the idea
of loop detection and Tarjan’s algorithm to
eliminate loops.

First, the concept of strongly connected components is
introduced. In a directed graph G, two vertices are said to be
strongly connected if there is a directed path from u to v and
a directed path from v to u. We say that a directed graph G is
a strongly connected graph if every two vertices are strongly
connected. Te strongly connected subgraph of a directed
nonstrongly connected graph is called a strongly connected
component. Te principle of forming a connected graph is
that the tree itself is unidirectionally connected. If a child
node points to its unique corresponding parent node, it
forms a loop or a strongly connected graph.

Te strong connectivity component is equivalent to the
loop in the graph. If the detected loop includes the charging
station node, it is equivalent to the strong connectivity
component including the charging station node in its child
node. In Figure 5(a), the strong connectivity component
(2,3,2) includes the charging station node, and the corre-
sponding parent node is node 2. Te strong connectivity
component is formed when there are child nodes pointing to
the parent node in the loop. In Figure 5(a), it is formed by
child node 3 pointing to the parent node 2. Delooping can
make child node 3 point to virtual node 2a, while node 2 and
node 2a actually represent the same. When node 2 points to
node 2a, the strongly connected component (2,3,2) in
Figure 5(a) becomes (2,3,2a) in Figure 5(c), which does not
constitute a loop, and the graph processing is completed. At
this time, using Figure 5(c) for path planning, the resulting
shortest path will not include loops. After replacing virtual
node 2a with the original node 2, the fnal path planning is
completed.

Figure 5(a) represents a single child charging station
node that is included in loop. If the loop contains multiple
child nodes, as in Figure 5(b), the delooping method is the
same, except that the child node pointing to the parent node
is not the charging station node. Te delooping needs the
child node 5 directly to the parent node 2 that points to the
virtual node 2a, and the virtual node 2a is actually the same
as the original node 2. Te graph after the delooping is
shown in Figure 5(d).

Te above analysis shows that it is necessary to frst
detect the loop containing the load station node and then
fnd the parent node of the loop to fnish processing the
graph. Tarjan’s algorithm can efectively detect all strongly
connected components of the graph and their corresponding
parent nodes. It is based on the depth-frst search method.
Te network deloop processing process is shown in Table 2.

3.4. Path Planning Model

3.4.1. Problem Description. Te objective of this problem is
to fnd the shortest time path among the feasible paths. To
solve it, we introduce a directed graph after the delooping
process satisfying the power constraint. Te departure s and
destination t in the graph have been defned. Based on the
BPR function, the travel time in the road network can be
calculated, and the energy consumption value of the electric
vehicle can be calculated by equation (6). Charging is
permitted at the charging station when the electric vehicle is
low on electricity. Te path planning optimization objective

Table 1: Parameters and defnitions of improved BPR resistance model.

Parameters Defnitions
t0 Te trafc time of the road segment when the trafc volume becomes 0
α, β Impact factor of resistance model
q Vehicle arrival rate of each node
λ Green time ratio
d Trafc light cycle
S Trafc saturation
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is to minimize the sum of road section travel time and
charging time at charging stations.

Te problem is defned in the processed graph
G � (N, A), which has eliminated all loops containing
charging stations. Te set of all nodes is N � 1, ..., n{ }, and
the set of all edges is A � 1, ..., m{ }. Te set of charging
station nodes is C � k1, . . . , ky  ⊂ N. Te set of virtual
nodes is Nx � la1, la2, . . . , lax  ⊂ N, and the original node
set corresponding to the virtual node is
Nx
′ � l1, l2, . . . , lx  ⊂ N, in order with nodes in Nx corre-

spond to each other. Nx and Nx
′ are generated after

delooping and have no practical signifcance, which only
symbolizes deloop processing.

Te node attribute includes power Bi when reaching the
node i and power Bi

′ and leaving the node i. If Bi is equal to
Bi
′, the electric vehicle is not charging at the node i. If not, the

vehicle is charging at the charging station i, and Bi
′ � E. Road

link (i, j) includes the travel time attribute wij and the power
consumption attribute Eij. Figure 6 illustrates the node
attributes and section attributes on the road network. Te
origin is node 1, and the destination is node 4. Assuming that
the battery capacity of the electric vehicle is 5, there are three
feasible paths from the starting point to the ending point,
denoted by path P1 � (1, 2, 2a, 4), P2 � (1, 2, 3, 2a, 4), and
P3 � (1, 3, 2a, 4). Te path P2 and P3 can charge at charging
station node 3 or not. According to the power consumption
of the road, path P2 and P3 are feasible only charging at the
charging station 3. It is assumed that P2 and P3 are both
charged at the charging station. Path P1 is not feasible. Te
remaining power of the electric vehicle is 2 when it leaves
node 2, while the power consumption of the electric vehicle
needs 3 when it passes through the road section (2a, 4). In

2
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Figure 5: An example of the optimal solution containing loops.

Table 2: Road network deloop treatment method.

Steps of using Tarjan’s algorithm to deloop
Input Te graph G, the number of nodes in graph n, and the set of charging stations C

Output Te set of the loop containing charging stations and its corresponding parent node i

in G

1 Using Tarjan’s algorithm to perform loop detection, determining all loops and the
corresponding parent nodes in the graph G

2 Determine the set of loops including charging station nodes circle

3 Determine the child nodes directly pointing to their parent nodes in the loops of the
circle

4
All the child nodes in the circle that points to the parent node turn to point to the
virtual parent node, where all the original parent nodes point to their respective

virtual parent nodes
5 Deloop processing completed
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path P2 and P3, the remaining power when leaving charging
station node 3 is 5. Te total power consumption of the path
after charging is 4. Path P2 and P3 are both feasible. Since the
goal of this problem is to minimize the travel time, the total
travel time of path P2 is 6 and P3 is 7, so the optimal path is
P2. Te node attribute marked on the fgure is the power Bi

and Bi
′ of each node corresponding to the optimal path P2.

3.4.2. Problem Hypothesis

(1) It is assumed that the trafc conditions will not
change

(2) Te electric vehicle is fully charged when starting
from the origin

(3) Do not consider the queuing time at charging
stations

(4) Do not consider the energy recovering when the
electric vehicle slows down

(5) It is assumed that after arriving at the charging
station, the vehicle will be fully charged

(6) Te road network has been delooped, eliminating the
loops of the charging station node

3.4.3. Parameter Defnition. Te notation of the parameters
is shown in Table 3.

3.4.4. Decision Variables. Tis study should determine the
path nodes and charging station nodes passed from the
starting point to the endpoint. Terefore, the decision
variables are as follows:

xij �
1, electric vehicle travelled fromnode i to node j,

0, otherwise,


yk �
1, electric vehicle charged at charging station k,

0, otherwise.


(7)

Considering that the remaining power of electric ve-
hicle varies depending on the selected path, it is also
a variable that must be decided. Te electric vehicle power
when arriving at the node Bi and leaving the node Bi

′ difers
depending on whether the vehicle is charged at the
charging station node. When reaching all nodes, the power
needs to be greater than 0 to ensure that the EV can reach
the destination.

3.4.5. Optimization Objective. Te objective of the EVRP is
usually the shortest distance, the shortest travel time, or
minimum energy consumption. Among these, the optimi-
zation goal of EVRP in this study is the shortest total travel
time considering the actual situation. Because of the
charging problem of electric vehicles, the total driving time
includes the time spent on each road section and the time
needed to charge at the charging station. Terefore, the
optimization objective of this study is to minimize the sum
of section-time wij and charging time rk:

Z � min 
i∈N,j∈N,i≠j,k∈C

wijxij + rkyk.
(8)

1 2

3

4(2, 3)

(2, 1) (1, 1)

(1, 3)2a(0, 0)

B1 = 5 B2 = B2'=2

B3=1
B3'=5

B2a = B2a'=4 B4=1

(5, 2)

Figure 6: An example of the electric vehicle shortest path planning problem.

Table 3: Parameter defnitions.

Parameters Defnitions

E
Battery power when the electric vehicle is fully

charged
Eij Power consumption weight in segment (i, j)

t Destination
C Te set of charging stations
N N � s∪g∪C∪V 

Bi
′ Power when leaving the node i

rk Charging time at charging station k

Bi Remaining power of electric vehicle arriving at node i

wij Travel time in segment (i, j)
s Departure
N1 N1 � C∪V{ }

V Te set of intersection nodes
N′ N′ � t{ }∪V
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3.4.6. Constraint Equations

(1) Electric vehicle power constraints: Trafc network
nodes include charging station nodes and in-
tersection nodes. If electric vehicles need to be
charged at the charging station node, the electric
quantity of electric vehicles leaving the charging
station is E, whichmeans the electric vehicle power is
100%. When electric vehicle arrives at intersection
nodes or charging stations without charging, the
electric quantity is Bi, which means the remaining
electricity at the node i. Te electric quantity at the
next node j is equal to the electric quantity of the
current node i minus Eij consumed on the way. To
ensure that the electric car has enough power, it is
required that the power when arriving at any node is
greater than zero.

Bs � E,

Bi
′ � Eyi + Bi 1 − yi( , ∀i ∈ C,

Bi
′ � Bi, ∀i ∈ N

′
,

0≤Bi ≤E, ∀i ∈ N,

Bj ≤Bi
′ − Eijxij + E 1 − xij , ∀i, j ∈ N, i≠ j, i≠ t, j≠ s.

(9)

(2) Flow balance constraints: An electric car can only
make one trip from s and, ultimately, only one trip to
g. When the vehicle reaches node i, it must drive
away from the same node i to ensure the fow balance
of the node i.


j∈N

xsj � 1, j≠ s,


i∈N

xig � 1, i≠ t,


i∈N,i≠ t

xij − 
i∈N,i≠ s

xji � 0, ∀j ∈ N1, i≠ j.

(10)

(3) Constraints on the value of decision variables:

xij � 1, 0{ }, ∀i, j ∈ N, i≠ j,

yk � 1, 0{ }, ∀k ∈ C.
(11)

Te model is a nonlinear mixed integer pro-
gramming model, and Constraint 9 appears as
a product of decision variables that can be linearized
by introducing auxiliary variables.

3.4.7. Model Linearization. Constraint 9 is nonlinear mainly
because of the product of decision variables Biyi, the aux-
iliary variable Xi � Biyi, Xi ∈ [0, E], and the following
supplementary constraints are introduced:

Xi ≤Eyi,

Xi ≤Bi,

Xi ≥Bi − E 1 − yi( .

(12)

Constraint 9 becomes a linear constraint.

Bi
′ � Eyi + Bi − Xi,∀i ∈ C. (13)

Te model linearization is completed and can be solved
by CPLEX, and it will be validated in Section 5.

4. Three-Step Heuristic Algorithm of EVRP

In this study, we propose a three-step heuristic algorithm to
solve the path planning problem of electric vehicles, in-
cluding road network preprocessing, charging path planning
and subpath planning. Te objective is to solve the time
shortest path, and the algorithm frst determines whether
charging is required on the way of driving. When charging is
needed, the problem is divided into two parts: fnding the
time shortest charging path and planning the time shortest
path from the starting point to each charging station node. It
is assumed that the planned charging path is the shortest
time path from the starting point to the endpoint, and the
subpaths between the nodes of the charging path are con-
nected to the fnal shortest time path. Terefore, it is im-
portant to determine the road network when planning the
charging path. If the weight of the preprocessed road net-
work is the time consumption of the feasible shortest path
between the corresponding charging station nodes, the
planned charging time shortest path is the optimal path. Te
preprocessed road network is a feasible road network for
charging, and all the nodes connected in the road network
are feasible and can be reached within the range of electric
vehicles.Te weights between the nodes are the optimal path
weights of the corresponding feasible paths.

Te feasible path means that the total energy con-
sumption of the path is less than the electric vehicle battery
capacity, and the vehicle does not need to be charged while
driving. If the minimum energy consumption path A is
feasible, there must be a feasible path between the two nodes.
If the minimum time path B between nodes is feasible, the
optimal path between two nodes is the minimum time path
B. Te road network preprocessing is to determine the
feasible charging trafc network. Charging path planning
will plan the shortest time path according to the feasible
charging trafc network, and subpath planning is to de-
termine the feasible shortest path between nodes according
to the planned charging station nodes. Te electric vehicle
path planning method is shown in Figure 7.

4.1. Trafc Network Preprocessing. In order to avoid re-
peatedly computing the path energy consumption between
each node of the initial road network, especially the path
energy consumption between the charging stations and the
starting and ending points, and to speed up the path
planning, the road network preprocessing is put forward.
Te charging feasibility road network G1 � (C1, A1, D1)

contains only the starting point, charging station node, and
the endpoint. Te road network A1 includes the information
of feasible paths of road link (i, j) and node i, j ∈ C1. Te
weight set D1 includes the information of optimal values of
feasible paths of link (i, j). Te road section travel time is
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determined by the BPR road resistance function in equation
(5). Te starting point s, the ending point t, and the set of
feasible charging station nodes C are considered as the set of
nodes C1 in the road network G1. Te road network pre-
processing steps are as follows.

Step 1: Using Bellman–Ford’s algorithm to fnd the
time shortest path Ptij of each two nodes (i, j) in C1.
Step 2: Using the energy consumption of the road
section calculated by equation (6) to determine energy
consumption EPtij

of corresponding path Ptij. If
EPtij
<E, the time shortest path between road sections

(i, j) is the feasible optimal path, and A1(i, j) � 1. Te
charging feasibility road network in the road section
(i, j) weight is WPtij

, which is the total time consumed
corresponding to the path Ptij, and D1(i, j) � WPeij

. If
EPtij
>E, the energy consumption of the path EPeij

corresponding to the energy optimal path Peij is
calculated.
Step 3: If EPeij

<E, it means that there is a feasible path
between nodes (i, j), and set A1(i, j) � 1. Te weight of
the section (i, j) is temporarily determined as WPeij

. If
EPeij
>E, there is no feasible path between nodes (i, j),

and set A1(i, j) � inf , D1(i, j) � inf .
Step 4: When every two nodes of C1 have determined
whether the corresponding path is feasible, the
charging feasibility road network G1 � (C1, A1, D1) is
processed completely. For example, the path
i, ..., k, ..., j  from node i to node j via multiple in-
tersection nodes is feasible, and it is considered as
a generalized road section. Te route connected be-
tween two nodes is considered as a virtual edge
ask ∈ A1, and the cumulative weight between two nodes
dsk ∈ D1 is the weight of the virtual edge.

Road network preprocessing is to determine the
charging feasibility road network, including determining
whether there is a feasible path between nodes and de-
termining the optimal value of the feasible path between
nodes. However, solving the feasible optimal path between
all nodes is time-consuming and costly. We plan the min-
imum time path and the minimum energy path to replace
solving the feasible optimal path.

First, when the minimum path between two nodes is
feasible, the minimum time path must be the feasible op-
timal path between the corresponding nodes. Terefore, the
feasible optimal path can be solved by fnding the time
minimum path. Assuming that the feasible optimal path
between two nodes is A, the minimum time path between
nodes is B, which is a feasible path. A and B are diferent
paths, and the path target value is Ta, Tb. Since path B is
feasible and is the time minimum path, it can be concluded
that Tb <Ta. However, path A is the feasible optimal path.
Among all feasible paths, Ta must be the smallest, so there
must be Ta <Tb. Te assumption is not true, so it is proved
that when the target minimum path between two nodes is
feasible, the target minimum path must be the feasible
optimal path between the corresponding nodes.

When the time minimum path is not a feasible path, in
order to reduce the solution scale, the energy consumption
minimum path is solved directly to process the charging
feasibility road network. When the minimum energy con-
sumption path between nodes is feasible, there must be
a feasible path between the nodes, and when the minimum
energy consumption path between nodes is not feasible, the
two nodes must have no feasible path in the road network.
Assuming that the minimum energy consumption path is
not feasible, there is a feasible path between nodes (i, j), that
is, EPeij
>E and path Pxij exists. Its energy consumption

EPxij
<E, so EPxij

<E<EPeij
can be deduced. However, the

energy consumption of the energy minimum path EPeij
must

be less than EPxij
. Te assumption is contradictory and does

not hold. As a result, when the minimum energy con-
sumption path between nodes is not feasible, there must be
no feasible path in the road network. When the minimum
time path is not feasible and the minimum energy con-
sumption path is feasible, the weight between nodes (i, j) is
WPeij

at charging feasibility road network G1. When the path
with the lowest energy consumption is not a feasible path,
there must be no feasible path between nodes, and the weight
value is set to the maximum value. Trough the above
treatment, we can get the charging feasibility road network.

Te charging feasibility road network includes node path
feasibility information and time-consuming weight in-
formation between nodes. Due to the energy recovery
phenomenon during the driving of electric vehicles, the
adjacency graph with energy consumption as the weight
value may have negative weight value. Terefore, this study
uses Bellman-Ford’s algorithm to plan the shortest path
between each node.

As shown in Figure 8(a), nodes 1 and node 9 are the
starting point and the ending point, respectively. Node 3,
node 4, and node 8 are the charging station nodes. Only the
starting point, the charging station nodes, and the ending

The shortest path planning from
starting point to the end point 

Energy consumption of the path
is within the security threshold? 

Y

Determine the final path of original
traffic network

N Traffic network
preprocessing 

End

Start

Charging path planning

Sub-path planning

Figure 7: Te fowchart of the problem solution.
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point are reserved during trafc network preprocessing.
Only nodes 1, 3, 4, 8, and 9 are reserved. Ten, the feasibility
of paths between these nodes is judged to determine whether
the paths are feasible. Tat is, the feasible paths between
nodes 1, 3, 4, 8, and 9 are determined. Calculating the
corresponding power consumption of paths according to the
road power consumption, compared with the electric power
safety threshold, the judgment result is the virtual path (1, 3),
(1, 4), (3, 4), (4, 8), (4, 9), and (8, 9) for the feasible path
between nodes. Te weight of these feasible paths in the
feasible charging network is set to the total time con-
sumption of the feasible optimal path between nodes. Te
paths between nodes (1, 8), (3, 8), and (3, 9) are infeasible,
and the trafc network weights of these infeasible paths are
set as the maximum value. Te charging feasibility road
network obtained by trafc network preprocessing is shown
in Figure 8(b).

Te steps of the trafc network preprocessing algorithm
are shown in Table 4.

When the charging feasibility of road network
G1 � (C1, A1, D1) is determined, the road network with path
feasibility information between nodes in C1 is formed, where
C1 � s, c1, · · · , ck, t  ⊂ N, s, and t are starting points and
endpoints, respectively, and c1, · · · , ck denote the charging
stations in the road network. A1 � aij|i, j ∈ C1, i≠ j  ⊂ A

denotes the set of edges of the road network G1. For example,
supposing the starting point s can reach the charging station
c1 without charge, at this time asc1

� 1. Otherwise, asc1
� inf .

D1 denotes the weight of the corresponding edge. If aij � 1,
the nodes i and node j are connected, and the weight be-
tween the two nodes is the value of the feasible optimal
path dij.

4.2. Charging Path Planning Algorithm. As the feasible
charging trafc network G1 � (C1, A1, D1) is determined,
the trafc network with only the start point, charging station
nodes, and endpoint, and the path feasibility information
between nodes is formed, where C1 � s, c1, · · · , ck, g  ⊂ N, s

and g are the start point and endpoint respectively, and
c1, · · · , ck orderly represent charging stations in the trafc
network. A1 � aij|i, j ∈ C1, i≠ j  ⊂ A represents the edge
set in the trafc network G1. For example, suppose that the
starting point s can reach the charging station c1 without
charge, at which time asc1

� 1 and cannot be reached oth-
erwise, asc1

� inf , and inf represents the maximum value. D1
represents the value of the corresponding edge. If aij � 1, dij

is the Euclidean distance between two nodes, and the
maximum value between disconnected nodes is
D1 � dij|i, j ∈ C1, i≠ j .

Te charging feasibility road network path weights are
set to the feasible optimal path weights between nodes. As
a result, the planned charging path must be the feasible and
optimal path when solving the charging path from the
starting point to the endpoint based on the charging fea-
sibility road network G1. Te charging path in G1 is
Pa � s, ck1, ck2, · · · , ckm, t , and the path Pa takes time

WPa � WPtsk1
+ . . . + WPtknt

. Assuming that there exists
a feasible optimal path Pb≠Pa and the two paths pass
through diferent charging stations, the path Pa must be the
optimal path in G1 and Pb does not exist. Te hypothesis is
contradictory. Te path Pa is the optimal path.

Tis section is to solve the path planning problem whose
objective is mindij∈D1

dij. Standard shortest path planning
algorithms have been submitted a lot, such as Dijkstra’s
algorithm, Floyd’s algorithm, and Bellman–Ford’s algo-
rithm. Considering that Bellman–Ford’s algorithm can solve
the shortest path planning problem in a graph structure with
a negative weight edge, this study uses Bellman–Ford’s al-
gorithm. Based on the idea of traverse and cycle, the steps of
using Bellman–Ford’s algorithm to plan the charging path
between terminals are as follows:

Step 1: First initializing the distance from s to each node
in C1, and it is set to be infnite except s.

dis[s] � 0, dis cki  �∞, cki ∈ C1\s. (14)

Step 2: K1 � ki|A1(s, cki) � 1  denotes the set of all
connected nodes of the starting point s. According to
the road section connectivity within A1, if the road
section A1(s, cki) � 1, determine whether the cumula-
tive weight value D1(s, cki) will be better than the
current distance from starting point to node cki. Since
the initial distance to each node is set as infnite, the
distance from s to node cki can be updated to D1(s, cki).
Update all node distances in the set K1.
Step 3: If the node cki is not the endpoint when
updating the node distance, continue to update all
connected nodes ckj ∈ kj|A1(cki, ckj) � 1  of cki. We
need to judge whether the cumulative weight of the
starting point s to ckj is less than the current distance
of ckj. When dis[ckj]> dis[cki] + D1(cki, ckj), the
distance of kj needs to be updated as
dis[cki] + D1(cki, ckj). Stop updating until the current
node is the endpoint. At this point, the total time
taken for the path from the endpoint is the current
node distance di s[t].

Te steps of the charging path planning section are
shown in Table 5.

4.3. Subpath Planning. According to the charging path
planning algorithm for the virtual shortest path, the virtual
shortest path can be divided into subpaths with adjacent
nodes, denoted as s, ck1|ck1, ck2|, . . . , |ckm, t . Each blade
path should be determined as the actual path in the initial
network. Since the problem of electric vehicle power
shortage has been solved by trafc network preprocessing
and charging path planning, subpath planning only needs to
consider the optimal driving time. Te actual driving route
of each subpath needs to be determined, and the goal is the
shortest driving time. Finally, the shortest time path is solved
for each subpath group to obtain the fnal driving path.
Taking subpath s, ck1  as an example, using Bellman–Ford’s
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algorithm to obtain the optimal path
c0 � s, hc00, hc01, · · · , hc0p, ck1 , which is p nodes passed by
and where hc0i is the intersection node I in sequence passed
in subpath. As shown in Figure 9(a), the charging path
planning result is 1, 4, 9{ } in the feasible charging network.
Te shortest time path from starting point 1 to charging
station node 4 in the initial road network is 1, 2, 4{ }, and the
shortest time path from charging station node 4 to terminal
9 is 4, 7, 9{ }. Te fnal shortest path is 1, 2, 4, 7, 9{ }, as
shown in Figure 9(b).

Subpath planning algorithm steps are shown in Table 6.

5. Simulation Experiment

In this section, the model and the three-step heuristic al-
gorithm are validated and compared for analysis. Te ex-
periments are run on AMD Ryzen 7 @ 3.20GHz. In this
study, simulation experiments are used to verify the cor-
rectness and validity of the algorithm, using public road
network datasets for experimental analysis [36]. Te model
and algorithm are validated on fve diferent sizes of road
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Figure 8: Te original trafc network and the feasible charging trafc network.

Table 4: Te steps of the trafc network preprocessing algorithm.

Trafc network preprocessing algorithm

Input
Original road network G � (N, A, W, D), the set of charging stations C, (C⊆N),
the speed of road link vij � dij/wij, the energy consumption of road links Eij, and

the battery capacity E

Output Charging feasibility road network G1 � (C1, A1, D1)

Step 1

Using Bellman–Ford’s algorithm to fnd the time shortest path Ptij and energy
minimum path Peij of each two nodes (i, j) in C1. Calculating the corresponding

energy consumption EPtij
and EPeij

of the two paths
D1⟵ inf , A1⟵ inf

For all i ∈ C1
For all j ∈ C1

Ptij � i, . . . , k, . . . , j , Peij � i, . . . , k, . . . , j 

EPtij
� (i,k)∈Ptij

Eik, EPeij
� (i,k)∈Peij

Eik

Step 2

Determine whether the shortest time path Ptij is feasible, and the corresponding
weights of the road sections (i, j) in the road network G1 are set to the

corresponding path time consumption WPtij

For all i ∈ C1
For all j ∈ C1
if EPtij
<E:

if i! � j:
A1(i, j) � 1

WPtij
� (i,k)∈Ptij

wik, WPeij
� (i,k)∈Peij

wik

D1(i, j) � WPtij

Step 3

When Ptij is not feasible, determine whether the shortest energy consumption path
Peij is feasible. If Peij is a feasible path, the weight of the section (i, j) is set to the

path time consumption WPeij
. If not, the weight has great value.

For all i ∈ C1
For all j ∈ C1
if EPeij
<W:

if i! � j:
A1(i, j) � 1

D1(i, j) � WPeij
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networks, namely, Sioux Falls network, Anaheim network,
Barcelona network, Austin network, and Berlin Center
network, respectively. Te model was solved using Python
3.7 to call IBM ILOG CPLEX 12.9.0, with a solution time
limit of 3000 s. Te algorithm was also coded in Python 3.7.

5.1. Simulation Environment. Te road network needs to be
set up with road travel time, the connection of roadway
sections, the length of the roadway sections, and the free fow
time parameters. We use the BPR roadway impedance
function to determine the travel time. Te saturation degree

Table 5: Charging path planning.

Charging path planning algorithm
Input Te charging feasibility road network G1 � (C1, A1, D1)

Output Te necessary charging path between the start point and the endpoint
c � s, ck1, ck2, · · · , ckm, t 

Step 1

Given the set C1, initializing the distance from s to each node in C1, and it is set to be
infnite except the starting distance itself

dis[s] � 0
dis[cki] �∞, cki ∈ C1\s

Step 2

Update all node distances in the set K1
for allcki

∈ cki|A1(s, cki) � 1 

if dis[cki]> dis[s] + D1(s, cki)

dis[cki] � dis[s] + D1(s, cki)

Path[cki].add(s)
end if
end for

Step 3

If cki ≠g, update all connected nodes ckj ∈ kj|A1(cki, ckj) � 1 

for all ckj ∈ kj|A1(cki, ckj) � 1 

if dis[ckj]> dis[cki] + D1(cki, ckj)

dis[ckj] � dis[cki] + D1(cki, ckj)

Path[ckj].add(cki)
end if
end for

Step 4
Determining a series of charging stations from the starting point to the endpoint

ck1, ck2, · · · , ckm ∈ Path[g]

c � s, ck1, ck2, · · · , ckm, g 
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Figure 9: Te optimal charging path and the corresponding original path.

Table 6: Subpath planning algorithm steps.

Input Initial network G � (N, A, W, D); charging path c � s, ck1, ck2, · · · , ckm, t .

Output Final path between starting point and endpoint:
s, hc00, hc01, · · · , hc0p, ck1, · · · , ckm, hcm0, hcm1, · · · , hcmq, t .

Step 1: subpath division Dividing the charging path into the starting and ending points of each subpath,
which is represented as s, ck1|ck1, ck2|, . . . , |ckm, t .

Step 2: the shortest path solution of each subpath

Taking the subpath s, ck1  as an example, Bellman–Ford’s algorithm is called to
obtain the time-optimal path c0 � s, hc00, hc01, · · · , hc0p, ck1  of the subpath. Ten,
the optimal subpath c0 is stored, and the path of the next pair of nodes is solved until
the subpath between ckm, the last charging station, and the endpoint g is solved.

Step 3: subpath merging Deleting the duplicate start and endpoints between each subpath and merging them
into the fnal path s, c0, ck1, c1, ck2, · · · , ckm, cm, t .

Step 4 Te actual fnal path from the start point to the endpoint is determined.
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S is the only variable in the impedance model, and the rest of
the parameters are calibrated according to the road network
conditions. Te saturation degree is randomly generated in
0–2, and the congestion condition of the road network is
determined according to the saturation degree of each road
segment. Taking the Sioux Falls network as an example, the
saturation, free fow time of each road segment, and the road
segment travel time data calculated using the BPR road
resistance function are shown in Table 7.

According to the road section travel time calculated by
BPR road resistance with the length of the road section in the
data set, the average travel speed of the road section is
determined. Te corresponding road section energy con-
sumption is calculated according to equation (6), and part of
the data is shown in Table 7.

Te Sioux Falls network includes 24 nodes with 76 edges.
Te Anaheim network includes 416 nodes with 914 edges.
Te Barcelona network includes 1020 nodes with 2522 edges.
Te Austin network includes 7388 nodes with 18,961 edges.
Te Berlin Center network consists of 12,981 nodes and
28,376 edges. Te number of charging stations in each road
network is set to one-tenth of the number of nodes in the
whole road network. Te locations of charging station nodes
are evenly distributed in the road network, and in the
Anaheim network, Barcelona network, Austin network, and
Berlin Center network, which overlap with the actual map,
charging station nodes are set more in the main roads. All
charging station nodes are overlapped with the road network
nodes. All charging station nodes coincide with road

network nodes. Te length and free fow time of each road
network were verifed by using the original data in the
dataset. Six pairs of start and endpoints are set in each road
network to analyze, and the start and endpoint pairs of each
road network are randomly selected. All O-D pairs are
shown in Table 8.

5.2. Analysis of Problem Model with Small-Scale Grids. As
shown in Figure 10(a), the correctness of the deloop pro-
cessing method and model is verifed in the fve-node grid
graph. Road travel time and power consumption are la-
belled, and the graph can be briefy analyzed before verifying
the model.When the electric vehicle battery capacity is 5, the
starting point is node 1, the ending point is node 5, the
charging station node is node 4, the feasible time minimum
path between the starting and ending points is (1,2,3,4,3,5),
and the graph needs to be delooped in order to invoke
CPLEX to fnd the optimal solution of the model. According
to the proposed delooping algorithm, the delooping pro-
cessed graph is shown in Figure 10(b). Te results of in-
voking CPLEX in the original road network and the deloop
processed road network are shown in Table 9.

When themodel is solved without delooping, the CPLEX
directly using the original path network will have no so-
lution. Tis is due to the fow balance constraints of the
shortest path problem, which causes the model to ignore all
loop solutions. When considering charging, there are cases
where a loop solution will be better than a loop-free solution,

Table 7: Parameter settings of the Sioux Falls network.

Init node Term node Length (km) Free fow
time (s)

Travel time
(s)

Energy consumption
(kWh)

1 2 7.2 10.8 9.25 6.5
1 3 4.8 7.2 6.83 4.8
2 1 7.2 6 9.25 5.97
2 6 6 9 8.04 5.65
3 1 4 4 6.03 3.98

Table 8: O-D pairs of diferent road networks in simulation.

Te road network O-D pairs
Sioux Falls [2, 11], [1, 24], [2, 13], [24, 2], [11, 23], [3, 19]
Anaheim [273, 143], [262, 143], [12, 263], [192, 74], [274, 3], [41, 16]
Barcelona [408, 1000], [274, 3], [13, 1000], [192, 700], [272, 760], [7, 300]
Austin [408, 1000], [272, 760], [274, 3], [192, 700], [272, 760], [7, 300]
Berlin Center [408, 1000], [274, 3], [13, 1000], [192, 700], [272, 760], [7, 300]

Table 9: Experimental results of the original road network and the road network after delooping.

O-D pairs
Te original road network Te road network after delooping

OBJ (s) Optimal path OBJ (s) Optimal path
(1, 5) — — 10 (1, 2, 3, 4, 3a, 5)
(1, 4) 5 (1, 2, 3, 4) 5 (1, 2, 3, 4)
(2, 5) — — 8 (2, 3, 4, 3a, 5)
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and the constraints make it impossible to fnd the optimal
solution, so delooping is very necessary and efective.

5.3. Model and Algorithm Comparison Analysis. We com-
pare the CPLEX solution results with the three-step heu-
ristic algorithm under diferent sizes of road networks, and
the results are taken as the average of diferent O-D pairs.
Te experimental results are shown in Table 10. Te ex-
periments show that the algorithm can operate normally
under a road network of about 12,000 nodes in size, while
the invocation of CPLEX to solve road networks larger than
1,000 nodes has been unable to fnd the optimal solution in
the specifed time. Comparing the results of the two
methods in the Sioux Falls, Anaheim, and Barcelona
networks, the optimal solution can be found for both
methods without signifcant diferences. In larger net-
works, the algorithm can still fnd the optimal solution,
which is more advantageous in terms of solution scale
compared to the CPLEX.

6. Conclusion

In this study, we classify the electric vehicle path planning
problem considering charging as a CSPPR problem and
build a corresponding model to solve it. We propose a three-
step heuristic algorithm considering the midway power
shortage case, which plans the shortest path from the
starting point to the endpoint on the basis of determining
the charging route and reduces the complexity of problem-
solving. Te results show that the algorithm can efectively
plan the route and give the optimal route containing the
charging route in the case of insufcient power. Te ef-
ciency of the algorithm will be further optimized in the
future to consider the dynamic path planning problem of
electric vehicles under the accurate energy consumption
estimation model.
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