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Intersections are vital components of urban road trafc management, frequently facing persistent congestion challenges. Existing
studies rarely combine multiobjective optimization with dynamic adjustment methods.Tis study introduces an innovative dual-
layer framework for trafc signal optimization. Te frst layer involves multiobjective optimization, addressing critical per-
formance metrics such as delay, the number of stops, and fuel consumption. In the second layer, we propose a method that uses
a fuzzy neural network to learn the correspondence between queue lengths and signal timings. Tis two-tiered approach enables
real-time adjustments, achieving dynamic signal optimization. Applying this framework with real trafc fow data to a specifc
road intersection allows us to determine optimal signal timings dynamically. Extensive simulations using the SUMO software
validate the efcacy of our approach in enhancing intersection performance. Te timing strategy implemented within this
framework leads to a substantial reduction in delay, ranging from 11.1% to 29.0%. Te dual-layer framework presented in this
study contributes valuable theoretical insights into future research initiatives in this domain.

1. Introduction

With rapid economic development, urban trafc control and
infrastructure have encountered new demands. As a fun-
damental driver of economic growth, the transportation
industry plays a pivotal role in facilitating the movement of
people, goods, and information within a nation’s economic
activities [1]. Daily urban trafc congestion has become
a common concern among the general public. Urban in-
tersections currently need to grapple with heavy trafc fow
[2]. Manymajor cities have attemptedmeasures such as road
expansion and the construction of elevated roads to
somewhat mitigate congestion [3]. However, these ap-
proaches still require further exploration to efectively ad-
dress the issue of trafc congestion. Addressing trafc
congestion necessitates not only measures such as road
construction and urban redevelopment but also efective
planning and management of motor vehicle trafc [4].
Among the main methods for trafc management, trafc
signal control stands out, and many problems stem from
inefcient signal timing, particularly in terms of green light

durations for each phase [5]. Signifcant improvements
could be achieved if signal timing could be dynamically
adjusted based on trafc fow conditions. In recent years,
intelligent connected vehicles and vehicle-to-infrastructure
collaboration have rapidly developed. Some trafc fow
information can be obtained through these technologies,
either from camera-based perception data or vehicle-based
perception data, which is more conducive to dynamically
adjusting signal timing [6].

Traditional static timing control for trafc signals pri-
marily involves parameters such as cycle length, green ratio,
and phase ofset. Te primary optimization objectives en-
compass vehicle delay, throughput capacity, and the number
of stops [7]. However, many optimization eforts are single-
objective. A more advanced approach is multiobjective
control, which takes into account multiple optimization
objectives and addresses multiobjective problems [8–11].

Using multiobjective optimization for signal timing
requires the formulation of a targeted multiobjective opti-
mization model [12, 13]. Generally, fundamental evaluation
metrics for measuring trafc fow include delay duration, the
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number of stops, capacity, and saturation [14]. Additional
metrics may encompass energy consumption, fuel con-
sumption, tire wear, and mechanical wear. Given China’s
status as a major energy consumer and national goals for
energy conservation and carbon neutrality, fuel consump-
tion has become a crucial control metric [15]. Regarding fuel
consumption models, literature analysis reveals models
established based on total distance, total delay time, and the
number of stops [16]. Some scholars determine fuel con-
sumption models based on vehicle speed [17]. Numerous
infuencing factors can be considered, including emissions
and noise as environmental impact indicators, as well as
trafc operation costs [18].

Following a research-oriented approach, defning opti-
mization objectives, conducting relevant studies, and
establishing multiobjective optimization models are essen-
tial. One approach involves transforming the problem into
a single-objective one, assigning weights to diferent infu-
encing factors, and performing a linear combination [19].
However, existing studies often rely on empirical methods
for weight assignment, and the incongruent dimensions of
various objectives result in inaccuracies. A slight change may
lead to a signifcant variation, indicating poor robustness of
the model [20]. Another approach is to directly solve the
multiobjective problem, which can avoid the issues men-
tioned earlier. Simultaneously, it can yield more Pareto
solutions, constituting the Pareto optimal solution set [21].
While ofering more solutions, this method is relatively
computationally intensive and becomes challenging to
handle when there are numerous objectives. It also increases
the difculty of selecting an optimal solution from the Pareto
solution set [22].

Nevertheless, regardless of the methodology used, these
solutions tend to neglect the stochastic nature of trafc fow,
rendering them less suitable for abrupt fuctuations in trafc
volume. To address this challenge, we choose to adopt a two-
layer framework. Te frst layer utilizes a multiobjective
optimization algorithm to obtain a basic solution. Based on
this solution, the green light time is dynamically adjusted in
the second layer according to the queue length. Te method
involves generating optimal signal timing for diferent queue
lengths through simulation and then using a fuzzy neural
network to learn the corresponding rules from these solu-
tions. Tis learned rule is then applied to subsequent dy-
namic green light time adjustments. Tis approach ensures
both basic optimization efectiveness and adaptability to
random trafc volume fuctuations.

In this study, the proposed solution combines funda-
mental evaluation metrics and energy consumption metrics,
intending to consider three primary indicators: delay du-
ration, the number of stops, and fuel consumption. Te
existing literature has relatively few cases that integrate these
two factors, and the research in this regard needs to be more
comprehensive.Te aim is to start from this point and derive
new conclusions and discoveries. Furthermore, we apply
a fuzzy logic approach based on empirically measured trafc
fow data to establish corresponding signal timings for
diferent trafc scenarios. Simulation software is used to

gather real-time data at intersections using sensors and
implement the corresponding signal timing adjustments,
thereby achieving dynamic timing adaptations. Te con-
tributions can be summarized as follows:

(1) A novel dual-layer framework is proposed, with the
frst layer conducting multiobjective optimization to
obtain a base solution and the second layer per-
forming dynamic adjustments based on this solu-
tion. It calculates diferent green light times
corresponding to varying queue lengths, enabling
dynamic signal optimization.

(2) In the second layer, optimal correspondences be-
tween queue lengths and signal timings based on real
measurement data were generated through simula-
tion. Te study utilized a fuzzy neural network to
learn the corresponding rules.

(3) Tis research uses a new hybrid multiobjective
particle swarm algorithm to achieve signal timing
optimization. Fuel consumption is introduced as
a key factor in the multiobjective optimization
model, showcasing its potential as a robust tool for
signal timing optimization.

Te rest of this paper is organized as follows: In the
Methods section, we introduce the objective function and
elucidate the principles of the algorithms. In the Experi-
mental Design section, real-world data collection is dis-
cussed, outlining the research approaches and steps for each
layer of the two-layer framework. In the Results and Analysis
section, the process of obtaining dynamic signal timing
through the two-layer framework, the simulation imple-
mentation of dynamic signal timing, and the analysis of the
resulting data are presented.

2. Methods

Tis section provides an in-depth exploration of method-
ologies used to determine target values for individual op-
timization objectives in a multiobjective model, along with
the calculation methods for specifc parameters within the
model’s formulas. Furthermore, it introduces the principles
behind the multiobjective optimization algorithm used.

In addressing the multiobjective problem, the MOPSO
algorithm and the NSGAII-MOPSO algorithm are used.Te
green signal time corresponding to queue length is de-
termined and applied using a fuzzy neural network ap-
proach.Te schematic structure of the dual-layer framework
is shown in Figure 1.

2.1. Multiobjective Problem Defnition. Currently, there is
relatively limited consideration for combining delay in-
dicators with energy-related indicators such as fuel con-
sumption. In this study, delay, number of stops, and fuel
consumption are comprehensively considered as the ob-
jective functions to establish a dynamic signal control op-
timization model for intersections.
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2.1.1. Delays. Delay is primarily caused by trafc resistance
and trafc control, resulting in travel time losses. It is closely
related to indicators such as cycle length, green signal ratio,
and saturation. Tis paper introduces an improved delay
time calculation model and the concept of critical trafc
fow. Te term critical trafc fow refers to the fow of trafc
from an inlet lane that has the highest fow rate ratio in each
signal phase. It can be considered a representative of all
trafc fows in that phase and is referred to as the critical
trafc fow. Terefore, formula (1) can be used to better
describe the delay time model.
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In the equations, i is the i-th signal phase; di is average
delay time for all vehicles in phase i; gi is green light time for
phase i; C is duration of the signal cycle; ymax

i is the max-
imum value of the fow ratio for phase i among all entry
lanes; yij is the fow ratio for the j-th entry lane of phase i;
xmax

i is themaximum value of the saturation degree for phase
i among all entry lanes; xij is the saturation degree for the
j-th entry lane of phase i; qmax

i is the maximum value of
trafc volume for phase i among all entry lanes; qij is
equivalent trafc volume for the j-th entry lane of phase i;
and qi is equivalent trafc volume for phase i.

2.1.2. Number of Stops. Due to the infuence of trafc signals,
upstream trafc often arrives in the form of platoons. To ensure
the continuous passage of these platoons through the in-
tersection without interruptions and prevent a signifcant
number of vehicles within the platoons from getting stuck in
the lanes, which could result in reduced intersection capacity,
controlling the number of stops is also crucial. Te improved
method for calculating the stopping rate similarly introduces
the concept of “critical trafc fow.” Tis concept is based on
analyzing the impact of diferent inlet-lane trafc fows on the
stopping rate within the same phase. Te following formula
(2)–(4) represents the specifc improved calculation formula:
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In addition to the symbolsmentioned earlier, there are the
following: hi is the number of stops; Ni is the average excess
queue length for phase i; mmax

i is the maximum value of the
saturation fow rate for phase i among all entry lanes; and mij

is the saturation fow rate for the j-th entry lane of phase i.

2.1.3. Fuel Consumption. Under diferent road conditions,
loads, and trafc situations, a vehicle’s operational state can
vary. On urban roads, due to a variety of trafc factors, vehicle
acceleration, deceleration, and unstable driving result in
a signifcant increase in fuel consumption.Tis interference is
primarily associated with delay time and the number of stops,
both of which hinge on the signal timing of intersections.

Formula (5) is a fuel consumption model obtained
through a linear combination of delay time, the number of
stops, and total vehicle travel distance, expressed in terms of
fuel consumption.

E � f1Ls + f2d + f3h. (5)

In the equations, Ls is total travel distance, calculated as
the product of travel mileage and trafc fow rate; d is total
delay time of all vehicles; h is the sum of the total number of
complete stops per hour for all vehicles; and f1, f2, and f3
varies according to diferent vehicle models.

2.1.4. Objective Function. By taking weighted averages based
on trafc fow for each phase, the total delay and total
stopping rate are calculated. Te total delay at the

objectiveDelay, Number of stops, Fuel consumption
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Figure 1: Te dual-layer framework structure for the dynamic signal timing problem.
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intersection, the total stopping rate, and the total fuel
consumption are then utilized as optimization metrics to
establish a multiobjective model, as depicted in the following
formula:

mind �
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(6)

Subsequently, a multiobjective optimization algorithm is
used for computation to obtain the optimal solution. Based
on this optimal solution, signal timing is dynamically ad-
justed according to trafc fow. In addition, in this model,
constraint conditions consider indicators such as cycle
duration, green light duration, and saturation within certain
ranges.

2.2. Te Proposed Dual-Layer Framework Structure

2.2.1. First Layer: Multiobjective Optimization Method for
Signal Timing. Particle swarm optimization (PSO) starts
with initializing a group of random particles (random so-
lutions). It then iteratively seeks the optimal solution. In
each iteration, particles update themselves by tracking two
“extremal values” (pbest and gbest). After identifying these
two optimal values, particles update their velocities and
positions using the following formula:

xi(t) � xi(t − 1) + vi(t), (7)

vi(t) � w × vi(t − 1) + C1 × r1 × xpbesti − xi 

+ C2 × r2 × xgbesti − xi .
(8)

Multiobjective particle swarm optimization (MOPSO) is
an extension of methods originally designed for single-
objective problems to encompass multiple objectives. Te
elitist nondominated sorting genetic algorithm (NSGAII) is
a classic multiobjective genetic algorithm that introduces
a fast nondominated sorting algorithm, reducing the
computational complexity of nondominated sequence cal-
culations. It incorporates an elitist strategy, broadening the
sampling space and enhancing the accuracy of optimization
results.

Some scholars creatively integrated two algorithms [23].
In each iteration, the two algorithms are alternated to
maintain diversity and nondominated solutions. Tis hybrid
approach helps to better solve multiobjective optimization
problems. Table 1 is the pseudocode for the algorithm.

2.2.2. Second Layer: Dynamic Adjustment Algorithm for
Signal Timing. Te frst step in the second layer is the
simulation to generate the relationship between queue
length and optimal signal extension time.

“Simulation of Urban MObility” (SUMO) is an open-
source, highly portable, microscopic, and continuous trafc
simulation package designed to handle large networks [24]. In
the SUMO software, we can confgure intersection forms,
defne trafc fow, and utilize Python with the trafc control
interface (TraCI) to achieve real-time trafc information
retrieval.

In SUMO simulation, a day of trafc data is generated
based on measured trafc fow. Te queue lengths are
recorded for four phases during this simulation. Using the
fxed timing obtained in the frst layer, it is iterated around
this timing to fnd the timing that minimizes delay at the
intersection. Tis process establishes a relationship between
queue lengths and green light extension time.

Te vehicle queue lengths are simulated at diferent
times throughout the day: Based on the previously measured
trafc fow at diferent time intervals, the vehicle queue
lengths are simulated for each hour of the 24-hour period.

Te second step in the second layer is for the fuzzy
neural network to learn the rules for the correspondence
between queue length and signal extension time from the
generated data.

Te adaptive neuro-fuzzy inference system (ANFIS) is
a type of fuzzy controller based on the Takagi–Sugeno model.
By utilizing neural networks, the ANFIS is capable of auto-
matically recognizing and processing fuzzy information, ef-
fectively addressing complex problems through the adaptability
of the fuzzy controller. It involves ofine training, online
learning, and the automatic adjustment of fuzzy inference
control rules, enabling it to become adaptive and self-learning.

Under a simple assumption, consider a fuzzy inference
system with two inputs, x and y, and a single output, z. Tis
system comprises two fuzzy rules:

Table 1: Pseudocode for the NSGAII-MOPSO algorithm.

Algorithm
Algorithm: hybrid multiobjective optimization (NSGA-II and
MOPSO)
(1) Initialize parameters and populations:

Set common, NSGA-II, and MOPSO specifc parameters
Initialize NSGA-II population “pop_nsga”
Initialize MOPSO population “pop_mopso”

(2) For each iteration:
(a) NSGA-II operations:
Evaluate and sort “pop_nsga” using nondominated sorting
Apply crossover and mutation to generate ofspring
Merge and truncate “pop_nsga” to maintain population size

(b) MOPSO operations:
Update “pop_mopso” positions and velocities
Apply mutation operation
Store updated positions in “pop_mopso1”

(c) Combine and evaluate:
Merge “pop_mopso1” and “pop_nsga” into “pop_combined”
Sort “pop_combined” using nondominated sorting
Truncate “pop_combined” to maintain size

(3) Output fnal solution set:
Extract and plot the nondominated solutions from
“pop_combined”

End algorithm
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Rule 1: if x isA1 andy isB1 thenf1 � p1x + q1y + r1.
Rule 2: if x isA2 andy isB2 thenf2 � p2x + q2y + r2.

Te frst-order fuzzy inference system ANFIS network
has a structure as shown in Figure 2.

Te ANFIS controller, through the application of
Sugeno-type fuzzy rules and weighted summation, signif-
cantly reduces the complexity of data processing and is more
accurate than traditional centroid methods, thereby en-
hancing system performance. In this paper, the ANFIS
model from the MATLAB fuzzy logic toolbox is utilized.

3. Experimental Design

Te following pertains to data acquisition and signal timing
calculation for an actual intersection implemented in sim-
ulation software for dynamic signal timing.

3.1. Data Collection. To ensure the accuracy of dynamic
signal timing simulation, comprehensive data collection is
paramount. Tis process involves the gathering of essential
information related to trafc conditions and existing signal
timing parameters at the intersection.

3.1.1. Trafc Volume. Te intersection of Chengfu Road and
East Zhongguancun Street in Haidian District, Beijing, was
chosen as the experimental intersection. Tis intersection
experiences high trafc and pedestrian fow, as it is formed by
the intersection of two arterial main roads. As shown in
Figure 3, the four road sections, namely north, west, south,
and east, are designated as Sections 1, 2, 3, and 4, respectively.

Te trafc fow data for each 10-minute interval of the
day at the intersection were measured using counters and
recorded in Figure 4.

Te daily average fow was obtained by calculating the
weighted average for each representative time period. Te
average hourly fow for each inbound road segment is shown
in Tables 2 and 3.

Te average hourly fow for each outbound road segment
is shown in Table 3.

3.1.2. Signal Phase. Te intersection has four signal phases,
namely, south-north through, south-north left turn, east-
west through, and east-west left turn, as illustrated in
Figure 5.

Te current signal timing for each phase is shown in
Figure 6.

3.2. Te Multiobjective Optimization of Signal Timing Based
on the First Layer. Two algorithms, the traditional multi-
objective particle swarm algorithm (MOPSO) and a hybrid
particle swarm algorithm mixed with a genetic algorithm
(NSGAII-MOPSO), are used to solve multiobjective prob-
lems. Te Pareto fronts of the two algorithms are compared;
an optimal solution is selected from the solution set as the
result of the frst layer in multiobjective optimization; and
the robustness of the solution set is analyzed. Te logical
progression of this part of the work is illustrated in Figure 7.

3.3. Signal Timing Adjustment Based on the Second Layer.
In the second part of the dual-layer framework, we use
a fuzzy neural network to learn the correlation between
queue lengths and phase durations. With this information,
we construct a database. Te logical progression of this part
of the work is illustrated in Figure 8.

3.3.1. Correspondence between Queue Lengths and Signal
Timing Obtained from Simulation Data. In the frst part of
the second layer, based on the measured data, we simulate
trafc fow. At diferent times, the four road segments have
diferent queue lengths. We iterate through signal timing at
the intersection for that specifc time, and based on mini-
mizing delay, we determine the optimal signal timing cor-
responding to the queue length at that moment.

3.3.2. Fuzzy Neural Network. In the second part of the
second layer, utilizing a fuzzy neural network, we learn
corresponding rules from a large dataset of queue lengths
and signal timings obtained through simulation based on
measured data. With this learned set of rules, real-time
dynamic signal timing can be achieved by obtaining
queue lengths according to the established rules.

4. Results and Analysis

Te following timing results are analyzed from the per-
spective of the two-layer framework. Additionally, the
simulation implementation and data analysis of dynamic
timing are introduced.

4.1.TeMultiobjectiveOptimizationofSignalTimingBasedon
the First Layer. Te following utilizes two algorithms to
calculate signal timing, compares the Pareto solution sets
produced by both algorithms, and then selects an optimal
solution as the timing result.

4.1.1. MOPSO Algorithm and NSGAII-MOPSO Algorithm.
First, the conventional multiobjective particle swarm opti-
mization (MOPSO) algorithm is applied to the timingmodel
along with its constraints. Te calculated parameters ob-
tained earlier are incorporated into the constraints. Te
algorithm is then used to solve the model under these
constraints. Te iteration count is set to 100, and the initial
population is 150. Ten, the NSGA-II and MOPSO hybrid
algorithms are adopted, with 100 iterations and an initial
population of 150. Te Pareto solution set is illustrated in
Figure 9. Blue represents the MOPSO algorithm, while
magenta represents the NSGAII-MOPSO algorithm.

From the solution set, it can be observed that the so-
lutions obtained by the NSGAII-MOPSO algorithm are
more densely distributed. Also, it can be observed that the
NSGAII-MOPSO algorithm performs better than the
MOPSO algorithm in terms of the parking rate, delay time,
and fuel consumption.

Journal of Advanced Transportation 5
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4.1.2. Selecting an Optimal Solution from the Pareto Solution
Set. From the NSGAII-MOPSO solution set curve, the group
of solutions with the slowest growth rate of the parking rate is
selected, indicated by the smallest slope of the curve. Tis
solution, with a corresponding delay time of 27.3953 seconds
and a parking rate of 0.7597, corresponds to the timing scheme
with a cycle length of C � 84 + 12 s and individual phase green
times g1 � 26 s, g2 � 15 s, g3 � 28 s, and g4 � 15 s.

4.1.3. Robustness Analysis. Performing a small perturbation
on the input data, specifcally increasing each input value by
10%, and rerunning the multiobjective optimization pro-
gram, we observe changes in the Pareto solution set. It can be
seen that all three objective values change by less than 10%,
indicating that the solution set essentially retains its original
form.Te optimal solution, selected based on the predefned
rules, experiences some changes, but the variation remains

Table 2: Infow trafc volume.

Entrance section I1 I2 I3 I4
Volume (pcu/h) 551 674 758 492

Table 3: Outfow trafc volume.

Exit section O1 O2 O3 O4
Volume (pcu/h) 448 722 705 600

Phase 1 Phase 2

Phase 3 Phase 4

Figure 5: Intersection phase diagram.
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Phase 3
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34 S 3 S
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24 S 3 S
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Figure 6: Intersection signal timing.
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within a 10% range. Tis demonstrates that the algorithm
possesses sufcient robustness, showing resilience to small
perturbations in the input data.

4.2. Signal Timing Adjustment Based on the Second Layer.
In the second part of the dual-layer framework, we use
a fuzzy neural network to learn the correlation between
queue lengths and phase durations. With this information,
we construct a database.

4.2.1. Correspondence between Queue Lengths and Signal
Timing Obtained from Simulation Data. Te previously
measured data are utilized to obtain a signifcant amount of
corresponding data between queue lengths and green light
extension times.

Te obtained green light extension times at diferent time
intervals are shown in the following Figure 10.

4.2.2. Fuzzy Neural Network. Using queue length as fuzzy
inputs and the green light extension time obtained from the
previous fuzzy logic method as output, a neural network is
constructed to predict a large number of specifc green light
times corresponding to diferent queue lengths with a unit of
0.5meters.

Tis process is implemented using the ANFIS fuzzy
neural control toolbox in MATLAB.

An Excel spreadsheet is created, and the fuzzy logic-
derived data are utilized as the training set. Te current
phase queue length and the subsequent phase queue length
are used as inputs, with the green light time as the output, to
generate a comprehensive database predicting green light
times for a diverse range of queue lengths, each with a unit
increment of 0.5meters. Tis database will be instrumental
for dynamic timing applications. Subsequently, the data
obtained from the prior fuzzy logic calculations are parti-
tioned into distinct training, validation, and test sets. Te
fuzzy inference system (FIS) is trained, specifying error
thresholds and epochs, and the network model is executed.
Figure 11 shows the membership functions of the obtained
relationship between queue length and green light extension
time through training.

Te trained network is used to predict green light times
corresponding to queue lengths ranging from 0 to
140meters with a unit of 0.5meters. Te results are exported
to an Excel spreadsheet to serve as a database. According to
the obtained green light extension time, added to the basic
timing scheme obtained in the previous stage, Figure 12
shows the corresponding relationship between diferent
queue lengths and green light times. It can be observed that,
for commonly encountered queue lengths at actual in-
tersections, the optimal green light duration is also a typical
range of 18–25 seconds. As the queue length increases, the
optimal green light duration rapidly grows.

4.3. Simulation Validation. Tis section utilizes the SUMO
simulation software for data simulation verifcation and
implements signal timing within the software.

4.3.1. Implementation of Dynamic Timing. Te Python
script is utilized for implementation; E2 detectors are
inserted; queue lengths of various phases and lanes are
measured using TraCI interface functions; corresponding
green light time is searched in the previously calculated data
table; and the green light time is inserted into the in-
tersection trafc light using TraCI interface functions. Te
intersection simulation with the dynamic timing method
applied is shown in Figure 13.

4.3.2. Comparison Analysis of Performance Indicators Before
and After Optimization. Te frst step involves generating
a road network fle from netedit, creating nodes, establishing
intersections, connecting edges, confguring lane move-
ments, and setting trafc signals for intersections. In the
second step, trafc fow fles are confgured by using ran-
domTrips to generate fows meeting specifc criteria. Tree
diferent trafc volumes—high, medium, and low—are
defned. Te third step entails writing a confguration fle
and running the simulation. Finally, SUMO is used to output
values for delay, number of stops, and fuel consumption
under various trafc fow conditions.
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Te SUMO software’s TraCI interface enables real-time
access to delay, congestion, and fuel consumption data. Te
evaluation metric values of signal timing results optimized
by the multiobjective algorithm are compared with those of
the initial timing results. Additionally, three scenarios of
light, moderate, and heavy trafc fow are set. In this
comparison, the indicators after dual-layer optimization are
compared with the indicators before optimization under
three trafc conditions. Te average values of various in-
dicators for both signal timings over the course of a day are
compared and presented in Table 4 and Figure 14.

Te data above indicates that the algorithm performs
better under higher trafc volumes, but overall, it is
adaptable to varying trafc conditions.

Additionally, we also compare the evaluation metric
values corresponding to the signal timing after the dual-layer
optimization with the results of the Webster timing method
and the actuated timing method. Tese three signal timing
optimization methods are all implemented in the SUMO
simulation software. Te Webster timing method and the
actuated timing method are executed within SUMO, while
our proposed timing optimization method is called exter-
nally through the TraCI interface, with all output results
generated by SUMO. Te specifc comparison results are
presented in Table 5.

From the table, it can be concluded that our proposed
dual-layer optimization method outperforms both the
Webster timing method and the actuated timing method in
terms of delay, parking rate, and fuel consumption. For
example, under heavy trafc fow, the improvement in the
delay index is 31.2% compared to the Webster timing
method and 18.2% compared to the actuated timingmethod.

4.3.3. Comparison of Performance Indicators under Extreme
Trafc Conditions and Normal Trafc Conditions. Since the
heavy, medium, and light trafc volume values in the pre-
vious section were scaled in proportion to the actual mea-
sured trafc, we attempted to analyze the algorithm’s

efectiveness under more extreme trafc conditions. Te
intersection conditions remained the same as in the previous
simulation setup, with only the trafc volume values
changed: the trafc volume in the north-south direction was
approximately doubled, and the east-west trafc volume was
reduced to about half of the original. At the same time, the
infow and outfow were kept equal; hence, I1� 1102 pcu/h,
I2� 337 pcu/h, I3�1416 pcu/h, I4� 246 pcu/h, O1� 896
pcu/h, O2� 361 pcu/h, O3�1410 pcu/h, and O4� 434 pcu/h.
Under these trafc conditions, we ran the dual-layer
framework signal optimization method and established
a signal timing library for diferent queue lengths. Similar to
before, we set up SUMO simulations, monitored queue
lengths, invoked corresponding green light durations, and
outputted the results for three evaluation indicators: delay,
stop rate, and fuel consumption, as shown in Table 6.

As seen from the table, under extreme trafc conditions,
due to the excessive fow of trafc in the north-south di-
rection, there may be a certain degree of increased delay,
increased parking rates, and increased fuel consumption,
though the increase is relatively small. Overall, the trafc
condition at the intersection has not been greatly afected.
Tis also indicates that the signal optimization method has
basic scalability and can be applied to diferent types of
trafc conditions.

4.3.4. Comparison of Delay Indicators at Diferent Times of
the Day Before and After Optimization. Te delay values are
compared at diferent trafc volumes during the 24 hours of
the day for the initial timing, the basic timing after the frst-
layer optimization, and the dynamic timing after the two-
layer optimization. From Figure 15, it can be observed that
the dynamic adjustment of signal timing efectively reduces
delays at the intersection. Furthermore, the results of
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Figure 13: Simulated diagram of intersection after signal timing
optimization.
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dynamic adjustment based on the timing optimized by the
algorithm outperform those based on the original timing.
Tis is evident in a more signifcant reduction in delays

during peak hours. Although the optimization efect on
delay during nonpeak hours is not as signifcant, it has
a minor impact due to the lower trafc volume.

Table 4: Comparison of evaluation indicators at the intersection before and after optimization.

Signal
timing
conditions

Delay(s) Parking rate Fuel consumption (L/h)

Light Medium Heavy Light Medium Heavy Light Medium Heavy

Before 18 23 31 0.71 0.74 0.80 52 63 78
After 16 19 22 0.67 0.68 0.72 48 55 62
Decrease (%) 11.1 17.4 29.0 5.6 8.1 10.0 7.7 12.7 20.5
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Figure 14: Comparison of evaluation indicators.

Table 5: Comparison of evaluation indicators for the three optimization methods.

Signal
timing
conditions

Delay(s) Parking rate Fuel consumption (L/h)

Light Medium Heavy Light Medium Heavy Light Medium Heavy

Webster 18 22 29 0.71 0.73 0.78 52 62 75
Actuated 17 20 26 0.69 0.71 0.74 50 59 67
Dual layer 16 19 22 0.67 0.68 0.72 48 55 62
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Te process validated by the above simulation demon-
strates that as long as the queue length at intersections can be
obtained, the method we proposed can be applied to the
timing of trafc lights at intersections. Terefore, in the
context of intelligent connected vehicle technologies, our
method can also be applied to existing trafc management
systems.

5. Conclusions

In conclusion, this study has introduced an innovative dual-
layer framework for trafc signal optimization, addressing
critical urban road trafc management challenges. Te frst
layer used multiobjective optimization, focusing on key
performance metrics such as delay, the number of stops, and
fuel consumption. Te second layer proposes a fuzzy neural
network method to learn the correspondence between queue
lengths and signal timings.Tis two-tiered approach enables
real-time adjustments, achieving dynamic signal optimiza-
tion. Applying this framework to a specifc road intersection,
using real trafc fow data, allows for the dynamic de-
termination of optimal signal timings.

Extensive simulations conducted with the SUMO soft-
ware validate the efcacy of our approach in signifcantly
reducing delays, with the implemented timing strategy
resulting in a noteworthy decrease of 11.1%–29.0% in delay.
Tis dual-layer framework provides valuable theoretical
insights for future research initiatives in the domain of signal

control systems. Te presented methodology, which com-
bines hybrid multiobjective particle swarm algorithms and
fuzzy neural techniques, demonstrates its applicability and
efectiveness in optimizing signal timings for enhanced
intersection performance.

Furthermore, this paper addresses the growing demand
for intelligent transportation solutions. Future research
directions should explore multi-intersection coordinated
control and large-scale regional collaborative control, con-
tributing to the advancement of intelligent transportation
systems with increased practicality and application value.
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