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Rainfall has a signifcant impact on urban populationmobility, posing great challenges to trafcmanagement and urban planning.
An understanding of this infuence from multiple perspectives is urgently needed. In this study, we devised a multiscale
comparative research framework to explore the spatiotemporal efects of rainfall on taxi travel patterns, aiming to provide a new
perspective on the investigation of rainfall’s impact on urban human mobility. More specifcally, at the macroscopic scale, we
computed taxi travel indicators across the entire study area and used kernel density estimates to observe the spatiotemporal
distribution patterns infuenced by rainfall. Subsequently, complex trafc networks were constructed by considering urban road
intersections as nodes and combined with visualization methods to understand changes in taxi travel patterns visually at the
microscopic level. We selected Wuhan City, a typical urban area in southern China with frequent rainfall, as the study area and
used meteorological data along with a large volume of taxi spatiotemporal trajectory data for investigation. Results indicated
a 4.16% decrease in weekly travel volume due to rainfall, with a 3.96% decrease on workdays and a 4.64% decrease on weekends.
However, nighttime rainfall between 19:00 and 22:00 on weekdays increased the demand for taxi travel. Furthermore, the impact
of rainfall on weekends exceeded that on workdays, restricting people’s mobility and leisure activities, resulting in reduced travel
to recreational tourist spots and commercial pedestrian streets. Rainfall altered residents’ travel preferences to some extent, with
more residents choosing taxis during rainy weather, which led to decreased transportation efciency and increased trafc
congestion. Tese fndings contribute to a deeper understanding of the complex relationship between population mobility
patterns and the urban ecological environment, providing valuable insights for planning resident travel and taxi dispatching under
adverse weather conditions.

1. Introduction

Te city embodies a complex system where humans navi-
gate, interact with urban infrastructure, and generate
a myriad of fows that refect their trajectories [1]. Un-
derstanding the nature of these fows ofers invaluable
perspectives and insights for addressing socioeconomic is-
sues such as urban planning, transportation forecasting, and
epidemic prevention and control [2–6]. Traditional methods
for analysing population mobility often rely on costly,
subjective, and spatially limited questionnaire surveys [7–9].
In recent years, the development and widespread adoption
of location services and communication technologies have
presented new opportunities for the timely collection and

analysis of large-scale mobility data [8, 10]. Technologies like
smart cards, shared bicycles, mobile phone signals, social
media check-ins, and taxi trajectories contribute substantial
urban population mobility big data, ofering rich location
and activity information at the individual level [1, 11–13]. In
comparison to traditional approaches, big data are more
accurate, objective, comprehensive, cost-efective, and easily
accessible [14, 15]. It has emerged as the primary dataset for
trajectory data research and applications, providing abun-
dant information for studying dynamic urban changes [6].

Taxis, serving as a door-to-door, round-the-clock mode
of transportation, fulfl the dense and recurrent daily travel
needs within cities, playing a crucial role in urban public
transportation systems [16]. According to statistical data
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from 2022, taxi passenger volume in China reached ap-
proximately 20.82 billion trips, constituting 27.6% of the
total urban passenger transportation and ranking as one of
the primary choices for residents’ travel [17]. Presently, taxis
are equipped with GPS recording devices that promptly
collect more precise spatiotemporal information, including
passenger boarding and alighting locations, during journeys
[11]. Difering from buses and rail transit, taxis operate
without constraints of routes and schedules, ofering the
most fexible and extensive trajectory data based on pas-
senger preferences [18, 19]. Taxi trajectory data exhibit
higher accuracy and involves fewer privacy concerns
compared to other modes of transportation. Tis charac-
teristic aligns taxi trajectory data more closely with the
genuine intentions of passenger travel, allowing it to au-
thentically portray the spatiotemporal characteristics of
residents’ mobility and the travel patterns of taxis.

Weather conditions, as an integral part of the urban
ecosystem, exert a signifcant infuence on the daily travel
patterns of residents and population movements [20–24].
Terefore, comprehending how adverse weather afects
human travel patterns contributes to enhancing public
transportation services and better meeting passengers’ travel
needs under diverse weather conditions. Various meteo-
rological factors have been well researched in the trans-
portation domain, including rainfall [25, 26], snowfall [22],
temperature [27], and wind [28], either individually or in
combinations [29–31]. Existing studies primarily employ
exploratory and descriptive methods, such as statistical
charts, graphs, and summaries, to analyse and describe data
characteristics under diferent weather conditions [32]. For
instance, Liu et al. quantifed the impact of weather on ride-
hailing taxi passenger volume, fnding that a 1mm increase
in precipitation led to a 0.39% rise in trafc volume, while
a 1m/s increase in wind speed resulted in a 1.04% decrease in
trafc volume [22]. Autoregressive Distributed Lag models,
built on statistically summarized data, are used for quan-
titative analysis of the sustained efects of snowfall on taxi
operations [33]. While these methods provide overall sta-
tistical characteristics of the dataset, aiding in uncovering
spatiotemporal distribution patterns of taxi activities and
population mobility under weather infuences [34], simple
quantitative analyses of travel features and large-scale fuzzy
analyses fall short in addressing the current complexity of
human mobility dynamics. A comparative analysis of taxi
travel activities and population mobility spatiotemporal
distribution characteristics under diferent weather condi-
tions, especially through a multiscale and multidimensional
approach, is lacking.

Terefore, we utilized taxi trajectory data to construct
a complex geographic spatial network at the street level.
Graphs and network characteristics extracted from the
trajectory data were investigated for their structural prop-
erties and the interactions between these properties using
graph theory and complex network-related methods. Spatial
statistical analysis methods were combined to analyse taxi
travel metrics, establishing a multiscale, multidimensional
analytical framework. Tis framework was applied to in-
vestigate the impact of rainfall on taxi travel activities and

population mobility patterns, providing a bottom-up per-
spective for studying population mobility patterns under the
infuence of rainfall. Subsequently, we applied our com-
parative research framework to the rain-prone city of
Wuhan, collecting taxi trajectory data and meteorological
data within the study area. Te taxi data were categorized
into four scenarios: weekdays with clear weather, weekdays
with rain, weekends with clear weather, and weekends
with rain. We aimed to explore the feasibility of using taxi
trajectory data to investigate the impact of rainfall on
population mobility. To scrutinize and dissect the
spatial disparities of fundamental taxi travel metrics
on a macroscopic level, and subsequently, to assemble
a comprehensive trafc network on a microscopic scale,
a meticulous examination and comparative analysis of the
alterations in network confguration induced by rainfall
which is achieved through a fusion of network attribute
metrics and visualization techniques, is involved.

2. Literature Review

2.1. Application of Taxi Trajectory Data. In recent years, the
widespread development of location services and commu-
nication technologies has made the collection and study of
taxi trajectory data possible. Many studies use this in-
formation to identify trafc congestion [35, 36] and estimate
trafc fows [37], which helps to understand urban mobility
patterns from a social perception perspective, improve
trafc, and assist managers in taking emergency measures
[38]. Furthermore, the unique advantages of taxi trajectory
data in studying urban population travel patterns and
population mobility have garnered signifcant attention.
Researchers explore crowd movement patterns [39] and
employ mathematical and statistical methods to focus on
collective mobility patterns at the urban scale by mining
trafc hotspots and tracking trafc trajectories between key
areas [35]. It is noteworthy that the application of taxi
trajectory data extends beyond the realm of intelligent
transportation, gradually seeking comprehensive integration
with other professional felds, such as extracting urban
functional structures [38, 40, 41]. For instance, Hu et al.
established a geographical semantic analysis framework to
extract trafc interaction information from taxi data, de-
lineating urban functional zones at the road level [40]. Tey
analysed the respective strengths and interactions between
taxis and othermodes of transportation. Combining Point of
Interest (POI) data and road network data, taxi trajectory
data have been used to investigate taxi demand travel pat-
terns and associated infuencing factors using grid parti-
tioning and geographic weighted regression models [11].

Spatial statistical methods provide an intuitive means for
researchers to comprehend the overall distribution charac-
teristics of datasets, commonly employed in the analysis of
taxi trajectory data [42, 43]. Exploratory and descriptive
techniques, such as statistical charts, graphs, and summaries,
are utilized to analyse and depict data features. Additionally,
point clustering analysis on taxi origin and destination lo-
cations aids in identifying popular areas, enabling the rec-
ommendation of optimal passenger origin points to taxi
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drivers [44]. Chen et al. proposed a two-stage clustering al-
gorithm to identify candidate areas in urban space, in-
tegrating taxi trajectory data to estimate taxi travel routes and
destinations [21]. Various regression models are employed in
studies predicting the ftting of taxi trajectories to passenger
mobility [45, 46]. By ftting the distribution of passenger
boarding points, these models forecast spatiotemporal
changes and waiting times for passengers in hotspot areas
[47]. When facing unknown overall data characteristics in
taxi trajectory data, spatial statistical methods efectively
capture the dataset’s overall statistical features, revealing
spatiotemporal distribution patterns of taxi activities and
population mobility [34]. In addition, Zhang employed
machine learning methods, training graph convolutional
networks on road network information and taxi trajectory
data [48]. Tis approach extracted spatiotemporal features of
roads and accurately predicted taxi fow at city intersections
using the Taxilnt prediction model. Nonnegative matrix
factorization methods were used to study the spatial supply
patterns of taxis in Wuhan, refecting the impact of taxis’ self-
organized operational behaviour on urban residents’ travel
characteristics [33]. Liu et al. introduced community de-
tectionmethods, utilizing collective travel data extracted from
taxi GPS trajectory data to explore urban travel patterns and
city structure [49]. It is evident that taxi trajectory data,
through diverse methodologies, signifcantly contributes to
the study of population mobility patterns, providing robust
support for urban transportation.

2.2. Impact of Weather on Transportation Systems. As
a crucial component of environmental factors, weather
signifcantly infuences transportation activities and urban
population mobility [50]. In comparison to localized events
such as road construction and trafc accidents that afect
travel, weather variations have a broader impact on the
entire urban transportation network, compelling individuals
to change their travel plans or even cancel them [20, 51].
Given the intricate and variable nature of weather factors,
current research predominantly focuses on the impact of
various weather elements on taxi travel activities and crowd
mobility patterns [52]. For instance, Li et al. investigated the
lag efects of snowfall on taxi operations using GPS data,
revealing substantial delayed efects induced by snowfall
[22]. Caceres et al. developed an efective probability model
utilizing ETC toll data to estimate the distribution of travel
times on highways under diferent weather conditions [53].
Disastrous weather events like typhoons and storm surges
bring destructive impacts to transportation [22, 54–56].
Additionally, rainfall exerts a more pronounced efect on
residents’ daily travel patterns [23, 57], causing delays during
normal travel times and infuencing drivers’ moods,
resulting in changes to the spatiotemporal distribution of
trafc demand [58–60]. Smith’s observations of trafc se-
quencing on the Hampton Highway found that light rain led
to a 4%–10% reduction in highway capacity, while this fgure
is 25%∼30% in heavy rain [59]. Lam incorporated rainfall
intensity as a parameter into generalized speed-fow and
speed-density models to analyse its impact on the fow-

speed-density relationship on urban roads in Hong Kong
[60]. Sun quantitatively studied the efects of rainfall on taxi
calling and operations in Shanghai using taxi GPS data [24].
Tey attempted to identify the two most signifcant factors
infuencing these efects through a multiple regression
model: passenger numbers and taxi availability. Most studies
have examined the infuence of weather factors on various
transportation modes concerning travel frequency, travel
methods, travel speed, and travel time [42, 43]. However,
there is a defciency in research on the spatiotemporal
distribution characteristics of taxi travel activities under
diferent weather conditions from a multiscale, multidi-
mensional perspective.

2.3. Research on ComplexNetworks. A substantial volume of
trafc fow enables researchers to simulate entire cities
within a spatially embedded transportation network, of-
fering a bottom-up and objective perspective for studying
population mobility patterns [61]. By integrating mathe-
matical statistical analysis [62] with spatial visualization of
network attribute characteristics [63], geospatial complex
networks provide a more intuitive understanding of subtle
variations in trafc fow. For instance, Xin et al. studied the
impact of the COVID-19 pandemic on the bike-sharing
system and population mobility in New York City at dif-
ferent scales based on geospatial network analysis [1]. Yang
et al. utilized geographic spatial complex networks to study
the changes in shared bicycle systems resulting from the
operation of a new subway line in Nanchang [6]. In the
aviation sector, Dai et al. examined the evolving structure of
the complex air transportation network in Southeast Asia
from 1972 to 2012, considering both topological and spatial
changes [64]. Geospatial complex networks have also been
applied to maritime transport, shedding new light on the
factors afecting port and shipping development [65].

Supported by taxi GPS trajectory data, complex net-
works can conduct in-depth analyses of taxi transportation
processes and activity networks at a more refned spatio-
temporal scale. Some studies have recognized the value of
exploring the complex characteristics of networks formed by
taxi activities using GPS trajectory data [33, 66, 67]. Fu et al.
constructed a type of urban travel complex network based on
taxi operational GPS trajectory data.Tey employed directed
weighted complex network metrics to analyse the com-
plexity of the taxi travel trajectory network structure and
spatial analytical features [66]. Kang et al. systematically
studied the spatial supply patterns of taxis using complex
networks and nonnegative matrix factorization methods
[33]. Peng et al. utilized taxi data and trafc nodes to build
a complex transportation network, analysing the impact of
rainfall on urban population movement under diferent
modes [67]. However, previous research has exhibited ar-
bitrary spatial unit division, posing challenges in defning
nodes and edges due to signifcant diferences in unit scales.
Additionally, the nonuniform distribution of taxi trajectory
data across urban areas may lead to insufcient un-
derstanding of characteristics and connectivity in certain
regions during network analysis.
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3. Study Area and Data

3.1. StudyArea. Te analysis for this study utilized taxi track
data for June and July 2014 from Wuhan City, which is the
most populous in Central China and is afected by frequent
rainfall. Tere are thirteen administrative regions in Wuhan
City, including Jiang’an, Jianghan, Qiaokou, Hanyang,
Wuchang, Qingshan, Hongshan, Dongxihu, Hannan, Cai-
dian, Jiangxia, Huangpi, and Xinzhou. Since the majority of
taxi trajectory data is concentrated within the Tird Ring
Road area of Wuhan City, we selected this region as our
study area, which also serves as the city centre. Figure 1
shows the study area. As of 2014, the city of Wuhan, where
the sharing economy and online taxis were not yet wide-
spread, relied mainly on buses, taxis, and rail transport to
move people, with 16,597 taxis operating in the city at
the time.

3.2.DataDescription. Tree datasets were used in this study:
the taxi GPS trajectory dataset, the road network dataset, and
the daily rainfall dataset; all datasets were selected from
Wuhan City for June and July 2014. Every few seconds,
16,597 taxis uploaded a status data entry to the database
through their GPS devices. Each data entry consists of 12
felds, including taxi ID, time, longitude, latitude, opera-
tional status, instantaneous speed, and direction. Te road
network dataset, obtained from the ofcial website of
OpenStreetMap (OSM), provided the required transport
network and road intersection data to align with our tra-
jectory data on the map. Te daily rainfall dataset was ac-
quired by the Wuhan City Meteorological Bureau and
efectively refects the city’s rainfall conditions. Following
the classifcation of daily rainfall by the China Meteoro-
logical Administration, rainfall below 10millimetres was
defned as light rain, which has minimal impact on trafc
and human activities [68]. Terefore, for this study, we
prioritized selecting rainfall data ranging from moderate
rain to heavy rain. To facilitate comparative analysis under
similar conditions, we selected two complete weeks of data
from the available dataset—one with clear weather and the
other with rainy weather. Te selected dates may not be
consecutive but must include a full workweek and weekend.
Te chosen dates are presented in Table 1.

3.3. Data Preprocessing and Matching. Te richness of tra-
jectory data does not eliminate the scarcity of activity in-
formation. Te original dataset contains personal
behavioural data of taxi drivers, but only a small portion of it
is useful for our study [19]. Terefore, a simple and efective
data preprocessing step is necessary to ensure the accuracy of
research results. First, the 12 felds of each status data entry
will be reduced to fve felds for efcient data processing.
Tese fve felds include vehicle ID, latitude, longitude, UTC,
and taxi operating status. Te vehicle ID, latitude, and
longitude determine the vehicle information and real-time
location, while UTC records the duration of the trip. Te
operating status is used to diferentiate between the driving
and passenger-carrying states of the vehicle. All these

elements are crucial for identifying each trip route. Based on
this, the taxi trajectory data are extracted. We arrange all
vehicle IDs for the same day in chronological order, and
based on the sorted taxi operating status data, we extract the
vehicle’s travel trajectory and origin/destination points.
Identifcation of origin/destination points relies on the
continuous changes in diferent states. When the operating
status changes from 0 to a continuous 1, it is recorded as the
origin point (O point), and when the continuous status
changes from 1 to 0, it represents the destination point (D
point) of the trip. Travel time is the time diference between
the O point and the D point, while the travel distance is the
cumulative distance from the O point to each waypoint and
the D point. Tese steps are repeated until all taxi travel
trajectories are extracted, and the number of passengers
carried by the vehicles on that day is recorded. Finally, to
maintain data quality and ensure result accuracy, it is
necessary to clean erroneous travel trajectory data, excluding
data loss or redundancy caused by GPS device malfunctions,
building obstructions, and similar situations during taxi
journeys. Tree types of data should be cleaned: (1) travel
time less than 2minutes; (2) average speed exceeding 120 km
per hour; and (3) travel distance outside the range of 1 to
100 kilometres. After data preprocessing, approximately
30,000 trajectory data entries are obtained on average per
day for the study. Each trajectory data entry represents
a complete trip, containing information such as the taxi’s
origin/destination locations, travel time, and travel distance.

Te accuracy error of GPS devices can lead to taxi
trajectory points deviating from the urban road network,
impacting data quality, and this type of error cannot be
eliminated through data preprocessing. Te purpose of map
matching is to accurately align taxi trajectory points with the
urban road network. Currently, map matching algorithms
involve two crucial processes: fnding target features and
projecting target points onto these features. Commonly used
matching algorithms include projection algorithms,
geometry-based algorithms, probability statistical algo-
rithms, and fuzzy logic algorithms. Te “point-to-line
shortest path” method employed in this paper belongs to the
category of geometry-based algorithms, specifcally point-
to-line matching. Te principle involves calculating the
projection distance of GPS location points onto all candidate
routes, comparing it with the actual distance of the matching
road segment, and selecting the candidate route with the
shortest distance as the target route. Te mathematical
point-to-line model is illustrated in Figure 2.

In practical implementation, to reduce data processing,
we designate the O point of travel trajectories as the ref-
erence dataset for map matching, with the following specifc
steps: (1) set a 500-meter maximum bufer distance as the
minimum projection distance to eliminate some mis-
matched points; (2) vertically project trajectory points onto
all target road segments within the defned range; and (3)
match the target road segment with the smallest projection
distance and record the position information of the pro-
jected point on the target road segment. Finally, the position
of the projected point is obtained as the matching point
corresponding to the trajectory point.
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4. Methods

4.1. Comparative Analysis Framework. Our comparative
analysis framework consists of three general steps, as
depicted in Figure 3. Firstly, we conduct data processing on
taxi GPS trajectory data, OSM road network data, and
meteorological rainfall data. Tis involves tasks such as feld

simplifcation, extraction of taxi trajectories, and cleaning
trajectory data. Subsequently, we employ the “point-to-line
shortest path” map matching method to align taxi trajectory
points with road network data. Secondly, we perform spa-
tiotemporal data analysis at both macro and microscales. At
the macroscale, our emphasis lies on the overall statistical
analysis of the data. Spatial statistical methods are utilized to
statistically analyse taxi travel volume, travel time, and travel
distance, with the visualization of data clustering charac-
teristics through kernel density. At the microscale, we
construct a complex geographic spatial network using road
intersections as nodes. We analyse the diferences in relevant
network metrics at the street level during nonrainy periods,
detect network communities, analyse the spatiotemporal
distribution of detected communities, and conduct spatial
visualization analysis of community metrics using Graph.
Finally, through multiscale spatiotemporal and network
analyses, we compare the diferences between sunny and

Table 1: Selection of weather data.

Weather Mon Tues Wed Turs Fri Sat Sun
Rainy day June 30th July 1st July 16th June 26th July 18th July 12th June 1st
Clear day July 14th July 15th July 23rd June 12th July 25th July 26th June 22nd

Figure 1: Overview of the study area. (a) Location of the study area in Wuhan City. (b) Study area.

CA

P

B

Figure 2: Point-to-line matching.
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rainy days across diferent time ranges, aiding in the study of
the impact of rainfall on taxi travel activities and urban
population mobility.

4.2. Macroscale Analysis. At the macroscale, we initially
conduct spatial statistical analysis of indicators related to taxi
travel characteristics in the form of visualizations through
charts. Subsequently, the spatial distribution and clustering
features of O and D points are visualized using kernel
density estimation methods.

4.2.1. Spatial Statistical Analysis. Spatial statistical analysis
provides an intuitive means for researchers to comprehend
the overall distribution characteristics of the dataset, aiding
in the selection of appropriate analytical models for sub-
sequent trajectory data analysis [66]. Te crucial indicators
refecting the patterns of taxi travel include trip volume,
travel time, and travel distance. Te trip volume serves as
a tangible metric for assessing urban population mobility,
exhibiting temporal variability. High trip volumes to some
extent refect the high fuidity of the urban population, with
signifcant susceptibility to infuencing factors, rendering it
of considerable research value. Travel time is an indicator
capable of refecting diferent travel purposes, as diverse

purposes lead to varied spatiotemporal distribution patterns
of travel behaviour. Additionally, travel distance stands as
one of the primary factors infuencing residents’ choice of
travel modes. For instance, residents typically opt for eco-
friendly modes such as bicycles or public buses for short-
distance travel, while for long-distance journeys, ideal sce-
narios often involve minimizing travel time, leading to
choices like taxis or subways. Metrics such as average trip
volume and average usage duration not only facilitate the
analysis of passenger travel behaviour patterns and pop-
ulation mobility but also assist taxi companies in dispatch
planning to meet the operational needs of daily taxi services.

4.2.2. Kernel Density Analysis. Te kernel density analysis
method is employed to assess the spatial clustering of ele-
ments throughout the entire study area.Tis method utilizes
discrete points to generate continuous surfaces, revealing
regions where elements are more concentrated [34]. Te
kernel density analysis facilitates the extraction of hotspots
in taxi aggregation [69] and the analysis of the spatiotem-
poral distribution patterns of taxi behaviour [70]. In com-
parison to commonly used point density calculation
methods that ignore spatial distribution heterogeneity or
spatial continuity (such as sampling methods, Voronoi

Data
Description

Multiscale
Analysis

Summary

The Association Between Rainfall and Taxi Travel Activities

Taxi GPS Trajectory Data OSM Road Network Data Daily Rainfall Data

Streamline Fields Extract Taxi Tracks Cleaning the Trajectory Data

Map Matching ("Point-to-Line Shortest Path" Method)

Statistical Key Indicator Analysis of
Taxi Travel Characteristics

Spatial Visualization Analysis of Kernel Density Estimation

Network Statistical
Properties Analysis of Community

Macro-Scale

Micro-Scale

Volume of Travel

Travel Times

Travel Distance

Graph Structure Visualization

Comparative Analysis: Sunny VS. Rainfall

Figure 3: Te work fow of our comparative analysis framework.
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diagram methods, etc.), the kernel density analysis method
considers both spatiality and the decay efect of continuity
[4, 71]. It yields smoother and more reasonable boundaries
for the extracted areas. Te formula for kernel density
analysis is

f(x) �
1
h
2 􏽘

n

i�1
k

x − xi

h
􏼒 􏼓, (1)

where k(x) is the kernel function, h is bandwidth, and n is
the number of discrete points in the bandwidth range.
Previous studies have shown that the selection of bandwidth
is generally positively correlated with the dispersion of the
points and is related to the scale of the analysis [72].
Generally, larger values of h correspond to the analysis at the
macroscale that refects the trend distribution, whereas
smaller values of h help fnd local characteristics. In practice,
therefore, h must be adjusted to suit the demands of the
analysis and the actual results.

4.3. Microscale Analysis. At the microscale, we constructed
a complex geographic spatial network at the street level,
focusing on analysing network statistical metrics related to
complex networks. Subsequently, the changes in community
structures under diferent conditions were examined.

4.3.1. Construction of Complex Transportation Networks.
Complex networks represent an abstraction model for un-
derstanding complex systems, where entities are abstracted
into nodes and relationships between entities into edges.
Tis model provides a closer approximation to the real
spatial distribution and natural structure of road networks in
urban spaces. In the context of taxi transportation, the vast
amount of trajectory data form a taxi trafc network, where
the spatial positions of nodes are defned by origin and
destination locations, and edge weights refect the strength
of connections between nodes [62, 66]. Tis spatial network,
constituted by the travel behaviours of taxis, falls into the
category of typical transportation complex networks [73].
Analysing its structural and topological interactions using
graph theory and methods related to complex networks can
reveal intricate relationships within the transportation
system.

Te uneven distribution of road intersections in the road
network does not align with the actual origin and destination
points of taxis. Terefore, to construct a more realistic
complex network, road intersections need to be extracted
based on general patterns of residents’ travel. Te meth-
odology involves extracting all road intersections in the
Wuhan road network, clustering intersections on road
segments shorter than 300meters into a single intersection,
and equally dividing road segments longer than 1000meters
into smaller sections to maintain lengths between 300 and
1000meters. Taxis’ origin and destination points are then
clustered onto the corresponding road intersections. Each
taxi trip from O to D represents a connection, resulting in
a directed and weighted complex transportation network. In
this network, road intersections serve as nodes (N), and each

taxi trip between two intersections is an edge. Te weight of
each edge represents the number of taxi connections be-
tween the intersections, providing insight into the total
volume of trips for each node. Te fnal step involves vi-
sualizing network characteristics using graph theory and
complex network methods. By examining the dynamic
changes in network attributes, we can reveal how rainfall
infuences taxi travel activities and population mobility.

4.3.2. Community Detection. Community detection is an
algorithm used to identify structural communities within
complex networks. A community represents a subset of
nodes in a complex network, and the entire network can be
considered composed of multiple communities. Nodes
within the same community exhibit tighter connections,
while connections between communities are relatively
sparse. In this study, a community’s node set corresponds to
a set of road intersections with higher frequencies of travel
connections in the taxi trafc network. Community de-
tection relies on high-strength connections between nodes
rather than spatial proximity. In this context, it identifes
subsets of road intersections with frequent travel connec-
tions. Te detected communities are then analysed for their
spatial distribution through spatial visualization. Analysing
the dynamic changes in community structure under dif-
ferent weather conditions and periods provides valuable
insights into the impact of rainfall on taxi travel activities
and population mobility. Tis approach is particularly
crucial for understanding the infuence of rainfall on taxi
travel and population mobility.

5. Results and Analysis

5.1. Statistical Analysis of Travel Data. In this study, the
analysis is conducted on an hourly basis to compare the
travel volumes during weekdays, weekends, and diferent
periods of sunny and rainy days within a week (Figure 4).
Te abbreviations used in the fgure are as follows: SAWE
and RAWE represent sunny weekend days and rainy
weekend days, SAWD and RAWD represent sunny week-
days and rainy weekdays, and SDAW and RDAW represent
the sunny week and rainy weeks, respectively. Tese ab-
breviations have the same meanings in the following charts.

From Figure 4, it can be observed that rainfall reduces
the taxi travel volume, with a more pronounced impact on
weekends. Rainfall not only decreases the taxi travel volume
but also delays the peak travel time, leading to a certain
degree of trafc congestion. Specifcally, rainfall causes
a 3.96% reduction in taxi travel volume on weekdays
(Figure 4(a)) and a 4.64% reduction on weekends (Fig-
ure 4(b)), resulting in a weekly decrease of 4.16% (Fig-
ure 4(c)). During weekdays, commuting and work-related
travel constitute a signifcant portion, and rainfall primarily
afects the timing of people’s travel. For example, on sunny
days, the travel peak occurs between 7 a.m. and 2 p.m., while
on rainy days, the peak shifts to between 8 a.m. and 1 p.m.
Unlike the continuous rise on sunny days, rainy days exhibit
noticeable fuctuations in travel volume, reaching a higher
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level than sunny days at 9 a.m. Tis is closely related to the
concentration of rainfall between 7 a.m. and 8 a.m. People
often choose to delay their travel during heavy rainfall,
resulting in a higher taxi demand during necessary com-
muting hours to minimize the impact of rainfall. With
decreasing rainfall, there is minimal impact on residents’
travel between 2 p.m. and 7 p.m. However, rainfall signif-
icantly infuences the choice of nighttime transportation.

On weekdays with rainfall, more people opt for taxis
between 7 p.m. and 10 p.m., resulting in a 4.17% increase in
taxi travel volume. In contrast, rainfall considerably di-
minishes people’s desire to travel on weekends, particularly
between 7 a.m. and 10 p.m. Te travel volume on rainy days
is signifcantly lower than on sunny days, with low peaks at
11 a.m. and 5 p.m. Notably, 11 a.m. coincides with the peak
rainfall, and after 5 p.m., as rainfall decreases, travel volume
increases, showing no signifcant diference from sunny
days. Additionally, between 7 p.m. and 10 p.m. on weekends,
taxi travel volume decreases by 5.47%. Tis could be

attributed to people engaging in leisure activities on
weekends, with the fexibility to choose travel times and
destinations. Rainfall limits people’s travel options, making
them more inclined to choose cost-efective means like
walking, especially when rainfall is minimal. On sunny days,
people are more likely to engage in long-distance recrea-
tional activities, resulting in higher demand for taxis.
Terefore, with the average travel volume on weekends
exceeding that on weekdays (Figure 4(d)), we can un-
derstand that rainfall leads to a lower attenuation rate of
travel volume on weekdays than on weekends, indicating
a more pronounced impact on weekends.

Building upon that, we further conduct a statistical
analysis of travel duration frequency (Figure 5). It is evident
that taxi trips predominantly exhibit short durations, and
rainfall extends the travel time, leading to an increase in the
frequency of short-duration trips. As depicted in Figure 5,
the travel frequency for all conditions peaks within
6minutes and gradually decreases over time. During
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Figure 4: Te relationship between rainfall and travel volume. (a) Sunny and rainy travel volume on weekdays. (b) Sunny and rainy travel
volume on weekends. (c) A week of sunny and rainy travel. (d) Te average sunny and rainy travel volume on weekdays and weekends.
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weekdays, the total frequency within 30minutes for both
sunny and rainy days accounts for 87.75% and 87.34%,
respectively, which is higher than the respective percentages
of 87.58% and 85.73% for weekends during the same period.
Tis indicates that short-duration trips dominate taxi travel,
and more people choose taxi travel during weekdays, with
rainfall having a greater impact on weekends. Additionally,
rainfall increases the frequency of travel durations by
6minutes, particularly during weekdays. Tis suggests that
rainfall to some extent increases the number of long-
duration trips and alters people’s travel modes, such as
switching from cycling to taking a taxi.Te trafc congestion
issues introduced by rainfall may also be a signifcant factor
contributing to the prolonged travel times.

Moreover, we analysed the travel distances of taxis in
kilometres (Figure 6). We defned trips with a distance
exceeding 10 kilometres as long-distance travel. Overall,
regardless of weather conditions (sunny or rainy) or
weekdays/weekends, the travel frequency decreases as the
travel distance increases, and the rate of change becomes
smaller. During weekdays, the total frequency of trips within
10 kilometres for sunny and rainy days is 81.53% and 81.3%,
respectively. Rainy days have a lower travel frequency than
sunny days for distances up to 7 kilometres, but as the travel
distance increases, the frequency of rainy days gradually
surpasses that of sunny days. Te results for weekends are
similar to weekdays, with total frequencies within
10 kilometres being 81.36% and 79.47% for sunny and rainy
days, respectively. However, it is only after 9 kilometres that
the frequency of rainy days surpasses that of sunny days.Tis
indicates that short-distance trips dominate taxi travel, and
rainfall increases the frequency of long-distance travel. Due
to the impact of rainfall, the frequency of short-distance
travel decreases, especially on weekends.

5.2. Analysis of Spatial and Temporal Distribution. Te
spatial distribution of OD points exhibits variations,
prompting an investigation into the spatiotemporal distri-
bution patterns of passenger fow at O point and D point
locations. A kernel density interpolation analysis was con-
ducted on the quantity of OD points during both rainy and
nonrainy weather conditions across weekends, weekdays,
and the entire week (Figure 7).

As depicted in Figure 7, the hotspots of taxi origin and
destination points in Wuhan City are primarily concen-
trated around the train station, central business district,
commercial streets, Optics Valley Square, and some small
scenic spots. Te variations in hotspot areas across the series
of maps are not very pronounced. However, diferences
emerge during rainy weekends, where the hotspot areas for
D points (Figure 7(b)) exhibit a more difuse pattern
compared to O points (Figure 7(a)) in larger areas. In smaller
hotspot areas, the kernel density values for D points are
lower than those for O points, and the range is slightly
reduced. Tis conclusion holds for other temporal di-
mensions and weather conditions. For instance, on rainy

weekends, the comparison between O points in rainy and
nonrainy conditions reveals that in larger dense areas, the
rainy day O points’ hotspot areas are more dispersed than
those on sunny days. In smaller dense areas, the kernel
density values for rainy days are enhanced compared to
sunny days, leading to a contraction in the region.

Upon this foundation, we subtracted the number of taxi
trips on rainy days from that on sunny days within the same
road intersections, followed by conducting kernel density
interpolation analysis. Negative values indicate a reduction
in trips on rainy days, whereas positive values signify an
increase in trips. As illustrated in Figure 8, rainfall exhibits
distinct spatial variations in its impact on weekends and
weekdays. Rainfall does not extinguish residents’ desire to
travel on weekends, with a preference for taxi rides to
comprehensive shopping malls or other city attractions.
Consequently, high-density regions for O and D points on
weekends (Figures 8(a) and 8(d), highlighted in red) are
mainly distributed near the train station and residential
areas. Simultaneously, taxi trips originating and terminating
in business districts, such as Wangjiawan and Xudong,
experience a minor increase on rainy days. Notably, on
weekdays, high-density regions for O and D points
(Figures 8(b) and 8(e), highlighted in red) are also con-
centrated near the train station and business districts.
However, the increase in the vicinity of the train station and
residential areas is signifcantly lower than that on weekends.
Conversely, there is a sharp increase in taxi trips near
business districts, particularly around the Xudong business
district. Tis is attributed to the densely populated resi-
dential areas nearby and the absence of a subway in this area
in 2014. Rainfall has heightened the demand for taxis in this
region, especially for essential commuting or work-related
activities.

Furthermore, regardless of weekdays or weekends, there
is a decrease in taxi trips near leisure and entertainment
attractions and commercial pedestrian streets due to rainfall.
For instance, the commercial pedestrian street in Jianghan
District consistently registers as a low-density area. Near the
South Lake College Town, the impact of rainfall remains
optimistic, with minimal changes in travel volume.Te areas
around Wuhan University and Huazhong University of
Science and Technology experience noticeable fuctuations
only on weekdays. In summary, rainfall increases taxi travel
near train stations, business districts, and residential areas
while decreasing residents’ inclination to visit leisure tourist
spots and commercial pedestrian streets. Additionally,
rainfall prompts more residents to choose taxi rides, par-
ticularly on weekends. On weekdays, apart from essential
commuting or work-related activities, people prefer alter-
native modes of transportation or staying at home during
rainy weather. Consequently, during rainfall, transportation
authorities should focus on trafc management near the
train station, business districts, and densely populated
residential areas to prevent congestion. Simultaneously,
attention should be given to taxi dispatching during weekday
commuting hours to meet residents’ travel needs.
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5.3. Network Statistical Properties. In this section, we con-
structed complex taxi trafc networks under diferent
conditions using the methods outlined in Section 4.3.1. We
calculated the network attributes for taxi trafc networks on
rainy and sunny days during weekdays, weekends, and the
entire week. Te computed results are presented in Table 2,
where a series of changes articulate the impact of rainfall on
taxi trafc networks under various conditions. On rainy
weekends, the number of edges decreased from 43,166 to
41,824, representing a reduction of 3.21%. Meanwhile, the
number of nodes remained relatively constant, resulting in
a decrease in travel connections within the taxi trafc
network on rainy days. Changes in the number of network
edges afect the average node degree, which signifes the
number of links connected to a node in the network, aiding
in assessing the connectivity and accessibility of destination
nodes in a mobile graph [63]. On rainy weekends, the

average node degree declined from 62.79 to 59.88, and the
node degree variance reduced from 4,271.82 to 3,999.64.Tis
indicates a decrease in interactivity within the taxi trafc
network during rainfall, with increased heterogeneity in
connections between nodes, resulting in an overall reduction
in external contacts for taxis.

Additionally, node trafc represents the total volume of
trips starting or ending at a node. Te total node trafc and
average node trafc on rainy days were both lower than
those on sunny days, suggesting that rainfall reduced resi-
dents’ demand for taxis while leading to a more uneven
distribution of trafc fow between nodes, thereby dimin-
ishing interactivity. Simultaneously, rainfall caused a slight
decrease in the network connectivity of the taxi trafc
network, falling below the level observed on sunny days
under similar conditions. Te average clustering coefcient,
indicative of the degree of clustering among network nodes,
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Figure 5: Travel time-frequency distribution map. (a) Distribution of rainy and sunny weekdays. (b) Distribution of rainy and sunny
weekends.
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also exhibited a minor decrease. Tis suggests that rainfall
led to a reduction in the density of connections between
nodes, weakening the clustering connections between taxi
road intersections and diminishing the strength of cyclical
networks, thereby increasing the probability of node failures
(such as trafc congestion or accidents). In summary, across
the same time dimensions during weekdays and the entire
week, various parameters on rainy days were lower than
those on sunny days.Tis implies that rainfall diminishes the
cohesion of taxi trafc networks, reducing connectivity and
accessibility and potentially leading to trafc congestion or
accidents.

In contrast to some biological or technological networks,
transportation networks exhibit a pronounced spatial di-
mension. Figure 9 illustrates the spatial distribution of node
degrees on sunny and rainy weekends.Te spatial distribution
of node degrees follows a heterogeneous pattern, with high
node degree values concentrated in areas with signifcant
population mobility, such as train stations and commercial

streets, including Hankou Railway Station, Wuchang Railway
Station, Jianghan Road Commercial Street, and Optics Valley
Square. Simultaneously, as the radial distance from high node
degree areas increases, the node degree values experience
a slight decline. Temporally, changes in node degrees are not
very pronounced, with both sunny and rainy weekends
showing higher node degrees in areas like train stations and
commercial streets. Minor variations include a subtle increase
in node degree at Wuhan Railway Station on rainy weekends
and slight decreases near commercial streets and the CBD. By
integrating these observations with the documented phe-
nomenon of diminished graph density and heightened av-
erage path length during rainfall, as delineated in Table 2, it is
evident that the taxi trafc network experiences heightened
isolation in local connections on rainy days. Tis could be
attributed to the fact that, in the absence of navigation devices
at the time, taxi drivers relied on experience to choose routes,
and rainfall made route selection more challenging and rel-
atively centralized.
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Table 2: Comparison of network properties under diferent conditions.

Properties Weather Workdays Weekend A week

Number of nodes (N) Rainy 1424 1397 1439
Sunny 1434 1375 1441

Number of edges (L) Rainy 84176 41824 107537
Sunny 86409 43166 109979

Network connectivity (δ � 2L/N2) Rainy 0.08302 0.04286 0.10386
Sunny 0.08404 0.04566 0.10593

Node average degree Rainy 118.22 59.88 149.46
Sunny 120.51 62.79 152.64

Node variance degree Rainy 13753.11 3999.64 20816.63
Sunny 14420.21 4271.82 21735.49

Total fow Rainy 130842 52774 183616
Sunny 136244 55343 191587

Node average fow Rainy 183.77 75.55 255.19
Sunny 189.91 80.49 265.79

Node variance fow Rainy 52846.44 9021.28 104271.29
Sunny 58020.71 9747.79 114307.99

Coefcient average clustering Rainy 0.264 0.171 0.298
Sunny 0.274 0.18 0.309

Graph density Rainy 0.041 0.021 0.052
Sunny 0.042 0.023 0.053

Length average path Rainy 2.409 2.7 2.309
Sunny 2.411 2.672 2.311

Modularity Rainy 0.404 0.395 0.39
Sunny 0.408 0.428 0.41
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5.4. Community Detection and Graph Structure. Community
detection in transportation networks is a technique
employed to unveil clustering behaviour within the network.
A community can be understood as a set of nodes in the taxi
trafc network sharing similar characteristics. Te distinc-
tion between internal and external communities is de-
termined by modularity, where a higher modularity value
indicates a more reasonable community division with tighter
connections among nodes. Conversely, a lower modularity
value implies a more ambiguous community division and
sparser connections among community nodes. Taxi activi-
ties are impacted by rainfall, diminishing the efciency of
taxi travel in the network, elevating the probability of trafc
congestion, and rendering community delineation more
ambiguous. Te modularity decreases from 0.41 to 0.39 over
the week, with a more pronounced reduction observed on
weekends. Detected community structures are illustrated in
Figure 10, with numbers representing distinct community
structures. Under diferent weather conditions, four com-
munities on weekends and fve communities on weekdays
are identifed, exhibiting similar structures in terms of
partition form and geographical coverage. Rainfall induces
changes in community structures, causing the expansion of
the 1st community on weekends northward, absorbing
much of the 2nd community’s area (Figure 10(b)). Similarly,
rainfall causes the northward expansion of the 1st com-
munity on weekdays, albeit to a lesser extent than on
weekends. Te 3rd community extends northwestward to-
wards Wuchang Station, and the 5th community is nearly
engulfed andmerged into the 4th community (Figure 10(d)).
Rainfall facilitates community merging, resulting in a re-
duction in the number of communities and an expansion of
geographical coverage. Community merging is somewhat

related to node degrees, as residents alter travel destinations
during rainfall, reducing high-degree nodes and leading to
community transitions. Regions with high node degrees,
marked by circles in the fgure, exhibit signifcant com-
munity transition phenomena. It can be seen that rainfall
broadens the mobility range of taxis, with residents choosing
taxis for long-distance travel, thereby increasing the use of
medium and long-distance passenger taxis and replacing
some of the services normally provided by buses and sub-
ways. Compared to weekends, weekdays witness large-scale
mobility due to necessary commuting and work-related
travel, enlarging community coverage and aligning with
the current imbalance in residence and work areas in major
cities.

6. Conclusions

To capture the impact of rainfall on taxi travel patterns
and population mobility, this study employed geo-
statistical analysis and geographic spatial complex net-
work methods to construct a comparative analytical
framework for investigating the efects of rainfall on taxi
services in Wuhan City at diferent scales. In this research,
taxi travel data were utilized to extract passenger trajec-
tory information. Road intersections were designated as
nodes, and taxi movements between road intersections
served as edges, with the frequency of taxi connections
between two road intersections as the weight, thereby
constructing a complex taxi trafc network. Te study
integrated geostatistical analysis methods and spatial vi-
sualization techniques to present the association between
rainfall and taxi activities at various scales. Te conclu-
sions are as follows:
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(1) Rainfall reduced taxi travel volume during diferent
time intervals (a 3.96% decrease on weekdays, a 4.46%
decrease on weekends, and a 4.16% decrease over the
week). However, rainfall increased taxi travel demand
during specifc periods (a 4.17% increase between 19:
00 and 22:00 on weekdays). Taxi journeys primarily
involve short durations and distances, and rainfall
extends residents’ travel times, delaying the occur-
rence of travel peaks. It increased the frequency of
short-duration and long-distance trips, a phenome-
non more pronounced on weekends.

(2) Hotspots for taxi OD points in Wuhan City were
concentrated around train stations, CBD areas,
commercial streets, Optics Valley Square, and some
smaller attractions. Rainfall increased taxi travel in
areas near train stations, business districts, and
residential areas but decreased travel to leisure
tourist spots and commercial pedestrian streets.

(3) Rainfall had a greater impact on weekends than on
weekdays. It restricted residents’ travel range and
entertainment activities on weekends, while the
large-scale migration on weekdays was mainly due to
necessary commuting or work-related activities
resulting from a residence-work imbalance. Simul-
taneously, rainfall altered residents’ travel modes to
some extent, with more residents opting for taxis
during rainy weather.

(4) Rainfall expanded the mobility range of taxis,
causing changes in community structures. Residents
with distant destinations increasingly chose taxis,
leading to higher usage rates for mid- to long-
distance trips. However, the connectivity and ac-
cessibility of the taxi trafc network decreased due to
rainfall, resulting in reduced transportation ef-
ciency and an increased risk of trafc congestion or
accidents.

Te practicality of our multiscale comparative analysis
framework has been efectively demonstrated in this study,
further afrming the feasibility of taxi trajectory data in the
examination of population mobility. Trough our conclu-
sion analysis, we ofer some recommendations for urban
policymaking and transportation planning. Firstly, during
rainfall, trafc managers should pay attention to trafc
guidance at various times near train stations, commercial
areas, and densely populated areas, especially during
working days, to avoid trafc congestion. Secondly, taxi
companies should consider rain-related taxi dispatching.
More taxis should be deployed near essential transportation
hubs, such as train stations and trafc nodes, during rainy
weather. Conversely, the allocation of taxis near scenic spots
and entertainment facilities should be reduced on rainy days
to ensure residents’ travel needs.

Several limitations exist in this study. Firstly, research on
big data is constrained by computational performance,
demanding signifcant time for data processing. Moreover,
this study analysed data for a limited number of days and

solely relied on taxi trajectory data to discuss the impact of
rainfall on taxi travel patterns and population mobility. Te
limited data may weaken the signifcance of the impact of
rainfall on population mobility, and a more comprehensive
investigation of the efects of rainfall on residents’ travel
could be achieved by integrating multiple data sources such
as smart card transportation data, mobile signalling data,
and Weibo check-in data. Secondly, this study focuses solely
on the impact of rainfall on population mobility, without
considering the infuence of other factors such as temper-
ature, humidity, and wind speed, which can afect residents’
travel patterns. Additionally, the psychological impact of
prolonged rainy weather in the summer monsoon region is
not considered, which is an essential factor infuencing
residents’ travel. In future research, we can extend the
multiscale comparative analysis framework to diferent
cities, incorporating various data sources to further in-
vestigate the impact of diferent or combined factors on
transportation and population mobility patterns. Tis will
contribute valuable insights to the universality study of the
multiscale comparative analysis framework.
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