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As an emerging technological means for managing free-foat bike-sharing parking, electronic fences have attracted increasing
attention in major cities as a solution to the challenges posed by disorderly parking of free-foat bikes. Existing research has
predominantly focused on employing clustering methods from the perspectives of free-foat bike-sharing companies and users to
plan and deploy electronic fences. However, the results often deviate signifcantly from the actual phenomenon. Terefore,
scientifc location selection is particularly important to fully harness the efectiveness of electronic fences. Tis paper proposes
a multiscale clustering method based on free-foat bike-sharing parking features to determine the optimal locations for electronic
fences. A multiobjective mixed-integer programming model is established to address the location planning problem of electronic
fences, determining the planning positions, quantities, and areas of electronic fences. A case study is conducted using a local area
free-foat bike-sharing dataset from Shenzhen city to validate the efectiveness of the proposed method. Comparative results with
traditional approaches solely relying onK-means or DBSCANmethods demonstrate that the proposed approach achieves efcient
location selection, through multiscale fusion site selection in the study area of 1.5 ∗ 1 km, and only 25 electronic fences need to be
planned and deployed, covering a total area of 1691.88 square meters, which can provide rational placement solutions and better
utilize the efectiveness of electronic fences. Tis method can thus ofer decision-making support for the planning and location
selection of electronic fences in free-foat bike-sharing systems.

1. Introduction

Under the multiple drivers of “green,” “sharing,” and “In-
ternet+,” free-foat bike-sharing has emerged as a new mode
of transportation, providing efcient and environmentally
friendly travel services to urban residents.Tey contribute to
reducing greenhouse gas emissions, alleviating urban trafc
congestion, improving urban mobility, and serving as an
efective means of transportation for the “last mile” in cities.
As of 2023, there are over 2,000 operational free-foat bike-
sharing systems worldwide. Te notable free-foat bike-
sharing companies include Lime, Bird, Jump, and Spin in
the United States, Swapfets and Donkey Republic in the
Netherlands, and Donkey Republic and GoBike in Denmark.
In China, companies such as Hellobike and Mobike have
made signifcant contributions to the growth of free-foat

bike-sharing. China became the largest free-foat bike-
sharing market in the world in 2020, covering over 360
cities, with an average daily ridership of 47 million trips [1].
Te user base has also expanded, growing from 220 million
people in 2017 to 300 million people in 2021.

However, the explosive growth in the number of free-
foat bike-sharing has posed new challenges to urban public
management. Te haphazard and disorderly parking of
bicycles not only occupies public resources (e.g., motor
vehicle lanes, auxiliary lanes, and tactile pavements) but also
disrupts trafc order (e.g., blocking subway exits and bus
platforms) and afects the city’s aesthetics. It damages the
user’s experience and even hampers the sustainable devel-
opment of urban transportation [2, 3]. According to the
“2017 Special Report on China’s Summer Free-Float Bike-
Sharing Market,” 42% of users considered the problem of
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disorderly parking of free-foat bike-sharing to be severe,
while 26.8% considered it to be extremely severe [4].
Moreover, the demand for free-foat bike-sharing exhibits
spatiotemporal heterogeneity, with pronounced tidal phe-
nomena [5–8].

Against this backdrop, the “free-foat bike-sharing
electronic fence” has emerged as a primary means of
managing free-foat bike-sharing parking. Based on “Blue-
tooth beacon” technology, the electronic fence utilizes in-
formation technology to defne virtual parking stations,
dividing parking areas into operational and nonoperational
zones and regulating parking and no-parking areas. Users
are guided via mobile apps to designated locations for bike
borrowing and return, thereby enforcing orderly parking
behavior. Although electronic fences have been imple-
mented in some cities, they still face several challenges such
as follows: (1) there is a lack of interaction between electronic
fences and free-foat bike-sharing data, leading to improper
location selection. Some electronic fences may have no
available bikes for borrowing, while others may have no
available parking spots for returns; (2) an excessive number
of electronic fences may lead to suboptimal efects before
and after their implementation, and the problem of arbitrary
parking can still be observed; and (3) there may be a mis-
match between the size of electronic fences and the demand.
Some areas may have excessively large electronic fences,
resulting in wasted public land resources and chaotic and
disorderly parking of free-foat bike-sharing. Conversely,
some areas may have inadequate space, preventing users
from returning bikes. Terefore, the rational planning and
deployment of electronic fences in terms of location,
quantity, and size pose signifcant challenges to the devel-
opment of free-foat bike-sharing.

Free-foat bike-sharing, as a successful application of the
Internet of Tings (IoT), generates a vast amount of data
with spatial and temporal tags. In the planning and de-
ployment of electronic fences, researchers often rely on
unsupervised machine learning clustering methods based on
the data tags [9, 10], of which the most commonly used
methods include K-means clustering [11] and DBSCAN
[12]. Some scholars have also developed location-allocation
models (such as the p-median, p-center, and maximum
coverage problem models) [13, 14], considering the per-
spectives of free-foat bike-sharing companies and users
when planning the deployment of electronic fences. How-
ever, using a single clustering analysis method alone can lead
to rough results with strong randomness due to the uneven
distribution density of free-foat bike-sharing. In the plan-
ning and deployment of electronic fences, it is also necessary
to consider maintaining the city’s aesthetics and appearance
to ensure the sustainable development of free-foat bike-
sharing.

Te research is based on the large-scale data of free-foat
bike-sharing orders, proposing a multiscale clustering fne-
grained explorationmethod based on the spatial distribution
characteristics of free-foat bike-sharing to determine can-
didate locations for planning electronic fences for free-foat
bike-sharing. From the perspectives of users, enterprises,
and urban management, a comprehensive consideration is

given to the rational selection of electronic fence locations,
determining the positions, quantities, and areas where
electronic fences for free-foat bike-sharing should be
deployed within the designated region.

Te remainder of the paper is structured as follows.
Section 2 presents a review of the spatial and temporal
characteristics of bicycle sharing and studies related to bi-
cycle sharing site planning. Section 3 presents the problem
description and the model formulation. Section 4 presents
a case study of the Shenzhen city bike-sharing dataset.
Section 5 presents discussion with limitations and
future work.

2. Literature Review

Te analysis of spatiotemporal characteristics of free-foat
bike-sharing is fundamental for the planning and de-
ployment of electronic fences. Numerous scholars have
conducted relevant research on the spatiotemporal dis-
tribution characteristics of free-foat bike-sharing origin-
destination (OD) patterns. In terms of temporal charac-
teristics, scholars have mostly used bar or line graphs to
visualize the amount of free-foat bike-sharing usage per
unit time period [15, 16]; in terms of spatial character-
istics, scholars have mostly used grid cell statistical
analysis, kernel density analysis, and point-of-interest
distribution analysis [17–19]. Compared with the tradi-
tional siting of public bicycles with stakes, the site of
electronic fences for free-foat bike-sharing is more in-
experienced. Te location, quantity, and area of the
electronic fence are all factors to be considered, and
the bike has the characteristics of random parking and the
tidal phenomenon is more prominent, which makes the
siting of the electronic fence more complicated. At
present, the site selection problem mainly focuses on the
layout planning research, and scholars mostly construct
mathematical model algorithms and determine the site
selection plan with the help of geographic information
software and other methods.

Reasonable planning and deployment of electronic
fences can enhance the efciency and user satisfaction of
free-foating bike sharing, thereby playing a crucial role in
promoting urban transportation development. Various
mathematical models and algorithms have been widely used
in this area. Zhang et al. [20] employed the maximum
coverage method to plan the deployment of electronic fences
for free-foat bike-sharing in Shanghai, and the results
showed that with 7500 fences, 91.8% of parking demands
could be covered. Guo et al. [21] developed a mixed-integer
optimization model to optimize the layout of free-foat bike-
sharing parking lots on a campus, considering travel time
and cost as optimization objectives. Te optimization results
demonstrated a 6.0% reduction in average travel time and
a 27.3% decrease in construction costs. Garćıa-Palomares
[22] conducted a comparative analysis of the maximum
coverage model and the p-median model to evaluate the
rationality of site selection for bike stations, and the results
indicated that the maximum coverage model yielded more
signifcant outcomes. Martinez et al. [23] established an
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integer linear programming model with the objectives of
minimizing costs andmaximizing coverage range and solved
the model accordingly. Wang et al. [24] utilized the
DBSCAN algorithm to cluster the pickup locations of bi-
cycles, grouping 432 bikes into 12 clusters. Mahmoodian
et al. [25] performed clustering analysis on free-foat bike-
sharing data using an integer programming model, K-means
algorithm, and DBSCAN algorithm. Tey compared the
distances from users to cluster virtual stations and the time
required by diferent clustering methods, ultimately
selecting the K-means clustering method. Caggiani et al. [9]
employed a space-time clustering method to select virtual
stations within a 500m∗ 500m grid. Hua et al. [10] com-
pared K-means clustering, DBSCAN clustering, and
a 50m∗ 50m grid approach for selecting virtual bike sta-
tions. Yang and Chen et al. [26, 27] developed a coverage
model considering both spatial and temporal aspects, aiming
to maximize the spatiotemporal demand while minimizing
the distance between users and bike stations. Hu et al. [28]
applied the maximum coverage problem to optimize and
evaluate a free-foat bike-sharing project in Boulder, Col-
orado, providing three strategies for improving the free-foat
bike-sharing system. Park et al. [13] employed two diferent
location-allocation models and found that the sites de-
termined by the p-median were dispersed throughout the
area, while those determined by theMCLPmodel were more
concentrated in the central region. Frade et al. [14] con-
sidered the construction cost of free-foat bike-sharing
stations and, under a fxed budget, used the MCLP model
to determine suitable locations for station planning and
deployment. Guo et al. [29] simultaneously considered
macrolevels and microlevels, adopting DBSCAN andmixed-
integer linear programming for site selection and capacity
determination at the macrolevel and employing a trafc fow
simulation to establish an agent-based model for microlevel
parking layout planning. It can be observed that domestic
and foreign scholars have conducted some research studies
on bike-sharing site selection, mainly through unsupervised
machine learning clustering perspective (DBSCAN and K-
means) and established mathematical models from the
perspective of users and enterprises.

In the feld of geographic information systems (GISs),
Kabak et al. [30] combined diferent multicriteria decision-
makingmethods with GIS to determine indicator weights and
analyze the suitability of free-foat bike-sharing station lo-
cations. Conrow et al. [31] utilized spatial analysis (GIS and
spatial optimization) and coverage models to help establish
free-foat bike-sharing stations throughout the city, thereby
reducing the distance users need to travel. Nyimbili and Erden
[32] described the uncertainty of user travel and conducted
spatial analysis of free-foat bike-sharing stations by com-
bining fuzzy GIS analysis with the analytic hierarchy process
(AHP). Banerjee et al. [33] assumed a correlation between
potential free-foating bike sharing station locations and
roadway use intensity, improved the gravity model, and used

GIS to assess the suitability of free-foating bike sharing
station locations. Yang et al. [34, 35] proposed a shared
parking space allocation model and a timed shared parking
space allocation model to improve the utilization efciency of
parking in residential communities. Fu et al. [36] proposed
a new integrated site selection model for bike-sharing stations
with the aim of maximizing daily revenue for a given station
location and total investment in bike acquisition. In addition,
scholars optimized the operation strategies of the bike-sharing
system, including minimizing the division time in balanced
scheduling operation [37] and minimizing carbon dioxide
emissions [38].

In summary, a proper and well-planned deployment of
electronic fences is essential for ensuring the sustainable and
healthy development of the free-foat bike-sharing. It helps
improve the free-foat bike-sharing system and holds sig-
nifcant signifcance and value. Currently, the selection of
electronic fence locations often relies on clustering analysis
methods, but the clustering results may lack granularity and
precision. In addition, in the construction of location se-
lection models, the focus is primarily on user and enterprise
perspectives, while factors related to urban public man-
agement are often not adequately considered. Tis paper
proposes a multiscale and fne-grained clustering method
that leverages the distribution characteristics of free-foat
bike-sharing location big data. It considers the strengths and
weaknesses of K-means and DBSCAN, using a layered ap-
proach that applies DBSCAN clustering on top of the initial
K-means clustering to extract candidate locations for elec-
tronic fence deployment at a fner granularity. Te proposed
method considers the perspectives of urban management,
enterprise, and users to rationally plan and deploy free-foat
bike-sharing electronic fences.

3. Materials and Methods

3.1. Select Candidate Site for Free-Float Bike-Sharing Elec-
tronic Fences. Based on the spatiotemporal big data of free-
foat bike-sharing, unsupervised learning methods such as
K-means and DBSCAN clustering are commonly employed
to extract hotspots such as free-foat bike-sharing stations.
K-means clustering is based on the similarity measure,
which groups samples with similar distances into the same
subset, minimizing the diferences between elements in the
same subset. It assumes strong convexity of the dataset, has
low time complexity, and requires a specifed number of
clusters. On the other hand, DBSCAN is a density-based
clustering algorithm that can automatically identify the
number of clusters and handle irregularly shaped clusters as
well as outliers. It requires defning a neighborhood radius
and minimum density to partition data points and gather
density-reachable points into the same cluster. DBSCAN has
a higher time complexity, making it inconvenient for large
data processing. However, the distribution of free-foat bike-
sharing parking spots is irregular and often exhibits block-
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like, strip-like, and scattered patterns. K-means does not
handle these situations well. DBSCAN can compensate for
the limitations of K-means as it can automatically identify
irregularly shaped clusters and exhibits good robustness to
outliers. However, since the density of free-foat bike-
sharing parking big data varies spatially, using the same
parameters directly does not yield satisfactory results, and
the computational complexity is high, leading to long
processing times.

Considering the distribution characteristics, outliers,
and time complexity of free-foat bike-sharing, with refer-
ence to the advantages and disadvantages of the above-
mentioned two algorithms, this section adopts
a superimposed fusion approach to select electronic fences
using a multiscale fne-grained clustering method. First,
considering the diferences between categories, the K-means
algorithm is used at the macrolevel to cluster the large
dataset of free-foat bike-sharing, and classifying regions
according to the spatial distribution characteristics of free-
foat bike-sharing divides a large number of data points into
fewer clusters, which reduces the complexity of the data and
serves to downscale the data, making it easier to understand
and analyze. Ten, based on the K-means clustering results,
the DBSCAN clustering is performed by specifcally
adjusting the parameters of each class according to the
characteristics of the distribution of bicycles in each class,
and in order to reduce the false detections and to better
adapt to the situation of uneven data density, the direct use
of the same DBSCAN radius may not be able to capture this
diference well, and the global radius setting may lead to
excessive clustering or missed detections because it is not
sensitive to the characteristics of the diferent clusters, and
by choosing the appropriate radius for each cluster, it is
possible to reduce the false detections, so as to improve the
accuracy of the site detection and to better capture the
characteristics of the distribution of the clusters in the
diferent regions, which will lead to a more targeted site
selection.

Te within-cluster sum of squares (WCSS), silhouette
coefcient, and Calinski–Harabasz index (CH index) are
used to evaluate the clustering performance. Algorithm 1
demonstrates a complete algorithm for multiscale hierar-
chical clustering based on free-foating bicycle sharing big
data. At the macrolevel, the inputs are the free-foating
bicycle sharing dataset, the number of clusters “k_values,”
the radius of the neighborhood “eps_values,” and the
minimum number of data points “min_p”; by evaluating the
metrics “WCSS” and “Silhouette coefcients,” it will output
the number of best clusters “best_k” and themacroclustering
results. At the microlevel, based on the macroclustering

results, the best neighborhood radius “best_eps(idx)” of each
class is obtained through the evaluation of indicators such as
“Silhouette coefcient” and “CH index”; the parking char-
acteristics of free-foat bike sharing are more fully taken into
account, which leads to accurate and reasonable selection of
the location of the electronic fence.

3.2. Model Formulation. Te planning and deployment of
electronic fences for free-foat bike-sharing will inevitably
have an impact on users, businesses, and urban manage-
ment. For users, the deployment of electronic fences in-
creases the walking distance to their destinations. For
businesses, the development of electronic fence technology
and the allocation of land require cost investment. For urban
public management, the deployment of electronic fences will
have an impact on the city’s appearance and trafc order.
Terefore, it is necessary to balance the relationships among
these factors, and it is worth exploring the reasonable
planning of the location, area, and capacity of electronic
fences for free-foat bike-sharing.

3.2.1. Model Assumptions

(1) Users can use a mobile app to access information
about nearby electronic fence locations and choose
the nearest one to borrow or return free-foat bike-
sharing.

(2) Tere are multiple user demand points and elec-
tronic fence locations. Each electronic fence can
serve multiple user demand points, but each demand
point can only choose one electronic fence for free-
foat bike-sharing borrowing or return.

(3) Users are only allowed to borrow or return free-foat
bike-sharing within the designated electronic fences.

(4) Tis study uses the Euclidean distance instead of
street distance. Most of the bicycle systems studied
are based on urban areas, which typically have a high
density of roads and intersections.Tis allows people
to make journeys in any direction by using the road,
with the distance traveled unlikely to be far beyond
the straight-line or Euclidean distance. In addition,
the bike user is less likely to take long detours than
other transport users (such as car drivers and metro
riders) who are more constrained within their road
network in the urban area. For this reason, O’Brien
et al. [39] indicated that an Euclidean distance
simplifcation in the bike system is more likely to be
valid for urban areas, with a higher road and in-
tersection density.
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3.2.2. Notation. Te symbols used in this model are shown
in Table 1.

3.2.3. Formulation

MinZ1 � C1 
j∈J

Yj + C2 
j∈J

VjYj,

MinZ2 � C2 
k∈K


j∈J

Xkjlkjqk + 
i∈I


j∈J

Xij
′lijqi

⎛⎝ ⎞⎠,

MaxZ3 � − 
j∈J

P(j)log2P(j),

S.t.

Xkj ≤Yj, ∀k ∈ K, j ∈ J,

Xij
′ ≤Yj, ∀i ∈ I, j ∈ J,


j∈J

Xkj � 1, ∀k ∈ K,


j∈J

Xij
′ � 1, ∀i ∈ I,

Vj �
qj0 + i∈IXij

′ qi − k∈KXkjqk α∐ Yj � 1 

β
, ∀j ∈ J,

lkj <� lmax, ∀k ∈ K,

lij <� lmax, ∀i ∈ I,

⎧⎪⎨

⎪⎩

P(j) �
Vj

S
,


j∈J

Yj ≤ n,

Yj � 0, 1{ } Xkj � 0, 1{ } Xij
′ � 0, 1{ }.

(1)

In the abovementioned model, the objective function 1 is
the enterprise cost, which is composed of the construction
cost and the land use cost of the electronic fence; the ob-
jective function 2 is the user satisfaction, which is composed
of the user borrowing distance and the returning distance,
and the smaller the distance, the higher the user satisfaction;
the objective function 3 is the electronic fence spatial en-
tropy, which measures the uncertainty or irregularity degree
of the electronic fence distribution in a region, and a smaller
electronic fence spatial entropy indicates that the electronic
fence is more concentrated and evenly distributed, which
can make the visual feeling of the city more neat and orderly
and reduce the sense of clutter.

Constraints 4 and 5 indicate that the electronic fence
must be in the open state when the demand point is served;
constraints 6 and 7 indicate that the demand for borrowing
and returning bikes can only be satisfed by one electronic
fence; constraint 8 indicates the calculated area for e-fence
deployment, which consists of the initial capacity, the
number of returned bikes, and the number of borrowed
bikes; constraint 9 indicates that the walking distance for
users to borrow and return bikes is less than the maximum
walking distance; constraint 10 indicates the percentage of
each bike in the study area; constraint 11 indicates that the
selected number of electronic fence cannot exceed the
number of candidate electronic fence; constraint 12 indicates
that the three decision variables are 0 and 1 variables.

3.2.4. Grey Relational Analysis. Based on the Pareto optimal
solution generated by the abovementioned multiobjective
optimization problem, in order to objectively and quanti-
tatively evaluate the Pareto solution set to rank and select the
optimal site selection solution from the Pareto solution set,
this paper proposes the use of grey relational analysis (GRA).
Te steps are as follows.

input: dataset, k_values, eps_values� [10, 25], min_p� 10
output: best_k, macro_clusters, best_eps (idx), micro_clusters
for k� k_values

kmeans� ftckmeans (dataset, k)
labels� predict (kmeans, dataset)
evaluation indicator� [WCSS, Silhouette coefcient]

end
best_k� k_values(best_k_idx)//choose the best k value
kmeans� ftckmeans(data, best_k)//k-means macroclustering
micro_clusters� cell (best_k, 1)

for cluster_label� 1 : best_k
for eps� eps_values

dbscan_labels� dbscan(cluster_data, eps, 10)
evaluation indicator� [ WCSS, Silhouette coefcient, CH index]

end
best_eps� eps_values(best_eps_idx)//choose the best eps value
dbscan_labels� dbscan(cluster_data, best_eps, 10)//dbscan microclustering
micro_clusters{cluster_label}� dbscan_labels;

end

ALGORITHM 1: Te multiscale clustering.
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Step 1. Determine the comparison sequence and ref-
erence sequence
Assuming that there are m programs and n evaluation
indicators, a comparison sequence of m∗ n can be
constructed, where the m th program comparison se-
quence is denoted as

Xmn � xm1, xmw, . . . , xmn . (2)

Te reference sequence is the desired standard se-
quence used for comparison, which is denoted as

X0n � x01, x0w, . . . , x0n . (3)

Step 2. Normalized processing
To eliminate the efect of each indicator measure, the
series was normalized and noted as

xmn
′ �

xmn

1/m
m
1 xmn

. (4)

Step 3. Calculate the number of correlation coefcients
Te correlation coefcient ξmn for the nth indicator of
the m th program is denoted as

ξmn �
minmmin n x0n

′ − xmn
′


 + ρmaxmmax n xon

′ − xmn
′




x0n
′ − xmn
′


 + ρmaxmmax n xon

′ − xmn
′




.

(5)

Step 4. Calculate the grey correlation degree

Calculate the gray correlation of each scheme, the larger
the value represents the stronger the correlation between
the scheme and the objective, and select the scheme with
themaximumgray correlation as the optimal scheme.Te
gray correlation calculation formula is denoted as follows:

Rm �
1
n



n

1
ξmn. (6)

4. An Illustrative Analysis

4.1. Data Source and Preprocessing. Te data used in this
research are obtained from the China Shenzhen Govern-
ment Open Data Platform [40], with a release date of
September 21, 2021. Te data are in the CSV format and
include free-foat bike-sharing ID, user ID, borrowing time,
returning time, borrowing latitude and longitude, and
returning latitude and longitude, as shown in Table 2. Data
preprocessing primarily involves removing empty and
missing data and eliminating outliers (e.g., latitude and
longitude values that signifcantly deviate from the operating
area and ride durations exceeding 6 hours).

Te implementation platform is MATLAB R2019a on
a notebook with an Intel Core i7-10875H, 2.30GHz under
Windows 10 with 16GB memory.

To ensure the representativeness, practicality, and porta-
bility of the study area, a complex functional area with com-
plete service facilities and high free-foat bike-sharing demand
is selected for research.Te selected area is a rectangular region
with latitude ranging from 113.9194 to 113.9394 and longitude
ranging from 22.5194 to 22.5294, as shown in Figure 1.Te size
of the area is approximately 2000m ∗ 1000m.

Table 1: Notations of model formulation.

Sets Defnition
J Electronic fence candidate collection, J � 1, 2, . . . , j 

K Collection of user demand points for borrowing bikes, K � 1, 2, . . . , k{ }

I Collection of user demand points for returning bikes, I � 1, 2, . . . , i{ }

Variables
Yj Equals 1 if the electronic fence is deployed in the location j, 0 if not

Xkj

Equals 1 if the demand for borrowing bike point k is served by electronic fence j, 0 if
not

Xij

Equals 1 if the demand for returning bike point k is served by electronic fence j, 0 if
not

Vj Te area for planning and deployment of electronic fence j. Unit: m2

Parameters
qj0 Te number of initial bikes at the electronic fence j
qk User demand for borrowing bikes at k
qi User demand for returning bikes at i

C1C2C3

Fixed cost of electronic fence, unit: yuan/place; the cost of land occupation for bikes.
Unit: yuan/m2; the distance cost incurred during the process of bike borrowing and

returning by users, yuan/m
P(j) Percentage of area per electronic fence j in the study area
α Te land area occupied by each individual bicycle, m2/vehicle
n Number of candidate electronic fences
β Electronic fence capacity coefcient

lkjlij′ lmax

Te distance generated by the user during the borrowing process; the distance
generated by the user during the returning process; the maximum distance of

borrowing and returning bikes
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4.2. Free-Float Bike-Sharing Use Characteristics. Te weekly
borrowing/returning demand for free-foat bike-sharing in
the study area, as shown in Figure 2, clearly shows that the
demand for bikes on weekdays is much higher than that on
nonweekdays, and the demand for bicycle use shows obvious
bimodal characteristics, refecting the obvious tidal phe-
nomenon of free-foat bike-sharing trips, with the demand
in the morning peak being higher than that in the evening
peak; on weekdays, the borrowing/returning demand for
free-foat bike-sharing is similar.

Te total number of free-foat bike-sharing orders for
a week in the study area is 130,507, and the average daily
ridership is 18,644. Statistics on the number of orders for
a week are shown in Figure 3. Te free-foat bike-sharing
usage on weekdays is more even, and the usage of free-
foat bike-sharing on weekdays is signifcantly higher than
that on nonworking days, with the highest usage of 20,587
bikes on Wednesday. Te number of bikes borrowed and
returned at each time on Wednesday is shown in Figure 4,
where red represents the demand for returning bikes and
black represents the demand for borrowing bikes,
showing the tidal phenomenon of bike-sharing use, with
obvious morning and evening peaks. From midnight to 5
am, there is a low user demand for bike rides. Starting
from 6 am, the demand gradually increases, reaching its
peak between 7 am and 9 am, accounting for 48.8% of the
total daily usage. Te evening peak hours occur between 5
pm and 7 pm, representing 26.3% of the total daily usage.
After the evening peak, the bike demand gradually
decreases.

In terms of the spatial use characteristics of free-foat
bike-sharing, frst, the region for rasterization, divided into
a 20 ∗ 20 grid, selects the number of bikes borrowing and
returning and then calculates the density of free-foat
bike-sharing in each grid, after visualization as shown
in Figure 5. It can be seen that the density of the use of
free-foating bike sharing by users in the region is not
balanced, with the distribution of bikes in some locations
being more concentrated and the distribution of bikes in
some locations being more sparse; compared with the
free-foat bike-sharing borrowing and returning density

location area, it can be found that in the same area, the
free-foat bike-sharing borrowing and returning density is
similar.

In the process of selecting and deploying electronic
fences for free-foat bike-sharing, we believe that it is essential
to meet the demand during peak hours. Terefore, we chose
the morning peak hours (7 am to 9 am) for our research. We
conducted a spatial distribution analysis of free-foat bike-
sharing during this period and generated origin-destination
(OD) kernel density heatmaps, as shown in Figures 6(a) and
6(b). Te red areas represent the most frequently utilized
regions for free-foat bike-sharing usage, while the green areas
indicate the least utilized regions. Te yellow areas represent
transitional zones. It can be observed that the spatial distri-
bution of free-foat bike-sharing is highly uneven, with similar
intensity in bike returns and borrowings.

4.3. Multiscale Clustering of Electronic Fences. Te distri-
bution of free-foat bike-sharing in the study area during
peak hours is shown in Figure 7, revealing primarily block-
shaped, belt-shaped, and point-shaped patterns.Te bikes are
mainly concentrated along the sides of roads, ofce buildings,
and shopping malls. In this paper, the user’s borrowing de-
mand point and returning demand point are considered
together, so the borrowing latitude and longitude and
returning latitude and longitude data are merged as the lo-
cation of the user’s demand. At the macrolevel, the initial
clustering of the data was performed using the K-means
algorithm. Te evaluation results are presented in Table 3
and Figure 8, showing that the silhouette coefcient is
maximized and both the WCSS and CH index exhibit good
performance when the data are clustered into six classes. Te
clustering results, as shown in Figure 9, partition the free-foat
bike-sharing data within the area into more consistent sub-
sets, which is benefcial for subsequent DBSCAN clustering.
Tis approach enables DBSCAN to adapt to diferent cate-
gories of data and obtain more accurate clustering results.

Te DBSCAN clustering method is used at the micro-
level. Considering the variability of free-foat bike-sharing
distribution categories, multiple categories based on K-
means division are clustered using DBSCAN. We set the

400 M

Figure 1: Case study area.
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minimum neighborhood points (MinPts) to 10 and do not
deploy electronic fences if the parking demand is less than 10
bikes. By considering the silhouette coefcient and CH index
to evaluate the clustering quality of each category, we focus
on capturing the local structure, with the silhouette co-
efcient chosen as the main evaluation index and the CH
index as the auxiliary evaluation index, to select the most
appropriate neighborhood radius and enhance the robust-
ness of the results. Figure 10 shows the selection of the
neighborhood radius and clustering results for each cluster,
where the selection radius of cluster 1 is 24m, cluster 2 is
16m, cluster 3 is 17m, cluster 4 is 20m, cluster 5 is 25m, and

cluster 6 is 19m. By doing so, we canmore accurately classify
the clustering clusters of free-foat bike-sharing and improve
the results reliability of the clusters.

Te results of comparing the multiscale clustering
method with direct usage of DBSCAN and K-means are
presented in Table 4, revealing that the multiscale clus-
tering method demonstrates superior performance across
multiple indicators. K-means achieves the highest sil-
houette coefcient when the number of clusters is set to
30. However, the clustering results lack granularity and do
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not produce any noise points. Tis leads to the estab-
lishment of electronic fences around individual free-foat
bike-sharing, resulting in higher land resource utilization
but with low efciency. In contrast, the multiscale

clustering method achieves a balanced level of similarity
and dissimilarity between samples, resulting in better
clustering outcomes. Furthermore, this method exhibits
fewer noise points, indicating that planning the de-
ployment of electronic fences within the clusters can
better fulfll user demands. In addition, the multiscale
clustering method ofers a high computational efciency,
allowing for faster calculations within a shorter
timeframe.
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Figure 5: Free-foat bike-sharing regional density. (a) Regional borrowing density. (b) Regional returning density.
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Figure 6: Heat map of demand during peak periods. (a) Heat map of demand for borrowing. (b) Heat map of demand for returning.
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Figure 7: Distribution of bikes in the region.

Table 3: Evaluation of K-means clustering results.

Number of
clusters WCSS Silhouette coefcient CH index

2 0.141618843 0.638730861 2.17E+ 04
3 0.093614393 0.570297238 1.79E+ 04
4 0.069217715 0.593869516 1.52E+ 04
5 0.049983302 0.641208203 1.45E+ 04
6 0.035292187 0.668650703 1.94E+ 04
7 0.029886923 0.633170025 1.82E+ 04
8 0.025853272 0.623774029 1.72E+ 04
9 0.022547654 0.629040005 1.55E+ 04
10 0.020072251 0.630456264 1.47E + 04
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4.4. Optimization Model Results. Based on the clustering
results, the candidate locations for electronic fences for free-
foat bike-sharing are determined. Te optimization of the
number, locations, and capacity of the electronic fences is
approached from the perspectives of the enterprise, users,
and urban management. Te construction cost of an elec-
tronic fence [41] is 100 Yuan/place. Te cost of land oc-
cupation by a bike is 10 yuan/m2. Te user’s walking cost
[42] is 0.03 yuan/m. Te area occupied by a bike is
0.5m2/vehicle. Te capacity coefcient of the electronic
fence is 0.8. Te demand location and quantity were ob-
tained by K-means clustering. Te multiobjective mixed-
integer programming model presented in Section 3.2 is
solved, and the Pareto solutions are obtained as shown in
Figure 11. It can be observed that within the selected area, as
the cost of electronic fences (land usage cost and

construction cost) increases, the user’s walking distance
decreases, resulting in increased satisfaction, while the
spatial entropy shows an increasing trend.

Te grey relational analysis is employed to rank and
evaluate the various solutions in the Pareto solution set. Te
solution with the highest relative grey relational degree is
selected as the optimal plan for the deployment of electronic
fences. Te results are presented in Figure 12, with the
optimal ranking of solutions as 4-3-5-6-2-7-8-1-9. Among
these solutions, solution 4 is ultimately chosen as the optimal
deployment plan for the free-foat bike-sharing electronic
fences. Te construction cost of the electronic fences
amounts to 19,418.75 yuan. Te average walking distance to
access the electronic fences for bike borrowing or returning
is 4.31meters per person. Te spatial entropy of the elec-
tronic fences is calculated to be 3.1413.
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Figure 10: DBSCAN evaluation results. (a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5. (f ) Cluster 6.

Journal of Advanced Transportation 13



Te specifc planning locations and areas of the elec-
tronic fences in the research area (1.5 km ∗ 1 km) are pre-
sented in Table 5. A total of 25 electronic fences are planned,
covering an area of 1691.88m2, which accounts for 0.08% of
the total area. Users can borrow and return free-foat bike-
sharing to the suggested nearest e-fence location through the
mobile app, as shown in Figures 13(a) and 13(b), where red
rectangles and triangles denote the user’s borrowing and
returning locations, respectively, and the red teardrop shape
denotes the location where the e-fence is planned to be
deployed. After optimization, the construction cost of the

electronic fences decreased by 62% compared to the pre-
optimized state. Te occupied area has been reduced by
2580 m2. Te spatial entropy of the electronic fences has
decreased from 5.4589 to 3.1413, as shown in Figure 14.

5. Discussion

Tis paper studies the planning and deployment of elec-
tronic fences for free-foat bike-sharing. Considering the
variations in the distribution of free-foat bike-sharing
parking locations, we utilize large-scale free-foat bike-
sharing data. At the macrolevel, we employ the K-means
algorithm to cluster the bike data, capturing the distribution
characteristics of the bikes. By considering these distribution
characteristics, the bike data are categorized into multiple
clusters. At the microlevel, we utilize the DBSCAN algo-
rithm to perform more refned clustering based on the
specifc distribution features of each bike cluster. By in-
tegrating these clustering results, we obtain candidate lo-
cations for the electronic fences of free-foat bike-sharing.
Moreover, from the perspectives of the enterprise, users, and

Table 4: Evaluation of clustering methods.

Clustering methods Number of clusters Silhouette coefcient Noise ratio (%) Running times (s)
Te graded clustering 86 −0. 99433333  7.927 3 79  .25679
DBSCAN 92 −0.3724 25.11887779 2.3274
K-means clustering 30 0.6418 — 4.0305
Te bold values indicate the superiority of the proposed clustering method “the graded clustering” under the three indicators.
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Table 5: Electronic fence planning location and area.

Geofence ID LNG Lag Size
1 113.9281603 22.5283309 5.00
2 113.9317266 22.5276928 24.38
3 113.9291724 22.5256362 93.75
4 113.9301945 22.5272407 5.00
5 113.9202352 22.5268393 5.00
6 113.9223946 22.5246752 5.00
7 113.9231791 22.5286652 5.00
8 113.9392356 22.5275044 268.13
9 113.9345844 22.5242855 10.00
10 113.9348061 22.5293223 140.00
11 113.9330447 22.5263384 580.00
12 113.9209068 22.5205277 5.00
13 113.9251718 22.5221308 5.00
14 113.9220825 22.5228825 5.00
15 113.9224973 22.5198016 5.00
16 113.9253612 22.5232444 5.00
17 113.9383767 22.5212525 5.00
18 113.9367847 22.5220752 5.00
19 113.9348579 22.5197727 5.00
20 113.9295770 22.5196784 46.25
21 113.9319384 22.5200114 9.38
22 113.9286964 22.5239334 105.00
23 113.9277341 22.5211274 57.50
24 113.9325372 22.5237139 163.12
25 113.9311444 22.5220788 129.38
Sum 1691.88
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urban management, we establish a multiobjective site se-
lection model that comprehensively considers factors such
as the construction cost of electronic fences, user satisfac-
tion, and the spatial entropy of the fences. Finally, we employ
the grey relational analysis to determine the optimal plan-
ning and management scheme for the electronic fences.

Te spatiotemporal big data of free-foat bike-sharing in
Shenzhen in 2021 is used as the case study.Te experimental
results show that compared with the traditional methods
using DBSCAN andK-means alone, the method proposed in
this study is superior in terms of clustering efect, number of
noise points, and running time and can achieve a more
refned planning for the deployment of electronic fences;
through multiscale fusion site selection in the study area of
1.5∗1 km, only 25 electronic fences need to be planned and
deployed, covering a total area of 1691.88m2. Tis study can
provide scientifc basis and technical support for the plan-
ning and deployment of electronic fences to promote the
sustainable development of free-foat bike-sharing.

However, there are areas for improvement in this study.
In future research, the planning and deployment of elec-
tronic fences can be integrated with the scheduling aspect.
Considering the tidal phenomenon of free-foat bike-
sharing, dynamic electronic fences can be implemented.
By incorporating land characteristics, the shape of each
electronic fence can be refned, making the free-foat bike-
sharing system more intelligent.
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Figure 13: Distribution of demand for (a) borrowing and (b) returning.
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