
Research Article
Application of CNN-LSTM Model for Vehicle Acceleration
Prediction Using Car-following Behavior Data

Shuning Tang ,1 Yajie Zou ,1 Hao Zhang ,2 Yue Zhang ,1 and Xiaoqiang Kong 3

1Key Laboratory of Road and Trafc Engineering of Ministry of Education, Tongji University, Shanghai 201804, China
2Zachry Department of Civil Engineering, Texas A&M University, 3136 TAMU, College Station, TX 77843-3136, USA
3Texas A&M Transportation Institute, 1111 Rellis Parkway, Bryan, TX 77807, USA

Correspondence should be addressed to Yajie Zou; yajiezou@hotmail.com and Hao Zhang; zhanghao230@tamu.edu

Received 18 October 2023; Revised 13 January 2024; Accepted 29 March 2024; Published 8 April 2024

Academic Editor: Zhihong Yao

Copyright © 2024 Shuning Tang et al.Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Accurate vehicle acceleration prediction is useful for developing reliable Advanced Driving Assistance Systems (ADAS) and
improving road safety.Te existence of driver heterogeneity magnifes the variations in acceleration data, leading to consequential
impacts on the precision of vehicle acceleration prediction. However, few studies have fully considered the driver heterogeneity
when predicting vehicle acceleration. To model the characteristics of individual drivers, this study frst identifes the driving
behavior semantics which is defned as the underlying patterns of driving behaviors. Te analysis results from the coupled hidden
Markov model (CHMM) are used to evaluate the driving behavior diferences between diferent drivers by Wasserstein distance.
Ten the convolutional neural network (CNN) and long short-term memory (LSTM) network are applied to predict vehicle
acceleration. To validate the accuracy of the proposed prediction framework, vehicle acceleration data in car-following conditions
is extracted from the safety pilot model deployment (SPMD) dataset. Te segmentation results indicate that the CHMM possesses
a robust capacity for modeling driving behavior. Te prediction results demonstrate that the proposed framework, which in-
corporates driver clustering before prediction, signifcantly improves the accuracy of predictions. And the CNN-LSTM out-
performs the LSTM in predicting vehicle acceleration during car-following scenarios. Te fndings from this study can enhance
the development of personalized functionalities within ADAS to promote its deployment, thereby improving its acceptance and
safety.

1. Introduction

Autonomous driving technology is gaining attention as
a solution to promote the trafc efciency and prevent
accidents in diverse trafc conditions. In the car-following
scenario, a signifcant challenge in autonomous driving is to
accurately model the driving behavior and predict the future
movements of the preceding vehicle. Driving behavior re-
fects driver’s operations on vehicles and has an important
infuence on road safety [1, 2]. Many studies have shown that
80% of trafc accidents are caused by inappropriate driving
behavior such as aggressive behavior [3]. Vehicle accelera-
tion is a crucial aspect for describing the driving behavior.
Accurate prediction of vehicle acceleration allows advanced
driver assistance systems (ADAS) to obtain dynamic

changes of driver’s actions and enables ADAS to predict the
driver’s future operations. Tis improvement in ADAS can
avoid driver’s defciencies in perception and decision-
making, thereby improving trafc safety.

1.1.DrivingBehaviorAnalysis. Many studies in the past have
demonstrated signifcant heterogeneity in car-following
behavior among drivers, indicating diverse responses and
adjustments to trafc fow changes [4, 5]. Te heterogeneity
among drivers contributes to substantial fuctuations in the
driver characteristic variables, thereby increasing the com-
plexity of modeling driving behavior, which carries impli-
cations for both the design of ADAS and trafc safety [6, 7].
However, most existing driving behavior modeling methods
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are unable to efectively handle the heterogeneity, and
therefore, cannot accurately capture the driving behavior
characteristics of diferent drivers. To bridge this gap, driving
behavior analysis and evaluation have emerged as critical
research areas. Tese methods aim to analyze the driving
behavior characteristics of diferent drivers, enhance the
understanding of driver heterogeneity, and evaluate dif-
ferences between individual drivers based on specifc in-
dicators to enable efective clustering and modeling of
driving behavior. Approaches currently available for driving
behavior analysis can be broadly classifed into two cate-
gories: those based on statistical features and those based on
driving behavior semantics.

Methods based on statistical features usually consider
the characteristics of driving data. Traditional methods often
rely on a single statistical feature, such as the mean and
standard deviation of brake pressure [8], the steering wheel
position [9], and the throttle position [10].Te complexity of
driving behavior arises from the intricate interplay of
multiple factors, including but not limited to acceleration,
braking, steering, lane changing, and other associated ele-
ments.Terefore, relying on a single feature to assess driving
behavior may not adequately capture the full range of its
characteristics. Many studies have used multiple indicators
to analyze driving behavior. Fugiglando et al. [11] employed
diferent statistical features to analyze driving behavior and
applied the K-means algorithm for drivers clustering [12].
Euclidean distance was applied to recognize the preference
of driving behavior with diferent statistical features in-
cluding vehicle speed and throttle opening [13]. However,
one major limitation of these driving behavior analysis
approaches is that the intrinsic and dynamic characteristics
of driving behavior cannot be captured from statistical data.
Additionally, driving behavior evaluation approaches above
are also obtained based on static criteria and do not take into
account the randomness of data changes during driving.

Driving behavior involves dynamic decision-making.
Even when faced with identical trafc conditions, a driver’s
decision can change over time [9]. Terefore, it is crucial to
fully capture dynamic characteristics from drivers’ opera-
tions for a better analysis of driving behavior. Some studies
suggest that driving behavior semantics should be seg-
mented. Driving behavior semantics were known as the data
blocks with the same behavior characteristics. Te driving
behavior semantics can refect the distinct dynamic corre-
spondence between the driving environment and driving
operation caused by driver heterogeneity [14]. Methods
based on driving behavior semantics can be classifed into
traditional methods and Markov chain-based methods. In
traditional methods, supervised and unsupervised learning
techniques have been commonly used [15]. Supervised
learning methods, such as the fuzzy logic algorithm [16, 17],
have been introduced for segmentation and identifcation.
Xie and Zhu [18] employed timestamp-based segmentation
and random forest classifcation to analyze driving behavior.
However, supervised learning methods require labeled
training data, which can be laborious and time-consuming.
Unsupervised learning methods have emerged as an alter-
native. Te two-step algorithm proposed by Higgs and

Abbas [6] has been used for car-following segmentation and
clustering of driving behavior using K-means. Taylor et al.
[19] used regularization to model the heterogeneity of
driving behavior semantics over time.

Te methods based on Markov chain are often used in
sequence segmentation felds, such as natural language
processing. Tere are many similarities between driving
behavior semantics analysis and natural language process-
ing. Both driving behaviors and natural language data are
time-series data, where the order of events is of vital im-
portance. And the meaning of a word in natural language is
determined by the words surrounding it. Similarly, a specifc
driving action may imply diferent things depending on the
surrounding driving environment. Tus, some natural
language processing approaches have also been applied in
driving behavior segmentation. Te hidden Markov model
(HMM) has demonstrated signifcant advantages in cap-
turing dynamic processes in natural language and has found
extensive applications in modeling driving behavior [20].
Te HMM with Gaussian mixture emissions (GMM-HMM)
was proposed to analyze the heterogeneity of diferent
driving behavior [20, 21]. Tese driving behavior analysis
models could capture the underlying stochastic and dynamic
characteristics of driver behaviors, but failed to obtain the
microscopic preferences which included the interrelation-
ship between diferent characteristic variables. Wang et al.
[22] applied a Markov chain-based method to identify
primitive driving patterns from temporal driving data and
subsequently employed Kullback-Leibler (KL) divergence to
classify 75 driving patterns. KL divergence is used to
compare the diference between driving patterns by com-
paring feature distributions, which better takes into account
the randomness of driving behavior data. Other commonly
used methods for this purpose include the Jensen-Shannon
(JS) divergence [23] and the Cauchy-Schwarz divergence
[24]. Tese driving behavior evaluation methods consider
the infuence of the randomness of driving data and are
capable of measuring the diference of information con-
tained in two temporal driving data. However, these mea-
sures sufer from low discriminative power when the
distributions have little or no overlap, leading to an inability
to efectively distinguish diference between them and often
require defning comparison intervals to ensure precise and
stable computation results.

Terefore, the diference between driving behavior
should be more comprehensively and meticulously distin-
guished considering the connection between characteristic
variables. And driving behavior evaluationmetrics should be
able to handle various scenarios where the distributions have
little overlap and have a wider range of applicability.

1.2.VehicleAccelerationPrediction. Tere are two categories
related to vehicle acceleration prediction models: mathe-
matical model and machine learning model. Te mathe-
matical model is a fxed structure based on diferent
mathematical parameters. Kim and Yi [25] utilized a prob-
abilistic method for holistic vehicle states prediction in-
cluding acceleration. Tis model could be solved as
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a multistage optimal estimation problem. Te parameter
analysis and Fisher discriminant method were combined to
predict vehicle acceleration [26]. Te desired spacing car-
following model was adopted by the proposed model.
However, these models have defciencies in non-linear ft-
ting for vehicle acceleration data.

Machine learning has become an increasingly popular
approach for vehicle acceleration prediction. Zhang et al.
[27] introduced a nonlinear autoregressive model with
exogenous inputs (NARX) for onboard implementation.
Te support vector machine (SVM) was used to train the
acceleration sample and forecast [28]. Recently, deep
learning models have gained signifcant attention. A long
short-term memory (LSTM) neural network was used to
generate accurate vehicle acceleration distributions and
predict future acceleration values [29]. Lio et al. [30]
demonstrated the performance of recursive, non-
recursive, structured, and nonstructured networks for
vehicle acceleration prediction. Moreover, the non-
recursive network proved to be preferable. Although these
models exhibit robust capabilities for nonlinear ftting, it
should be noted that these models do not have specialized
modules for feature extraction. When dealing with com-
plex data, such as high-dimensional time-series data, they
may not fully capture the characteristics of car-following
data, which are critical for accurately predicting vehicle
acceleration.

Previous prediction methods overlook the diferences
that exist in driving behavior among individuals and fail
to fully extract the valuable information from trafc data.
Furthermore, the current driving behavior evaluation
indicators sufer from limited applicability that can lead to
unreasonable clustering results of drivers. Tese limita-
tions may decrease the accuracy of vehicle acceleration
prediction which lower the acceptance of the ADAS [31].
To address shortcomings above, a framework is proposed
for predicting vehicle acceleration by analyzing driving
behavior in this paper. Te driving behavior clustering
based on driving behavior semantics segmentation is
conducted before prediction. And the prediction model
with a fusion of LSTM and convolutional neural network
(CNN) is defned as the CNN-LSTM. In this study, to
capture the fundamental driving patterns, a coupled
hidden Markov model (CHMM) is utilized. Te utiliza-
tion of CHMM in this study provides several advantages
compared to other hidden Markov models, particularly in
its ability to model interacting processes across various
domains [11, 32]. It enables a comprehensive consider-
ation of the interrelationships among diferent variables.
Based on the results of driving behavior semantics seg-
mentation, drivers are clustered into diferent groups by
Wasserstein distance. Te Wasserstein distance is a dis-
tribution distance metric that is insensitive to outliers and
makes no assumptions on the distribution range. It ef-
fectively distinguishes diference between two probability
distributions, even in cases of limited overlap, making it
a valuable tool for measuring driver heterogeneity
[33, 34]. Te prediction model combines the LSTM with
the CNN, since the CNN is good at extracting features

from variables which can improve the performance of the
prediction model [35, 36].

Te contributions of this study can be summarized as
follows: (1) A method based on CHMM and Wasserstein
distance for driving behavior analysis and evaluation is
introduced to undertake a refned clustering of drivers. (2) A
CNN-LSTM model is proposed for predicting vehicle ac-
celeration. Te results indicate that the CNN-LSTM with
a strong feature extraction capability outperforms the LSTM
in vehicle acceleration prediction.

Te remainder of this paper is arranged as follows:
Section 2 introduces the data sources and preprocessing. In
Section 3, this paper introduces the CHMM and the CNN-
LSTM. Section 4 shows the results of semantic segmentation
and evaluation for driving behavior. Tis section also
presents the vehicle acceleration prediction results using the
CNN-LSTM. Finally, Section 5 provides conclusions and
future work for this study.

2. Data Description and Preprocessing

2.1. Data Extraction. Te car-following data used in this
paper are obtained from the Safety Pilot Model Deployment
dataset (SPMD). Tis comprehensive dataset contains
driving data for 2,842 vehicles over two years in Ann Arbor,
Michigan, USA. 98 sedans in this dataset are equipped with
a data acquisition system and MobilEye [37]. Te onboard
data, including vehicle speed, acceleration, and GPS, are
obtained from the data acquisition system while the lateral
position relative to the lane or road edge is recorded by the
MobileEye system. Each driver operates a vehicle and engage
in several car-following instances. During these instances,
data such as the car-following event ID, relative distance
between the subject vehicle and the preceding vehicle, rel-
ative speed, acceleration, and data collection timestamps are
collected.

Te extraction principles for stable car-following events
are as follows [38]: (1) Te ego vehicle is in the same lane as
the vehicle in front. (2) Te relative distance is greater than
5m and less than 120m. (3) Te speed of the ego vehicle
exceeds 5m/s. (4) If the ID of the preceding vehicle changes,
the event is terminated. (5) Te duration of each car-
following process cannot be less than 50 s. Te data col-
lection area for the car-following events used in this study is
illustrated in Figure 1 [22]. Records from 30 drivers with the
longest trip durations are selected, and the histogram il-
lustrating the speed distribution of the ego vehicle is shown
in Figure 2.

Te car-following scenario is shown in Figure 3. In this
condition, the vehicle’s acceleration or deceleration is pre-
dominantly determined by the relative distance and relative
speed between the preceding vehicle and the ego vehicle
[39, 40]. To maintain the desired distance, the driver
modulates the brake or accelerator pedal accordingly.
Depending on that, three characteristic variables include
relative speed, relative distance, and the ego vehicle accel-
eration, are selected to illustrate diferent driving behavior.
Te acceleration of the ego vehicle (a): it can explain driving
intentions and preferences in driving behavior. Relative
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distance (Δd): Δd � x2 − x1 represents the positional dif-
ference in the forward direction between the ego vehicle and
the preceding vehicle. Relative speed (Δv): it signifes the
speed discrepancy between the ego vehicle and the preceding
vehicle, Δv � v2 − v1.

2.2. Variables Segmentation. To better understand individ-
ual driving characteristics and ensure that the extracted
similar driving behavior semantics from diferent drivers
correspond to consistent driving behavior patterns, the three
variables above are categorized into distinct levels. Te
classifcation process ensures that driving behavior se-
mantics extracted from car-following data from diferent
drivers consistently exhibit identical driving patterns. Tis
classifcation is carried out by taking into account the data
characteristics and the physical and mental perception
thresholds of drivers [23, 41, 42]. Te variable segmentation
information is shown in Table 1.

To eliminate dimension, the raw data is standardized as
follows. After processing, the characteristic variables have
a mean value of 0 and a standard deviation of 1.

x
(i)(k)

�
x

(i)(k)
− μi

σi

, k � 1, 2, ..., K, i � 1, 2, ..., 30, (1)

where represents input data of the driver i in stable car-
following event k, and the value of i is from 1 to 30. K is the
number of stable car-following events of the driver. μi and σi

denote the mean and standard deviation of the characteristic
variables for driver i, respectively.

3. Methodology

3.1. Framework. Figure 4 displays the overall structure of the
vehicle acceleration prediction in this paper. First, the car-
following data is processed to obtain stable car-following
events. Second, the CHMM model is used to divide the
processed data into driving behavior semantics segments.
And the diference of driving behavior is assessed using
Wasserstein distance; drivers are grouped into subgroups
depending on the driving behavior evaluation results. Tird,
the CNN-LSTM is constructed for acceleration prediction in
diferent subgroups.

3.2. CHMM. Driving behavior data is subject to random
variation. It only depends on the current state of the driving
system. Traditional models struggle to capture the ran-
domness of driving behavior. Te HMM with its powerful
ability to describe dynamic processes can efectively over-
come the stochasticity. Terefore, HMM has gained ex-
tensive utilization in the analysis of driving behavior [43].
Te CHMM is a variant of the HMM that extends its ca-
pabilities. Te coupled hidden Markov model (CHMM)
incorporates a coupled multichain structure that establishes
interconnections between the hidden state variables of the
HMM chain. Tis model efectively captures interactions
among multiple sequences, thereby enhancing its ability to

handle latent connections between variables [23]. Tus, the
CHMM is able to process the interaction between diferent
characteristic variables.

Te CHMM with three chains is shown in Figure 5. In
this study, the hidden state sequence is presented by the
driving patterns, while the variables are applied as the ob-
servation sequence. Te sequence of observations for each
HMM is only related to the hidden states of this HMM. Te
hidden state in each chain is not only related to the hidden
state at the previous moment in the HMM chain of itself but
also infuenced by the hidden states of other chains [23]. In
the CHMM, each HMM chain has M hidden states, and the
whole number of hidden states is M3. Te observation se-
quence is expressed as Zt � Z1,t, Z2,t, Z3.t􏽮 􏽯. For time t, the
observed values of Δd, Δv, and a is Z1,t, Z2,t, and Z3,t. Te
hidden states are S3t � S1,t, S2,t, S3.t􏽮 􏽯, S1,t, S2,t, and S3,t rep-
resent the hidden states of Δd, Δv, and a at t. Te CHMM is
represented by parameters λ � (A, B,Π). Te state transfer
matric A � au,v􏽮 􏽯, probability of observations B � bu(Zt)

and initial state probabilities Π � πu􏼈 􏼉 can be calculated by
equations (2)–(4):

au,v � P S
3
t+1 � qv | S

3
t � qu􏼐 􏼑, 1≤ u, v≤M

3
, (2)

bu Zt( 􏼁 � 􏽙

3

c�1
bc,u Zc,u􏼐 􏼑 � 􏽙

3

c�1
P Zc,u | Sc,t � qc,u􏼐 􏼑, 1≤ u≤M

(3)

πu � P S
3
1 � qu􏼐 􏼑, 1≤ u≤M

3
. (4)

Te emission function in the CHMM uses Gaussian
distribution to calculate the observation probability, con-
sidering that all variables are continuous.

P Zc,t | Sc,t � qc,u􏼐 􏼑∼N μc,u, σ2c,u􏼐 􏼑, 1≤ c≤ 3, 1≤ u≤M,

(5)

Table 1: Segmentation of variables.

Variable Variable state Treshold

Relative distance
(m)

Close distance (CD) (5, 26.34]
Normal distance (ND) (26.34, 57.76]
Long distance (LD) >57.76

Relative speed (m/s)

Rapidly falling behind
(RFB) >1.0

Falling behind (FB) (0.2, 1.0]
Keeping (KE) (−0.2, 0.2]
Closing in (CI) (−1.3, −0.2]

Rapidly closing in (RCI) ≤−1.3

Acceleration (m/s2)

Aggressive deceleration
(AD) ≤−0.22

Gentle deceleration (GD) (−0.22,
−0.07]

No acceleration (NA) (−0.07, 0.05]
Gentle acceleration (GA) (0.05, 0.19]
Aggressive acceleration

(AA) >0.19
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where qc,u is the hidden states of the HMM chain c, μc,u and
σc,u respectively represent the probability distribution’s
mean and standard deviation.

Driving behavior segmentation is a classic decoding
problem in the application of HMM. Te CHMM can
compute the most likely sequence of hidden states for the

time-series driving characteristic in the car-following process.
Te input of the CHMM includes time series of characteristic
variables in the following car events: the number of the hidden
states, the initial state transition probabilities, and emission
probabilities while the CHMM will compute and output the
most likely sequence of hidden states for each point in time.
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3.3. CNN-LSTM. A CNN-LSTM model consists of two
parts: the CNN part is used to capture features of the car-
following data and improve the algorithm’s efciency.
Te LSTM part is then constructed to predict the ac-
celeration data. Te framework of the CNN-LSTM model
is presented in Figure 6. First, the input dataset includes l
time steps Δt before t th time step, which can be written as
follows:

Xt � xt, xt+Δt, · · · , xt+(l−1)Δt􏽮 􏽯, (6)

where xt is a multidimensional vector at time t, which is
expressed as xt � Δdt,Δvt, at􏼈 􏼉

T.
Second, the CNN part is utilized to extract diferent

features. CNN is a deep neural network that employs
convolutional computation [44, 45]. It has been shown to be
efective in extracting features from matrices and acceler-
ating the training process [46]. Te core component of CNN
is the convolution layer, which extracts features from
characteristic variables via convolution operation [47, 48].
Te structure of a single-layer convolutional network can be
expressed as follows:

N
j
1 � σ X

j
1 ⊗W

j
1􏼐 􏼑 + b

j
1􏼐 􏼑, (7)

where N
j
1 is the output of the convolution layer, X

j
1 is the

collection of input samples of Xt, W
j
1 is the convolution

kernel, and b
j
1 is the bias weight of the layer. Where j is the

channel index considering the multiple convolution fl-
ters in the convolutional layer, and the activation func-
tion is σ.

In general, the pooling layer follows the convolutional
layer to reduce the dimensionality of the characteristic data
obtained by convolution. In this paper, the maximum
pooling layer is utilized.

Te CNN part is followed by the LSTM part. LSTM,
which is a variant of recurrent neural networks (RNN),
incorporates input gates, output gates, forget gates, and
memory cells to address the challenge of gradient vanishing
or explosion [49–51]. Figure 7 shows the structure of LSTM
unit. Te forget gate (FG) determines which information
about the state of the cell is lost. According to the ht−1 and
the x∗t , the forget gate outputs a number between 0 and 1 for
the state. 0 represents complete discard, and 1 indicates fully
accepted. Te FG is expressed in (8):

ft � σ ωfht−1 + ωfx
∗
t + bf􏼐 􏼑, (8)

where ft represents the state of the forget gate at time t, ωf

and bf is the forget gate weight and bias, respectively. x∗t is
the input at time t, which also indicates the output from
maximum pooling. ht is the output, σ is the activation
function. Input Gate (IG) is used to update information in
the state of the input cell. It takes the input x∗t at the present
moment and the implicit layer state ht−1 at the previous time
into the sigmoid function. It is calculated as follows:

it � σ ωix
∗
t + ωiht−1 + bi( 􏼁, (9)

where it indicates the input gate state, ωi and bi is updated by
information stored in the previous memory cell ct−1 and new
candidate information, it is shown as following equations:

􏽥ct � tanh ωcx
∗
t + ωcht−1 + bc( 􏼁, (10)

ct � it · 􏽥ct + ft · ct−1, (11)

where 􏽥ct is the candidate cell state at t, ct is the updated cell
state, ωc and bc is the weight and bias of the cell state, re-
spectively. · is based on the memory cell state ct and output
gate state ot. It is expressed in equations:

S3,1 S3,2 S3,3
S3,t

Z1,1 Z1,2
Z1,3

Z1,t

S3,1 Z2,2 S3,3 Z2,t

Z3,1
Z3,2 Z3,3

Z3,t

Z2,1 Z3,t
Z2,3

Z2,t

Z3,1 Z3,2 Z3,3
Z3,t

…………

…………

…………

Figure 5: Te CHMM model containing three HMM chains.
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ot � σ ωox
∗
t + ωoht−1 + bo( 􏼁, (12)

ht � ot · tanh ct( 􏼁, (13)

ωo and bo is the weight and bias of the input gate,
respectively.

3.4.WassersteinDistance. In the driving behavior evaluation
part, the Wasserstein distance is used to evaluate the dif-
ference between the distributions of various evaluation in-
dicators for drivers. Te Wasserstein distance is
a mathematical method used to measure the distance be-
tween two probability distributions and g(x). It can be
mathematically expressed as follows:

Wp(f, g) � inf
c∈Γ(f,g)

􏽚
Rd×Rd

‖x − y‖
p
dc(x, y)􏼠 􏼡

1/p

, (14)

where c(x, y) is a set of all joint distributions whose
marginals are f(x) and g(x), and Wp(f, g) is the Was-
serstein distance of order p between f(x) and g(x). When
p� 1, theWasserstein distance is referred to as the frst-order
Wasserstein distance or Earth Mover’s Distance. In com-
parison to KL divergence and JS divergence, the Wasserstein
distance possesses the advantage of being sensitive to the
shape of distributions. Even when two distributions have
minimal overlap, the Wasserstein distance can efectively
capture and diferentiate the dissimilarities between them.
Furthermore, KL divergence and JS divergence have the
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Figure 7: Structure of LSTM unit.
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Figure 6: Structure of CNN-LSTM model for acceleration prediction.
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limitations that both functions have a value of zero, ren-
dering them undefned. In contrast, Wasserstein distance
can overcome this drawback which is appropriate for the
evaluation indicators in this study.

4. Results

4.1. Driving Behavior Evaluation. Given the diverse char-
acteristics of drivers, similar car-following scenarios can
prompt varied responses among individuals, resulting in
signifcant fuctuations in the car-following characteristic
variables between drivers. Tis poses a challenge to driving
behavior modeling and prediction. By assessing the driving
behavior among drivers and grouping those with minor
diferences together, the variability in the characteristic
variables within a group is reduced, facilitating more ac-
curate modeling and prediction of driving behavior.
Depending on the characteristics of driving behavior, most
studies have divided diferent drivers into three types:
aggressive, moderate, and conservative [52–54]. Terefore,
in this study, the number of hidden states in a single
CHMM chain is set to 3, and the model is referred to as
CHMM_3.

Figure 8 shows the duration distribution results for
driver #5. As can be discerned from the fgure, the majority
of driver #5’s durations fall within the 1–10 second interval,
with the average duration being 5 seconds. Figure 9 illus-
trates the segmentation results of driver #30. Te CHMM
model divides the car-following process into several seg-
ments. One segment represents the same primitive driving
pattern, refecting a uniform driving behavior characteristic.
Te background color block represents extracted driving
behavior patterns, with uniform colors indicating similar
behavior types. Te curves in the graph indicate signifcant
fuctuations in the characteristic variables of driver #30. Te
segmentation results obtained from CHMM_3 align closely
with fuctuations in the driver characteristic data. Tus, the
driving behavior semantics extracted from the data efec-
tively refect the potential driving behavior characteristics
represented by characteristic variables.

Table 2 displays the duration distribution of driving
behavior semantics obtained from GMM-HMM and
CHMM_3. Te GMM-HMM has been widely applied in the
feld of segmentation to process sequence data and unearth
hidden states [55, 56]. Te results from CHMM_3 indicate
that 81.3% of pattern durations fall within the range of 1 to
10, while the proportions of durations from 1 to 10 in the
results of GMM-HMM are only about 60%. A similar study
by Wang et al. [22] yielded similar fndings, where over 80%
of behavior semantics durations ranged between 1 and
10 seconds, with a mean duration of approximately
5.9 seconds.Tus, the behavior semantics segments obtained
from CHMM_3 can better describe the actual driving be-
havior characteristics.

In this study, the diference in driving behavior among
drivers is evaluated by Wasserstein distance from three
aspects: the duration, occurrence probability of a primitive
driving pattern, and distribution of characteristic variables
between every pair of drivers [23]. To eliminate the infuence

of results with diferent magnitudes on the overall result,
normalization is applied to the results of the three di-
mensions separately.

Te duration distribution of semantics can provide in-
sights into the characteristics of the patterns of driving
behavior. For driver i, the duration of driving behavior
semantics is di, the duration distribution of semantics is
represented as g(di). For driver j, the distribution of the
duration dj is represent as g(dj). Te diference of the
duration of driving behavior semantics between two drivers
can be expressed as follows:

Di,j � WP g di( 􏼁, g dj􏼐 􏼑􏼐 􏼑. (15)

Te occurrence probability of a primitive driving pattern
can serve as an indicator of drivers’ driving behavior
preference. Calculating the average values of three variables
for each driving behavior semantics, labels are assigned to
the driving behavior semantics based on the intervals de-
fned in Table 1. For example, “CD-KE-AA” represents the
semantic label “close distance-keeping-aggressive accelera-
tion.” Due to the discrete distribution of labels, the fre-
quencies of diferent labels are used instead of the values of
a continuous distribution function. By conditioning the car-
following distance, the frequencies of diferent labels are
computed for each distance category. For drivers i and j, the
occurrence probabilities of labels are P(l

SΔd
i ) and P(l

SΔd
j ),

respectively. And the average Wasserstein distance is then
calculated for the three distance labels:

Li,j �
1
3

􏽘
SΔd

WP P l
SΔd
i􏼐 􏼑, P l

SΔd
j􏼐 􏼑􏼐 􏼑, SΔd ∈ LD, ND, CD{ }.

(16)

Distribution of characteristic variables refects the degree
of aggressiveness. According to Table 2, the driving behavior
semantics are divided into eight segments based on the
duration. Te mean and standard deviation of the feature
variables xk are separately calculated for driver i and j within
these eight intervals. Te data distributions are then ftted
using a normal distribution which are represented as g(r

xk

i )

and g(r
xk

j ). Te average of the Wasserstein distance for the
degree of aggressiveness diference is calculated as follows:

Ri,j �
1

8 × 3
􏽘

8

d�1
􏽘

3

xk�1
Wp g r

xk

i( 􏼁, g r
xk

j􏼐 􏼑􏼐 􏼑. (17)

At last, the average from the Di,j, Li,j, and Ri,j provides
a comprehensive evaluation index of driving behavior.

Figure 10 shows the heatmap results of the three eval-
uation aspects after normalization, as well as the compre-
hensive evaluation results. Te darker colors represent the
larger Wasserstein distances, indicating a greater diference
between the two drivers in each indicator. Rows and col-
umns corresponding to drivers with signifcantly diferent
behaviors compared to others in Figures 10(a)–10(c) are
highlighted with green boxes. According to Figure 10(a),
drivers #15, #16, and #17 are signifcantly diferent from
others in the distribution of duration as they have dark red
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Figure 9: Te segmentation results by CHMM_3 of driver #30.

Table 2: Duration distribution of driving behavior semantics.

Model
Duration distribution of driving behavior semantics (s)

<1 [1, 5) [5, 10) [10, 15) [15, 20) [20, 25) [25, 30) ≥30
GMM-HMM 0.1569 0.3243 0.2283 0.1292 0.0616 0.0339 0.0163 0.0494
CHMM_3 0.0630 0.5932 0.2196 0.0843 0.0271 0.0081 0.0024 0.0025
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Figure 10: Continued.
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vertical bars compared with other drivers.Tis indicates that
these drivers have more diferent transition characteristics of
driving patterns from others. And, for drivers #24 to #30, the
Wasserstein distance values are small, refecting that the
duration distributions among these drivers are relatively
small. Tis suggests that the transition characteristics of
driving patterns among drivers #24 to #30 are fairly similar.
From Figure 10(b), drivers #11 and #20 have a more distinct
distribution of occurrence probability of driving pattern.
Tis suggests that these drivers have more diferent pref-
erence for the selection of driving patterns from others. As
for the distribution of characteristic variables in Figure 10(c),
the most signifcant diference exists in drivers #25 and #26.
Tis refects that #25 and #26 have an aggressive level that
difers from other drivers.

Terefore, the utilization of the Wasserstein distance in
conjunction with driving behavior semantics allows for the
visualization of diferences in driving behavior among
drivers. Te results of the comprehensive evaluation are
shown in Figure 10(d). To achieve driving clustering, the
boundary condition of Wasserstein distance for driver
clustering is set at the 25th percentile (0.29). According to
the comprehensive evaluation results, 8 drivers with the
boundary condition less than 0.29 between the two are
grouped as group 1 (e.g., #5, #6, #9, #13, #19, #23, #27, #28),
and the remaining 22 drivers are divided into group 2. All 30
drivers are defned as group 3.

4.2. Prediction Results Analysis and Comparison. We com-
pared the performance of the proposed framework with the
LSTM, and the acceleration prediction experiments are
carried out separately for each group. All experiments have
been conducted on a computer using the TensorFlow
framework. As shown in equations (18) and (19), two in-
dicators are employed for evaluating the performance of
diferent algorithms on diferent groups: mean squared error
(MSE), mean absolute error (MAE).

MSE �
1
n

􏽘

n

i�1
yi − 􏽢yi( 􏼁

2
, (18)

MAE �
1
n

􏽘

n

i�1
| yi − 􏽢yi | , (19)

where n is the number of prediction samples, yi represents
the true value, and 􏽢yi represents the predicted value of the
acceleration.

For each driver in each group, the data is divided into
training and testing sets, which are grouped based on car-
following events, with a 4 :1 ratio. Within the training set,
allocate 15% of the data as the validation set. Te input
length for both models is 80, with a prediction length of 1.
Due to the inherent randomness introduced by random
seeds in deep learning models, each model’s performance
can vary with each run. To reduce the infuence of ran-
domness in the CNN-LSTM and the LSTM, fve separate
experiments are conducted for both models, and results are
shown in Table 3. For both models, across fve repeated
experiments, the data used and hyperparameters (including
learning rate, number of neurons, type of optimizer, etc.) are
kept consistent. Group 1 consists of eight drivers with
a minor diference in driving behavior, whereas group 2
comprises drivers with varying driving behavior. Group 3
encompasses all the drivers examined in this study. And
group 4 consists of eight drivers that were selected at ran-
dom. Te degree of heterogeneity between the four driver
groups follows the pattern: group 2 exhibits higher het-
erogeneity than group 3, while group 3 exhibits higher
heterogeneity than group 1. And group 4 also exhibits higher
heterogeneity than group 1. Te bold results in the table
represent theminimum experimental errors among diferent
groups. In each group, the results of the fve experiments for
diferent models are distinct, but they demonstrate minor
fuctuations within a narrow range. Te results suggest the
existence of randomness in the deep learning network
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Figure 10: Wasserstein distance of driving behavior evaluation: (a) distribution of duration; (b) occurrence probability of driving pattern;
(c) distribution of characteristic variables; and (d) comprehensive evaluation results.
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Table 3: Te prediction results for four diferent groups.

Group Drivers Model Index
Experiments

Average
1 2 3 4 5

1 8 drivers
LSTM MSE 0.0081 0.0081 0.0082 0.0080 0.0081 0.0081

MAE 0.0591 0.0592 0.0615 0.0595 0.0606 0.0600

CNN-LSTM MSE 0.00 6 0.00 8 0.00 6 0.00 6 0.00 6 0.00 6
MAE 0.05 2 0.05 9 0.05 4 0.05  0.05 5 0.05 5

2 22 drivers
LSTM MSE 0.0193 0.0218 0.0175 0.0174 0.0170 0.0186

MAE 0.0891 0.1135 0.0947 0.0907 0.0891 0.0954

CNN-LSTM MSE 0.0146 0.0146 0.0148 0.0145 0.0145 0.0146
MAE 0.082 0.0822 0.0830 0.0819 0.0828 0.0825

3 30 drivers
LSTM MSE 0.0173 0.0180 0.0163 0.0173 0.0162 0.0170

MAE 0.0891 0.0952 0.0869 0.0924 0.0856 0.0898

CNN-LSTM MSE 0.0125 0.012 0.0124 0.0126 0.0128 0.0126
MAE 0.0 46 0.0 64 0.0 41 0.0 54 0.0 5 0.0 52

4 8 drivers (in random)
LSTM MSE 0.0219 0.0199 0.0247 0.0203 0.0202 0.0214

MAE 0.1097 0.1027 0.1191 0.1041 0.1041 0.1079

CNN-LSTM MSE 0.0188 0.0188 0.0194 0.0189 0.0193 0.0190
MAE 0.100 0.1001 01010 0.1005 0.1008 0.1006

Te bold results represent the outcomes of the model with the smallest prediction errors among the four driver groups.
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Figure 11: Continued.
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structure, emphasizing the importance of conducting fve
experiments to accurately assess the model’s overall pre-
diction performance.

Column “Average” presents the mean performance
metrics obtained from fve experiments that employed
LSTM and CNN-LSTM across four driver groups. Te bold
results represent the outcomes of themodel with the smallest
prediction errors among the four driver groups. Te
CNN-LSTM consistently outperforms the LSTM for all four
driver groups. For group 1, the CNN-LSTM demonstrates
marginally superior predictive accuracy compared to the
LSTM. In terms of group 2, CNN-LSTM outperforms LSTM
with a 21.5% improvement in MSE and a 13.5% improve-
ment in MAE. Similarly, in group 3, the CNN-LSTM model
outperforms LSTM with a 25.9% improvement in MSE and

a 16.3% improvement in MAE. With group 4, the
CNN-LSTM model outperforms LSTM with a 11.2% im-
provement in MSE and a 6.8% improvement in MAE.

For further comparison, group 1 shows decreased pre-
dictive errors in both models compared to the other three
groups. Tis observation indicates that the efectiveness of
both models in vehicle acceleration prediction is diminished
when applied to driver groups with greater heterogeneity. In
particular, the CNN-LSTM of group 1 achieves a higher
accuracy than group 4 with an improvement of 60.0% in
MSE and 42.8% inMAE. Both group 1 and group 4 comprise
an equal number of drivers.Te diference lies in the method
of selecting these eight drivers. Group 1 is the result of
clustering using the Wasserstein distance based on the
behavior semantics divided by the CHMM, while group 4 is
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Figure 11: Model performance comparison of diferent groups: (a) group 1; (b) group 2; and (c) group 3.
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the result of random selection. Te better performance of
group 1 is probably due to the fact that the CHMM is capable
of efectively partitioning driving behavior semantics and
that the driving behavior evaluation method using Was-
serstein distance is comprehensive and rational, leading to
a more accurate evaluation of driver heterogeneity and
consequently making the driving behavior more consistent
among drivers within group 1. Groups 2–4 show larger
heterogeneity among drivers, which presents a greater
challenge for vehicle acceleration prediction.

Te comparison of the true values with the prediction
values is drawn in Figure 11. Te areas where there are
signifcant performance diferences between two models are
highlighted with green boxes. According to three subfgures
separately, the CNN-LSTM exhibits better alignment with
the true value curve compared to the LSTM, as evident from
the visual analysis. Tis is probably because the proposed
framework can profciently leverage the informative data
available.Temodel exhibits an exceptional nonlinear ftting
capability on vehicle acceleration prediction for driver
groups with minor diferences in driving behavior. Te
pairwise comparison of the three subgraphs reveals that the
two models in group 1 demonstrate superior ftting per-
formance to the ground truth values among the three groups
due to the relatively high degree of alignment observed
between the lines. Te fndings are in line with the predicted
outcomes presented in Table 3.

5. Conclusions

Tis paper has proposed a framework for predicting ve-
hicle acceleration based on the CNN-LSTM, considering
heterogeneity in driving behavior among drivers. To
achieve this, the CHMM is utilized to segment car-
following data on driving behavior into semantics seg-
ments. Tis model enables an accurate description of the
interconnections between multiple variables. Based on the
results of driving behavior evaluation, drivers are cate-
gorized into diferent groups by Wasserstein distance.
Wasserstein distance has a wider range of applicability
and can provide more accurate clustering results. Te
CNN-LSTM model is then employed to predict vehicle
acceleration for the driver group with minor diferent
characteristics. Te experimental results demonstrate that
the CNN-LSTM outperforms LSTM in terms of prediction
accuracy. Moreover, the CNN-LSTM based on driving
behavior analysis exhibits a superior prediction perfor-
mance compared to the CNN-LSTM without clustering.
Overall, the proposed model can provide a high accuracy
for vehicle acceleration prediction. For future work, the
proposed CNN-LSTM model can be expanded to process
car-following data from other locations or diferent road
conditions to further evaluate the generalization capa-
bilities of the model.
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