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Understanding the sideslip risks of various trajectory patterns, as well as the impact of rainfall on them, is critical for improving
road safety. However, the lack of precise classifcation indicators hampers systematic analysis of the variations in vehicle trajectory
patterns. To address this, this study proposes a parameterized classifcation method for trajectories on curved segments,
employing the radius and ofset of the trajectory as the primary classifcation features and dividing the trajectories into nine
patterns. Tese patterns represent variations from smaller to larger radii and inside to outside lane ofsets, refecting diferent
driving behaviors and vehicle stability during vehicle cornering. Concurrently, the friction coefcient utilization rate is used to
efectively compare vehicles’ sideslip risk under diferent weather conditions. Based on this, we construct a framework using
computer vision technology for automatically identifying trajectory patterns and measuring sideslip risk. We conducted an
empirical study on a highway-curved segment with high sideslip risk in China and collected two datasets under clear and rainy
conditions for analysis. Te classifcation results show that the proposed method can efectively classify trajectories according to
nine trajectory patterns. Comparative analysis reveals that vehicle trajectories in both the inside and outside lanes are notably
more afected by rainfall compared to the middle lane. Meanwhile, trucks demonstrate a higher susceptibility to rainfall than cars.
In addition, the analysis of the sideslip risk for diferent trajectory patterns discovers several high-risk patterns.Tis study provides
an efective approach for monitoring and analyzing the sideslip risk on curved segments, thereby contributing to the enhancement
of road design and trafc safety management.

1. Introduction

Rainfall poses a severe threat to highway driving safety,
primarily due to its reduced skid resistance between tires and
road pavement and the visibility of vehicles [1, 2]. Among
these, the reduced skid resistance is often difcult to detect,
causing drivers to overlook the crash risk. Driving on wet
roads increases the likelihood of vehicle accidents and in-
tensifes their severity. Fatal trafc crashes are 34% more
likely to occur under rainy conditions than in clear weather
conditions, and this likelihood increases by 27% even in light
rain [3]. About 11% of car crashes and nearly a quarter of
fatal cases occur during periods of rainfall each year in

Louisiana [4]. Te reasons behind the frequent crashes
under rainy conditions not only lie in the reduced skid
resistance leading to longer braking distances for vehicles
but also in the fact that vehicles easily sideslip on curved
segments [5]. Previous studies have shown that rainfall can
increase the expected number of severe crashes on curved
segments by 3.26 times [6, 7].Terefore, comprehending the
impact of rainfall on vehicle sideslip risk on curved segments
is crucial for enhancing road design and trafc safety
management.

Factors afecting the sideslip risk on curved segments
under rainy conditions mainly include road surface condi-
tions [8], road geometry [9, 10], vehicle performance [11], and
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rainfall [12]. Previous studies have achieved many results by
extensively investigating these factors using various methods,
such as crash report data [13, 14], simulation experiments
[15, 16], and actual vehicle experiments [17]. However, crash
report data cannot reveal the impact of rainfall on vehicle
sideslip risk at the microlevel. Meanwhile, there are limita-
tions in the data quantity and quality of simulation experi-
ments and actual vehicle experiments. Researchers are
turning to mass-collected trajectory data under naturalistic
driving conditions [18, 19]. Based on this, the impact of
rainfall on vehicles has been analyzed usingmoremicroscopic
indicators from trajectories, including speed, lateral acceler-
ation, lateral ofset of vehicles, and intervehicle distance
[20, 21]. Nevertheless, previous studies have overly focused on
the trajectories of a small number of abnormal vehicles,
neglecting the overall changes in trajectory features [22, 23].
Te classifcation of trajectory patterns is an essential basis for
observing the overall changes in trajectory features. Previous
studies have explored methods for classifying trajectories on
curved segments, encompassing both single-indicator-based
and mixed classifcation methods. Te single-indicator-based
classifcations, such as trajectory radius [24], lane departure
[25], and curve-cutting position [26], ofer specifc advantages
such as efective sideslip risk description, simplicity and
practicality, and utilization of turning characteristics, re-
spectively. On the other hand, mixed classifcation [27], ex-
emplifying patterns such as cutting, swinging, drifting,
correcting, and normal and ideal behavior, provides a sys-
tematic categorization of vehicle trajectories on curved seg-
ments, being widely utilized despite its limitations in precise
indicator defnition and potential overlap in trajectory cate-
gories. However, the classifcation methods proposed in
previous studies still have limitations: (a) some methods are
only applicable to specifc curved segments (e.g., hairpin
curved roads) and cannot be universally applied to all cases;
(b) many classifcations do not fully consider the charac-
teristics of curved trajectories, namely, the radius of the
trajectory and lateral ofset; and (c) many classifcation
methods only provide illustrations without giving classifca-
tion indicators.

With the advancement of computer vision technology,
vehicle trajectories can be extracted more accurately from
video [28, 29]. Tis overcomes the limitations of technol-
ogies like radar, such as difculty in coordinate conversion
and low data accuracy of trajectories [30]. Consequently,
a more detailed and accurate driving behavior analysis based
on vehicle trajectories is possible [31, 32]. Although the
video collected by drones is more straightforward regarding
coordinate conversion, it is difcult to collect video of ve-
hicle movements under rainy conditions. Te closed-circuit
television (CCTV) systems widely deployed along highways
efectively mitigate data collection constraints under rainy
conditions. Terefore, this study uses computer vision
methods to process road surveillance videos to obtain ve-
hicle trajectories under clear and rainy weather conditions as
the databases for this study.

In essence, this study aims to explore the impact of
rainfall on the safety of driving on curved segments using
real driving trajectory data. To address the gaps in previous

research, this study frst proposes a parameterized trajectory
classifcation method. It categorizes vehicle trajectories on
curved segments into nine patterns based on the trajectory’s
radius and ofset. Te proposed method is more explicit and
suitable for automated data extraction and processing than
previous methods. Meanwhile, the friction coefcient uti-
lization rate is used to efectively compare vehicles’ sideslip
risk under diferent weather conditions. Based on this, we
construct a framework for automatic trajectory pattern
identifcation and sideslip risk measurement based on
machine vision technology. We use it to collect two datasets
of the same curve under clear and rainy conditions, con-
taining the trajectories of 970 and 1021 vehicles, respectively.
Based on these datasets, we investigated the proportion and
safety of trajectory patterns under clear versus rainy weather
conditions. Tis study has the following two-fold contri-
butions: First, at the methodological level, we proposed
a parametric classifcation method for the trajectories on
curved segments. Tis method flls the void of quantitative
indices in previous trajectory classifcations and enables
a more accurate analysis of trajectory characteristics. Si-
multaneously, it facilitates the swift identifcation of vehicle
trajectory patterns using computer vision technology. Sec-
ondly, at the application level, we extensively analyze the
various vehicle trajectory patterns, revealing the strategies
employed by drivers to safely navigate curved segments
during rainfall. Tis innovative approach would facilitate
enhancing the design of highway curved segments and
optimizing trafc management strategies.

Te rest of the paper is structured as follows. Section 2
provides a literature review. Section 3 introduces the
methodology. Section 4 gives the data preparation and
implementation details. Te results and discussion are
presented in Section 5. Finally, Section 6 provides the
conclusions of our work.

2. Literature Review

2.1. Sideslip Risk Measurement. Vehicle sideslip, a dangerous
situation of lateral vehicle instability, is most common when
a vehicle passes around a curved segment [33].Te vehicle may
sideslip if the friction between the tires and the road surface is
insufcient to counteract the centrifugal force during vehicular
curve driving. Figure 1 shows a typical example of a vehicle
sideslip on a highway curve. Sideslip risk measurement in-
dicators generally fall into two categories based on vehicle states
[34, 35] and based on friction coefcient [36, 37]. Among the
indicators based on vehicle status, the sideslip angle provides
the most direct refection of the sideslip condition, which is
defned as the angle between the actual direction of vehicle
motion and the wheel orientation. However, a signifcant
drawback of the sideslip angle is its delayed response, as its
value increases abruptly only when the sideslip occurs [37]. To
measure the sideslip risk of a vehicle before the sideslip occurs,
Chen et al. [15] proposed the sideslip index, which can indicate
the risk trend before the sideslip occurs based on tire loads.
However, such indicators are usually only available for sim-
ulationmodels or sensor-equipped vehicles due to the difculty
of obtaining vehicle state data.
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Compared to vehicle state-based measurement, friction
coefcient-based measurement is better suited for practical
road design and maintenance work [15]. Te friction co-
efcient of the road surface is directly utilized to measure its
skid resistance performance [38]. Furthermore, the friction
coefcient required for maintaining vehicle balance can be
estimated based on the vehicle’s speed and motion radius.
Road geometry design extensively applies the required
friction coefcient [39]. However, it is less used in measuring
real vehicle sideslip risk. Tis is because it necessitates real-
time data on the vehicle’s trajectory, radius, and speed.
Nevertheless, the required friction coefcient of the vehicle
provides a metric foundation for employing computer vision
to measure vehicle sideslip risk [40, 41].

2.2. Trajectories Classifcation. Regarding geometric char-
acteristics, curved segment trajectories display more distinct
feature variations than straight segments. Currently, there
are mainly two types of classifcation methods for curved
segment vehicle trajectory patterns: one is based on single
indicators, such as the trajectory radius [42] and lane de-
parture [43]; the other is mixed classifcation method [44],
which is the most commonly applied method, and cate-
gorizes the trajectories into six patterns, as shown in Fig-
ure 2. In addition, Table 1 presents a detailed analysis of four
representative classifcation methods for curved segment
trajectories, examining their advantages and disadvantages.

According to the analysis results in Table 1 and the
literature review, we identify three aspects where current
trajectory classifcation methods need improvement to ob-
serve the overall variation of trajectory characteristics more
efectively. (a) Enhancing the universality of classifcation
methods. For example, the method “based on the position of
the curve-cutting point” is mainly applicable to specifc road
scenarios like “hairpin curves.” (b) Integrating the charac-
teristics of curved trajectories. For instance, the “based on
lane departure” and the mixed classifcation methods show
poor correlation with the characteristics of curved trajec-
tories. (c) Defning precise classifcation indicators. For
example, the mixed classifcation method lacks clear clas-
sifcation indicators, and many trajectory categories overlap,
making it difcult to distinguish efectively.

3. Methodology

In this study, a framework for vehicle trajectory pattern
identifcation and sideslip risk measurement in curved
segments is developed based on computer vision technology,
as shown in Figure 3. Te framework consists of three parts:
(1) trajectory extraction; (2) trajectory pattern classifcation;
and (3) sideslip risk measurement. Subsequent subsections
present each of these components in Sections 3.1–3.3 in their
respective order.

3.1. Trajectory Extraction. In the trajectory extraction part,
we employ computer vision techniques to extract vehicle
trajectories from surveillance videos. Specifcally, this
process can be divided into three steps. Firstly, we conduct
vehicle detection and tracking to automatically capture the
vehicle trajectories from videos in the image coordinate
system. Secondly, we conduct camera calibration and co-
ordinate transformation to convert trajectory coordinates
into real-world coordinates based on the camera
parameters.

3.1.1. Vehicle Detection and Tracking. In step 1, we employ
the YOLO (You Only Look Once) and StrongSORT algo-
rithms to achieve automated vehicle detection and tracking.
YOLO, as a leading vehicle detection algorithm currently
[47, 48], utilizes a single neural network to predict the
bounding box and class probabilities of each object in
a single forward pass. Compared to region-based con-
volutional neural network (R-CNN), YOLO algorithm
boasts advantages of faster detection speed and easier de-
ployment [49]. Moreover, to maintain continuous vehicle
trajectory tracking, it is necessary to integrate vehicle de-
tection algorithms with multiobject tracking (MOT) algo-
rithms. StrongSORT, as an advanced MOT algorithm,
integrates Gaussian-smoothed interpolation (GSI) with
DeepSORT to reduce detection loss efectively [50]. In this
study, we trained Yolo v5 Version 6.0 and StrongSORT V4.0
models based on a dataset of more than 12,000 vehicles. Te
snapshot of object detection and tracking uses YOLO and
Deep Sort, as shown in Figures 3(a) and 3(b).

00:00.000

(a)

00:00.582

(b)

00:01.094

(c)

00:01.826

(d)

00:02.271

(e)

Figure 1: Example of a vehicle sideslip. Te white car sideslipped and lost control, eventually crashing into the orange car. During this
incident, the white car corrected its direction twice. (a) Normal state. (b) Sideslip. (c) First correction. (d) Lost control. (e) Second correction.

Journal of Advanced Transportation 3



3.1.2. Camera Calibration and Coordinate Transformation.
In step 2, the trajectory data obtained in the image co-
ordinate system (u-v coordinates) must be further converted
into Frenet coordinates (s-d coordinate system) for better
visualization and classifcation of the trajectories. By uti-
lizing the spatial position and focal length of the surveillance
camera, the mapping relationship between the image co-
ordinate system and the world coordinate system can be
deduced, as shown in (1) [51]. Tus, accurate external pa-
rameters of the surveillance camera, such as focal length,
rotation angle, pitch angle, and height, are crucial for co-
ordinate transformation. Various camera parameter

calibration methods have been applied in previous studies,
which can be divided into multivanishing point methods
and single-vanishing point methods [52]. Due to the lack of
efective reference objects on road segments, this study
combines the previous research results to apply the “VWL”
(one vanishing point, known width and length) method for
camera parameter calibration [53, 54]. Te “VWL” method
determines a vanishing point based on the road markings
and then obtains the camera parameters based on the known
length of the road markings and a set of parallel markings
with known spacing, as shown in equations (2)–(6) and
Figure 4(a).
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where (u, v) represents the coordinate values in the image
coordinate system, and (x, y, z) represents the coordinate
values in the world coordinate system. f is the camera focal
length, σ is the camera rotation angle, ϕ is the camera pitch
angle, h is the camera height (m), and ξ is the scaling factor.
(u0, v0) is the vanishing point image coordinate, (ui, vi) and
(uj, vj) are the start and end point image coordinates of the

length reference object, ∆u is the diference in intercepts of
the two known parallel lines on the road in the coordinate
axis, W is the distance between the two known parallel lines
on the road, L is the actual length (m) of the length reference
object, and T is an intermediate variable.

Although some reliable methods have been proposed in
previous studies to transform the world coordinate system into

(a) (b) (c) (d) (e) (f )

Figure 2: Schematic diagram of trajectory patterns based on the mixed classifcation method. (a) Cutting. (b) Swinging. (c) Drifting. (d)
Correcting. (e) Normal behavior. (f ) Ideal behavior.
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the Frenet coordinate system [55], signifcant lens distortion
and irregular scaling exist due to the camera perspective of
surveillance video. To accurately measure the trajectory in real-
world units (e.g., meters), this study adopts a grid remapping
method that directly transforms trajectory data from the u-v
coordinate system to the s-d coordinate system [56]. Based on
the camera calibration results, the grid mesh is established by
equation (1). Every grid is of equal size in real-world units,

which represents an equal-sized planar area of the actual road.
In this study, the grid dimensions are chosen based on the
monitored scene’s key reference points: the lane width (3.75m)
and roadmarking length (6.0m), with the lateral grid width set
to 0.1875m to divide the lane width into 20 units and the
longitudinal grid length to 1m to divide the marking length
into six units, as shown in Figure 4(b). Based on this, the
trajectory data transformed into an s-d coordinate system, as

(a) Vehicle detection (b) Vehicle tracking (c) Vehicle trajectory in the image coordinate system

x

z

y

u

v

(d) Camera calibration and coordinate transformation(e) Frenet Coordinates(f) Trajectory reconstruction

Part 2: Trajectory pattern classifcation

Part 1: Trajectory extraction

(h) Trajectory pattern classifcation (g) Classifcation indicators extraction 

Part 3: Sideslip risk measurement

(i) Speed and radius extraction and optimization

The radius of curvature at
each trajectory point {Ri} 

Vehicle speed at each
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(j) Sideslip Risk Measurement
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Figure 3: Framework of trajectory pattern identifcation and sideslip risk measurement based on computer vision.
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shown in Figure 3(e). Further, according to the road geometry,
we reconstruct the vehicle trajectory in the x-y coordinate
system, as shown in Figure 3(f).

3.2. Trajectory Pattern Classifcation

3.2.1. Classifcation Indicators. To efectively analyze high-
way driving safety, it is essential to consider the charac-
teristics of the trajectory on curved segments when
conducting systematic trajectory classifcation. Te trajec-
tory on curved segments has the following three major
characteristics: (a) smooth and continuous; (b) approxi-
mated as circular arcs; and (c) possibly ofset to one side.Te
trajectory of a vehicle within a curved segment can be ap-
proximated as a circular arc. Tis circular radius of ap-
proximation RT, referred to as the “trajectory’s
approximation radius,” is a signifcant characteristic for
distinguishing diferent types of trajectories. For example,
the “cutting” and “ideal behavior” trajectory types proposed
in previous studies can be diferentiated using RT [57]. In
addition, compared to straight segments, vehicles often tend
to be ofset to one side when driving on curved segments.
Tis is related to the turning position and the steering wheel
angle. Understanding the ofset trend of trajectories has
reference value for improving road geometric design and
setting safety facilities [43]. Based on this, we propose
a parameterized trajectory classifcation method that em-
ploys the turning beneft ratio (TBR) and trajectory ofset
(∆d) as classifcation indicators for trajectories.

(1) Turning beneft ratio: Te turning beneft ratio TBR
as a classifcation indicator refers to the ratio of the
trajectory’s approximate radius to the ideal radius, as
shown in equation (7). According to the coordinates
of the starting point (xs, ys), midpoint (xm, ym), and
endpoint (xe, ye) of the trajectory in the x-y co-
ordinate system, the approximation radius RT can be
computed using Heron’s formula [58], as shown in
equation (8). According to TBR, we can classify
trajectories into three patterns, as shown in
Figure 5(a) When TBR ≈ 1, the vehicle trajectory

radius is close to the ideal radius. In the Frenet
coordinate system, the trajectory is then a straight
line. (b) When TBR≫ 1, the trajectory radius is
much larger than the ideal radius. In the Frenet
coordinate system, the trajectory is a curve with the
center on the right (the outer side of the curve). (c)
When TBR≪ 1, the vehicle’s trajectory radius is
much smaller than the ideal radius. In the Frenet
coordinate system, the trajectory is a curve with the
center on the left (the inner side of the curve). Using
the Frenet coordinate system provides an intuitive
way to distinguish between three diferent trajecto-
ries classifed by TBR.

TBR �
RT

RC + dB

, (7)

RT �
b1b2b3

4A
,

A �
�����������������������
C C − b1( 􏼁 C − b2( 􏼁 C − b3( 􏼁,

􏽱

C �
b1 + b2 + b3

2
,

b1 �

������������������

xs − xm( 􏼁 + ys − ym( 􏼁

􏽱

,

b2 �

������������������

xm − xe( 􏼁 + ym − ye( 􏼁

􏽱

,

b3 �

������������������

xe − xb( 􏼁 + ye − yb( 􏼁,

􏽱

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where RC is the radius of the road horizontal curve
and dB is the lateral distance between the vehicle and
the road boundary when entering a curved segment.

(2) Trajectory ofset distance: Te trajectory ofset ∆d

refers to the diference in lateral distance between the
vehicle and the road boundary when entering and
exiting a curved segment, i.e., ∆d � dB − dE. Based
on ∆d, we can classify the trajectory into three
categories, as shown in Figure 6. When ∆d ≈ 0, the
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Figure 4: Schematic diagram of camera calibration and grid mesh establishment. (a) “VWL” method for camera parameter calibration. (b)
Grid mesh establishment based on camera calibration.
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distance between the vehicle and the road boundary
at the entry and exit of the curved segment is similar,
indicating that the vehicle can maintain stable
control. When ∆d≫ 0, the vehicle deviates toward
the outer side of the curve when exiting the curved
segment. When ∆d≪ 0, the vehicle deviates toward
the inner side of the curve when exiting the curved
segment. Although it is insufcient to determine
insufcient or excessive steering solely based on
trajectory ofset, typically, when a vehicle has in-
sufcient steering, it tends to deviate toward the
outside of the curve. Conversely, when a vehicle has
excessive steering, it tends to deviate toward the
inside of the curve.

3.2.2. Trajectory Pattern Descriptions. To classify trajectories
according to TBR and ∆d, we introduce the standard de-
viation of two indicators, α and β, as deviation thresholds,
respectively. When TBR ∈ (1 − α, 1 + α), it can be consid-
ered that the approximation radius RT of the trajectory is
close to the ideal radius. When ∆d ∈ (−β, β), it can be
considered that the distance between the vehicle and the
road boundary is the same when the vehicle enters and exits
the curved segment. In this study, vehicle trajectories are
divided into nine patterns according to TBR and ∆d, as
shown in Figure 7.

Te characteristics of the nine trajectory patterns are
described as follows:

(1) Inside ofset-smaller radius (I-S): Tis pattern has
the characteristic that the trajectory’s approximate
radius RT is much smaller than the ideal radius and
deviates to the inside of the curve. Its
∆d ∈ (−∞, −β] and TBR ∈ (0, 1 − α]. When the
vehicle is oversteering, its trajectory may show this
pattern.

(2) Inside ofset-ideal radius (I-I): Tis pattern has the
characteristic that the trajectory’s approximate radius
RT is approximately equal to the ideal radius and
deviates to the inside of the curve. Its ∆d ∈ (−∞, −β]

and TBR ∈ (1 − α, 1 + α).Tis pattern ismanifested as
a straight line leaning towards the right side (the inner
side of the curve) in the Frenet coordinate system.

(3) Inside ofset-larger radius (I-L): Tis pattern has the
characteristic that the trajectory’s approximate ra-
dius RT is much larger than the ideal radius and
deviates to the inside of the curve. Its ∆d ∈ (−∞, −β]

and TBR ∈ [1 + α,∞). Unlike the “I-S” pattern, this
pattern is infrequently encountered when the
steering wheel angle remains constant. When the
vehicle’s trajectory displays this pattern, it signifes
that the driver has made specifc trajectory
corrections.

(4) Symmetry-smaller radius (S-S): Tis pattern shows
a symmetrical trajectory, but the trajectory’s ap-
proximate radius RT is much smaller than the ideal
radius. Its ∆d ∈ (−β, β) and TBR ∈ (0, 1 − α]. Tis
pattern may occur, but is not limited to situations
when vehicles are compelled to adopt a smaller
trajectory radius and ofset towards the inner side to
avoid intruding into the outermost lanes.

(5) Symmetry-ideal radius (S-I): Tis pattern shows
a symmetrical trajectory with an approximate radius
RT is approximately equal to the ideal radius. Its
∆d ∈ (−β, β) and TBR ∈ (1 − α, 1 + α). Tis is the
ideal trajectory pattern, indicating that the vehicle
can drive steadily along the geometric line of the
lane. Tis pattern is manifested as a straight line
parallel to the s-axis in the Frenet coordinate system.

(6) Symmetry-larger radius (S-L): Tis pattern shows
a symmetrical trajectory, but the trajectory’s

TBR >> 1
TBR ≈ 1
TBR << 1

y
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d

R
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(a)
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Figure 5: Schematic diagram of the vehicle trajectory with diferent TBR. In the Frenet coordinate system, the s-axis is located along the left
boundary of the road, and the d-axis is perpendicular to the s-axis. Te coordinate s represents the distance along the road, while the d-axis
represents the vehicle’s distance from the outer boundary. (a) Cartesian coordinates. (b) Frenet coordinates.
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approximate radius RT is much larger than the ideal
radius. Its ∆d ∈ (−β, β) and TBR ∈ [1 + α,∞).
When the vehicle is cutting to the inside of the curve,
the vehicle’s trajectory often exhibits this pattern.

(7) Outside ofset-smaller radius (O-S): Tis pattern has
the characteristic that the trajectory’s approximate
radius RT is much smaller than the ideal radius and
deviates to the outside of the curve. Its ∆d ∈ [β,∞)

and TBR ∈ (0, 1 − α]. Like the “I-L” pattern, this
pattern is also infrequently encountered when the
steering wheel angle remains constant. When the
vehicle’s trajectory displays this pattern, it signifes
that the driver has made specifc trajectory
corrections.

(8) Outside ofset-ideal radius (O-I):Tis pattern has the
characteristic that the trajectory’s approximate ra-
dius RT is approximately equal to the ideal radius
and deviates to the outside of the curve. Its
∆d ∈ [β,∞) and TBR ∈ (1 − α, 1 + α). Tis pattern
is manifested as a straight line leaning towards the
left side (the outer side of the curve) in the Frenet
coordinate system.

(9) Outside ofset-larger radius (O-L): Tis pattern has
the characteristic that the trajectory’s approximate
radius RT is much larger than the ideal radius and
deviates to the outside of the curve. Its ∆d ∈ [β,∞)

and TBR ∈ [1 + α,∞). When the vehicle is under-
steering, its trajectory may show this pattern.
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Figure 7: Schematic diagram of nine trajectory patterns. (a) Cartesian coordinate system. (b) Frenet coordinate system.
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Figure 6: Schematic diagram of the vehicle trajectory with diferent ∆d. (a) Cartesian coordinate. (b) Frenet coordinate.
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3.3. Sideslip Risk Measurement

3.3.1. Friction Coefcient Utilization Rate. Sideslip is the
most common situation in lateral instability [59]. Fig-
ure 8 illustrates the forces acting on a vehicle on a curved
segment during its travel. Te vehicle experiences three
primary forces in the lateral direction: the component of
the vehicle’s centrifugal force along the road’s cross slope
Fv cos θ, the component of the vehicle’s gravitational
force along the road’s cross slope G sin θ, and the lateral
resistance caused by the friction between the tires and the
road surface Ff [60]. Te centrifugal force is related to the
vehicle’s mass m, speed v, and trajectory radius R and can
be represented as Fv � mv2/R. When the vehicle is stable
in the lateral direction, Fv cos θ � G sin θ + Ff. We defne
the required friction coefcient fR for the vehicle to
maintain lateral stability as the ratio of the lateral friction
resistance Ff to the normal reaction force N. Accord-
ingly, it can be known that fR is related to the vehicle’s
instantaneous speed vi, instantaneous turning radius Ri,
and road cross slope e. Te required friction coefcient fR

can be calculated according to equation (9). When the
required friction coefcient fR is less than the maximum
friction coefcient fmax that can be provided between the
tire and the road surface, the vehicle maintains lateral
force balance.

fR �
vi
2

gRi

− e fR ≤fmax( 􏼁. (9)

When the required friction coefcient fR for a vehicle is
greater than the maximum friction coefcient fmax that the
interaction between the tires and the road surface can
provide, the vehicle will sideslip [61]. To enable a compre-
hensive comparison of the sideslip risk under clear and rainy
weather conditions, we employ the friction coefcient uti-
lization rate μ to measure the sideslip risk, as shown in
equation (10). A higher value of μ translates to a greater risk
of vehicle sideslip. However, it is difcult to obtain an ac-
curate value for fmax. Terefore, this study only selects the
representative value of fmax under clear and rainy weather
conditions for measuring the sideslip risk. According to
related research [62], the maximum lateral friction co-
efcient for asphalt surfaces is approximately 0.85 under
clear weather conditions and approximately 0.30 under
rainy conditions.

μ �
max fR􏼈 􏼉

fmax
. (10)

3.3.2. Data Extraction and Optimization. Speed vi􏼈 􏼉 and
trajectory radius Ri􏼈 􏼉 of the vehicle are critical basic data for
measuring vehicle sideslip risk. Tey can be calculated based
on the trajectory coordinates in the x-y coordinate system
using equations (11) and (12), respectively. Here, the x and y
coordinates are respectively ftted using fourth-degree
polynomials to obtain the frst and second derivatives.

Ri􏼈 􏼉 �
1
ki􏼈 􏼉

�
x′2 + y′2􏼐 􏼑

3/2

x′y″ − x″y′

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (11)

vi􏼈 􏼉 �

��������

x′2 + y′2
􏽱

, (12)

where ki􏼈 􏼉 is the curvature at each trajectory point.
Due to the random noise introduced during trajectory

extraction processing steps, this study chose fltering tech-
niques to optimize the data. Filtering is a data processing
technique used to remove noise and enhance the accuracy of
information extraction [63]. Commonly used algorithms
include median and mean flters, wavelet thresholding,
a cubic spline flter, and a Savitzky–Golay flter [64].
Compared to other algorithms, the Savitzky–Golay flter has
the advantage of preserving data features and allowing for
fexible parameter adjustment. Moreover, it has been found
efective for optimizing vehicle trajectory data [65]. Te
Savitzky–Golay flter is given in the following equation:

Qj �
􏽐

i�m
i�−mλiqj+1

N
, (13)

where Qj is the fltered data; qj+1 is the original data; λi is the
i-th coefcient of the flter, which can be calculated by
a polynomial with order ω; N is the flter length; and m is the
half-flter length, which is equal to 0.5(N − 1).

4. Data Preparation and
Implementation Details

Te data for this study originate from the S4 highway in
China, a major arterial route with three lanes in each di-
rection and a design speed of 120 km/h. According to the
crash report, we selected a curved segment with six rainy
sideslip crashes in two years as the study segment. Tis
segment has a curvature radius of 2,200m and a superele-
vation of 3%. Te data collected comprise surveillance video
and highway design drawings. Two surveillance videos were
used as case studies, which were recorded in diferent
weather conditions: clear and rainy weather (as shown in
Figure 9). Te videos were captured using gun-type sur-
veillance cameras ftted with rain shields to ensure quality
recording in rainy conditions. Each video boasts a resolution
of 4,064 pixels× 3,040 pixels and a frame rate of 24 frames/
second, spanning a duration of two hours.Te trafc volume
in both videos is approximately equivalent, recording 970
vehicles under clear weather conditions and 1,021 vehicles
during rainy conditions.

Vehicle types are classifed into two categories: “Car” and
“Truck.” “Car” refers to vehicles with nomore than two axles
or four wheels (e.g., private cars and vans), while “Truck”
refers to vehicles with more than two axles or four wheels
(e.g., trucks and buses). Meanwhile, road lanes are divided
into left, middle, and right lanes according to the direction of
vehicle travel. Te left lane is closer to the outside of the
curve, and the right lane is closer to the inside of the curve.
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Te vehicle’s lane is identifed based on the lane it occupied
when entering the segment, as shown in Figure 9(a).

In addition, we calibrated the parameters of the camera
that captured these surveillance videos using the method
described in Section 3.1.2. Based on the road markings, we
located a vanishing point with coordinates (u0, v0) �

(676.99, −102.14). Further, utilizing the known information
from the image, a lane width of 3.75m and a road marking
length of 6.00m, we applied equations (2)–(6) to calculate
the camera’s rotation angle σ � 0.027, the pitch angle
ϕ � 0.062, the focal length f � 10296.18, and the camera
height h � 8.99m. Based on this, we further defned the
efective trajectory observation area and determined the grid
mesh using equation (1), as shown in Figure 9(b).

5. Results and Discussion

5.1. Trajectory Pattern Statistical Analysis. Tis section pri-
marily includes two aspects: (a) conducting statistical
analysis on two trajectory classifcation indicators to de-
termine the classifcation threshold and (b) exploring the
infuence of vehicle lane and vehicle type on trajectory
patterns in diferent weather conditions.

5.1.1. Classifcation Indicators and Deviation Tresholds.
In order to classify trajectories according to the two in-
dicators TBR and ∆d proposed in this study, it is necessary to
determine the deviation thresholds α and β. We performed
a statistical analysis on TBR and ∆d under clear and rainy
weather conditions. Table 2 presents the statistical results,
including the mean, standard deviation, skewness, and
kurtosis of TBR and ∆d.

According to Table 2, we can conduct a preliminary
analysis of the impact of rainfall on the trajectory. It can be

observed that rainy weather increases the mean and skew-
ness of both TBR and ∆d when compared to clear weather.
Tis suggests that vehicles tend to deviate towards the
outside of curves and adopt a larger trajectory radius on
curved segments under rainy weather. Furthermore, rainy
weather causes a decrease in the kurtosis of ∆d and an
increase in its standard deviation when compared to clear
weather conditions. It also suggests that the ofset dispersion
is greater as the vehicle crosses the curved segment under
rainy conditions. Notably, rainy conditions also reduce the
kurtosis and the standard deviation of TBR compared to
clear weather conditions. Tis suggests that, under rainy
conditions, the trajectory approximation radius RT disper-
sion increases within a limited range while extreme de-
viations decrease.

Considering that the trajectories collected under clear
weather are more representative of the normal situation, this
study chooses the standard deviations of two indicators as
deviation thresholds: α � 0.093 and β � 0.685. Te collected
vehicle trajectories are classifed into nine patterns using
these thresholds. Figure 10 presents the classifcation results
of the trajectory under rainy weather conditions, clearly
illustrating the signifcant characteristics diferences among
the nine patterns. Tese characteristics of the nine trajectory
patterns are consistent with the features described in Section
3.2.2. Tis result validates the feasibility and efectiveness of
the trajectory pattern classifcation method combined with
computer vision technology proposed in this study.

5.1.2. Exploratory Analysis of Trajectory Pattern. Based on
the classifcation of trajectory patterns, we investigate the
infuence of rainfall on trajectory patterns for vehicles with
diferent vehicle types and lanes. Table 3 displays the
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Figure 8: Front view of vehicle model on a curved segment. (a) Lateral force of the vehicle on the curved segment. (b) Vehicle lateral stability
at diferent speed.
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proportions of diferent trajectory patterns under clear and
rainy weather conditions across various lanes. Te following
observations are noteworthy:

(a) Under rainy conditions, the proportion of the “S-I”
trajectory pattern (the theoretically ideal trajectory
pattern) decreases in all three lanes. Tis suggests
that rainfall may heighten the challenge of con-
trolling the vehicle along the geometric path of the
road on curved segments.

(b) Compared to clear weather conditions, the pro-
portion of vehicles in the left lane that deviates to the
outside (left side) of the curve increases signifcantly
under rainy conditions, while the proportion of
vehicles in the right lane that deviates to the inside
(right side) of the curve increases slightly. Among
them, the “O-I” trajectory pattern increases by 25%
in the left lane, while the “I-I” trajectory pattern
increases by 7.4% in the right lane. Tis fnding
implies that vehicles on the left and right lanes may
tend to stay away from the middle lane under rainy
conditions.

(c) Vehicles adopting the “S-L” trajectory pattern must
shift towards the middle lane when in the left lane,
whereas vehicles in the right lane must deviate from
the middle lane. Compared to clear weather con-
ditions, the proportion of the “S-L” trajectory pat-
tern decreases by 4.8% in the left lane, while it
increases by 4.3% in the right lane. Tis fnding
supports the speculation that vehicles on the left and
right lanes may tend to stay away from the middle
lane under rainy conditions.

(d) In the middle lane, aside from a 7.8% reduction in
the proportion of the “S-I” pattern, changes in other
trajectory patterns remain below 3%. Tis indicates

that the vehicle trajectory pattern in the middle lane
is least afected by rainfall.

Table 4 illustrates the proportions of diferent trajectory
patterns for various vehicle types under clear and rainy
weather conditions. Te following trends can be observed:

(a) Compared to clear weather conditions, the pro-
portion of the “S-I” trajectory pattern for cars de-
creases by 14.5%, while for trucks, it only decreases
by 6.9%. Tis suggests that car trajectory patterns
may be more susceptible to rainfall compared to
trucks.

(b) Compared to clear weather conditions, under rainy
conditions, the proportion of the “O-I” trajectory
pattern for cars and trucks shows a substantial in-
crease of 12.3% and 6.2%, respectively. Meanwhile,
the proportion of trucks with the “I-L” trajectory
pattern decreases by 4.8% under rainy days, and the
“O-L” trajectory pattern increases by 4.2%. Tis may
indicate a tendency for vehicles to deviate towards
the outside of curved segments.

5.2. Sideslip Risk Analysis. Tis section focuses on two as-
pects: (a) analyzing the infuence of rainfall on speed and the
minimum curvature radius of trajectories andmeasuring the
sideslip risk in diferent weather conditions and (b) com-
paring and analyzing the sideslip risk associated with dif-
ferent trajectory patterns.

5.2.1. Analysis of the Impact of Rainfall. A vehicle’s speed
and turning radius are key factors that infuence the risk of
a sideslip. Figure 11 illustrates the relationship between
speed and trajectory curvature radius under clear and rainy

Table 2: Statistical analysis of trajectory classifcation indicators.

Weather Number of samples
Mean Standard

deviation Skewness Kurtosis

TBR ∆d TBR ∆d TBR ∆d TBR ∆d

Clear 970 1.032 0.147 0.093 0.685 0.362 −0.190 6.729 15.051
Rainy 1021 1.035 0.295 0.084 0.743 0.624 0.449 5.991 8.172

Lef lane
Middle lane
Right lane

(a) (b)

Figure 9: Surveillance video screenshots of study segment in diferent weather conditions. (a) Video screenshots under clear weather
condition with lane location indication. (b) Video screenshots under rainy weather condition with grid mesh indication.
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Figure 10: Trajectory classifcation results of datasets from the rainy case. (a) “I-S” pattern (n� 8). (b) “I-I” pattern (n� 44). (c) “I-L” pattern
(n� 9). (d) “S-S” pattern (n� 32). (e) “S-I” pattern (n� 555). (f ) “S-L” pattern (n� 136). (g) “O-S” pattern (n� 9). (h) “O-I” pattern (n� 172).
(i) “O-L” pattern (n� 56).

Table 3: Distribution of trajectory patterns across diferent lanes and weather conditions (%).

Lane Weather I-S I-I I-L S-S S-I S-L O-S O-I O-L

Left lane Clear (n� 340) 0.000 0.000 0.000 0.000 67.647 14.706 1.471 8.824 7.353
Rainy (n� 404) 0.000 0.248 0.000 1.238 46.535 9.901 1.485 33.911 6.683

Change 0.000 +0.248 0.000 +1.238 −21.112 −4.805 +0.015 +25.08 −0.670

Middle lane Clear (n� 530) 0.000 3.774 1.887 5.660 68.868 13.208 0.000 3.774 2.830
Rainy (n� 508) 1.181 4.724 1.378 4.528 61.024 14.764 0.591 6.693 5.118

Change +1.181 +0.951 −0.509 −1.133 − .844 +1.556 +0.591 +2.919 +2.288

Right lane Clear (n� 100) 5.000 10.000 5.000 0.000 65.000 15.000 0.000 0.000 0.000
Rainy (n� 109) 1.835 17.431 1.835 3.670 52.294 19.266 0.000 0.917 2.752

Change −3.165 + .431 −3.165 +3.670 −12. 06 +4.266 0.000 +0.917 +2.752
Note. n is the number of vehicles. Other values are in percent. Te data in bold mean that the change value is greater than 4%.
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weather conditions. Each data point represents a vehicle,
where the y-axis represents the minimum curvature radius
Rmin of the vehicle’s trajectory on curved segments, and the
x-axis represents the corresponding vehicle speed at that
moment. Te color of each scatter point represents the
density at its corresponding position, indicating the number
of points in that location. Tis density is obtained through
Gaussian kernel density estimation. Several trends can be
observed from this fgure:

(a) Under rainy weather conditions, the average vehicle
speed signifcantly decreases (29.50m/s for clear
weather conditions, 26.08m/s for rainy weather
conditions). Tis confrms that rainfall has a signif-
icant impact on drivers.

(b) Under rainy weather conditions, the mean value of
Rmin decreases and its dispersion increases. Tis
trend could indicate that drivers are more cautious
or that rainfall may increase the difculty for drivers
to control their vehicles, consequently making it

challenging for vehicles to adopt a larger trajectory
radius when negotiating curves.

(c) Although there is no apparent linear relationship be-
tween vehicle speed and the minimum curvature ra-
dius (Rmin), there is a decreasing trend in vehicle speed
with decreasing Rmin under rainy weather conditions.
In contrast, no such trend is observed under clear
weather conditions. Tis trend may be related to the
lateral stability of vehicles. In clear weather, the road
surface ofers higher skid resistance, and the vehicle is
more laterally stable. However, in rainy conditions,
with lower skid resistance, drivers may distinctly feel
the risk of vehicle sideslip, especially when taking
curves with smaller radius. As the risk of sideslip in-
creases with smaller trajectory radius, drivers need to
reduce speed to ensure the safe passage of the vehicle.

Figure 12 presents the distribution of the friction co-
efcient utilization rate μ under clear and rainy weather
conditions. Under clear weather, the mean value of μ is 0.066

Table 4: Distribution of trajectory patterns across vehicle types and weather conditions (%).

Type Weather I-S I-I I-L S-S S-I S-L O-S O-I O-L

Car Clear (n� 865) 0.578 2.890 1.156 3.468 68.786 13.295 0.578 5.202 4.046
Rainy (n� 921) 0.869 4.560 0.977 3.257 54.289 12.595 0.869 17.481 5.103

Change +0.291 +1.670 −0.179 −0.211 −14.49 −0.700 +0.291 +12.2 9 +1.057

Truck Clear (n� 105) 0.000 4.762 4.762 0.000 61.905 19.048 0.000 4.762 4.762
Rainy (n� 100) 0.000 2.000 0.000 2.000 55.000 20.000 1.000 11.000 9.000

Change 0.000 −2.762 −4. 62 +2.000 −6.905 +0.952 +1.000 +6.238 +4.238
Note. n is the number of vehicles. Other values are in percent. Te data in bold mean that the change value is greater than 4%.
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Figure 11: Comparative scatter distributions of vehicle speed andminimum curvature radius under clear and rainy weather conditions.Te
red dashed line in the fgures is the diagonal line of the coordinate axis, which is convenient for observing the changes. (a) Clear weather
condition. (b) Rainy weather condition.
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with a standard deviation of 0.032, whereas, under rainy
conditions, the mean value of μ is 0.128 with a standard
deviation of 0.068. Overall, there is a signifcant increase in μ
for vehicles on curved segments under rainy conditions
compared to clear weather conditions. Furthermore, the
maximum value of μ under clear weather is 0.299, corre-
sponding to a maximum required friction coefcient fR of
0.255. In contrast, the maximum μ under rainy conditions
reaches 0.493, corresponding to a maximum fR of 0.148.
Previous studies suggest that the maximum achievable co-
efcient of friction between tires and road surfaces under
rainy conditions may be lower than 0.1 [66], indicating an
elevated sideslip risk on such road segments under rainy
conditions.

5.2.2. Analysis of Diferent Trajectory Patterns. Figure 13
illustrates the friction coefcient utilization rate μ of
diferent trajectory patterns under clear and rainy
weather conditions. Due to the limited sample size for
some trajectory patterns, the median values may not be
representative. Terefore, this study primarily uses the
mean of μ to measure the sideslip risk of various tra-
jectory patterns. Te investigation reveals the following
fndings:

(a) Rainfall impacts sideslip risk diferently for various
trajectory patterns. Although the trajectory pattern
with the highest risk of sideslip is “O-S” under both
clear and rainy conditions, the trajectory pattern
with the lowest risk of sideslip is diferent. Te “S-L”
trajectory pattern has the lowest sideslip risk under
clear conditions. However, the “S-I” trajectory

pattern has the lowest risk of sideslip under rainy
conditions.

(b) Among the trajectory patterns of the same category
based on TBR classifcation, there is no signifcant
correlation between ∆d and the mean of μ under
clear weather conditions. However, under rainy
conditions, the symmetrical trajectory patterns (“S-
S,” “S-I,” and “S-L”) exhibit a lower mean of μ. Tis
fnding indicates that maintaining a constant lateral
distance from the lane under rainy conditions can
reduce the vehicle’s sideslip risk.

(c) Among the trajectory patterns of the same category
based on ∆d classifcation, the mean value of μ for
varying patterns displays a certain order under clear
weather conditions: smaller radius> ideal radi-
us> larger radius. However, under rainy conditions,
the mean value of μ for diferent trajectory patterns
follows this order: smaller radius> larger radi-
us> ideal radius. It can be seen that there is a certain
correlation between the μ of the vehicle and the TBR
of the trajectory. Te trajectory pattern with smaller
TBR exhibits a higher risk of sideslip under clear
weather conditions. However, this correlation is not
observed under rainy conditions. Under rainy
conditions, there is a tendency for the TBR of
a trajectory to be closer to 1.00, which lowers its
sideslip risk. Tis fnding reveals that adopting
a larger TBR under rainy conditions does not nec-
essarily reduce vehicle sideslip risk. Conversely, this
may increase the sideslip risk when using the “S-L,”
“I-L,” and “O-L” trajectory patterns.
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Figure 12: Comparative analysis of the friction coefcient utilization rate under clear and rainy weather conditions.
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6. Conclusion

To sum up, this study aimed to investigate the infuence of
rainfall on trajectory patterns and sideslip risk on highway
curves. Te main contributions of this study are as follows.
Firstly, the turning beneft ratio TBR and trajectory ofset ∆d

were introduced as parameterized classifcation indicators
for trajectories, addressing the lack of precise indicators for
systematic trajectory classifcation on curved segments.
Furthermore, the friction coefcient utilization rate μ was
adopted as a measure for sideslip risk. Secondly, we pro-
posed a computer vision-based framework for automatically
identifying trajectory patterns and measuring sideslip risk.
Using this approach, we collected the trajectories and their
sideslip risk data from a curved segment of highway in China
under clear and rainy weather conditions. Based on the data,
a case study was conducted, and the following important
conclusions were drawn:

(a) According to the proposed trajectory classifcation
indicators, the turning beneft ratio TBR, and tra-
jectory ofset ∆d, vehicle trajectories can be efec-
tively classifed into nine patterns using computer
vision techniques. Meanwhile, in the Frenet co-
ordinate system, these nine trajectory patterns show
signifcant characteristic diferences, which is helpful
for better observation of trajectory changes. Tis
classifcation method provides trafc management
authorities with an efective tool for more accurate
and parameterized monitoring of vehicle behaviors

and sideslip risks on highways, especially during
rainy weather conditions.

(b) Te impact of rainfall on trajectory patterns of ve-
hicles in diferent lanes, ranked in descending order,
is as follows: left lane (outer side of the curve)> right
lane (inner side of the curve)>middle lane. Mean-
while, cars are more susceptible to these impacts
compared to trucks. In addition, compared to clear
weather conditions, vehicles on the left and right
lanes may tend to stay away from the middle lane
under rainy conditions. Tis fnding directs trafc
management authorities towards prioritizing certain
lanes for management and aids highway designers in
improving road design to accommodate these ob-
served behaviors.

(c) Rainfall signifcantly increased the sideslip risk on
the curved segments. However, the infuence of
rainfall on sideslip risk varied among diferent tra-
jectory patterns. Under rainy conditions, both the
trajectory’s approximation radius and the ofset have
a signifcant impact on the sideslip risk. Te “S-I”
trajectory pattern has the lowest risk of sideslip
under rainy conditions. Symmetrical trajectory
patterns are safer than asymmetrical patterns, and
trajectories closer to the ideal radius are safer than
others. Tus, maintaining a steady lateral distance
under rainy conditions can contribute to avoiding
vehicle sideslip. Tis fnding could help develop or
improve advanced driver assistance systems (ADAS)
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Figure 13: Comparative analysis of the friction coefcient utilization rate in diferent trajectory patterns.
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that can automatically adjust a vehicle’s trajectory in
rainy weather to reduce the sideslip risk.

However, there are some limitations to this study. It only
compares the changes in trajectory patterns under diferent
weather conditions on the same road segment, without
considering the sensitivity of road trajectories to rainfall at
diferent radii. In addition, the study lacks actual mea-
surements of lateral friction coefcients on the road surface,
comparing only the relative relationships of sideslip risks
among diferent trajectories. Future work aims to collect
more research data and further investigate the impact of
factors such as road radius and longitudinal slope on tra-
jectory patterns, providing a clearer understanding of the
efects of rainfall on vehicle safety on curved segments.
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